
A texture-mapping
approach for the
compression of colored
3D triangulations

Marc Soucy, Guy Godin,
Marc Rioux

Visual Information Technology Group, Institute for
Information Technology, National Research Council
of Canada, Ottawa, Canada K1A 0R6
e-mail: msoucy@innovmetric.com, godin@iit.nrc.ca

We present an algorithm that constructs
compact and realistic descriptions of
colored 3D objects using texture mapping
on compressed triangulations. A high-
resolution triangular mesh model is cre-
ated by integrating measurements from
a color 3D laser sensor. Each vertex is
attributed with a RGB color value. The
high-resolution triangulation is trans-
formed into a compressed triangulation
and a texture map. This map embeds the
color information of the vertices removed
during the geometric compression and
projected on the lower resolution tri-
angulation. We describe the algorithm for
the rapid and efficient construction of
a texture map for compressed triangula-
tions of arbitrary topology. Experiments
show that high compression rates can be
achieved while maintaining good visual
similarity between the original and com-
pressed models.
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1 Introduction

Computer-generated virtual environments rely on
efficient interactive computer graphics and re-
quire the real-time display of colored 3D surface
models. Most of the current applications of this
technology are based on the generation of purely
synthetic universes. However, many others, such
as simulators or virtual museums, need to incor-
porate representations of real 3D objects or scenes
— in other words, to ‘‘virtualize reality’’. Manually
creating geometric models of these objects
through the use of a CAGD system is often te-
dious, and sometimes impossible. This is parti-
cularly true for objects with irregular geometries
such as natural objects or works of art. In this
context, laser range sensors (Besl 1988) are find-
ing numerous new applications in geometric
modeling for industry or animation. They provide
a tool for digitizing 3D surfaces, usually in the
form of arrays of 3D coordinates. In addition to
the surface geometry information, some laser
range sensors, such at the one developed at the
National Research Council of Canada (Rioux
1984; Baribeau et al. 1992), are designed to record
the intensity of light in one or several wavelengths
that is reflected at each sensed point. The result of
the sensing then consists of a set of 3D points with
an attached trichromatic (RGB) color value,
which provide the raw data to the creation of
a geometric and color computer model of objects.
Virtual models can then be created that not only
reflect the object’s geometry, but also its actual
surface colors, instead of a synthetic pattern ap-
plied to the surface. The first step in reconstruc-
ting a surface representation from a set of color
range images is to create a surface description
based on triangular facets with color information
attached to each vertex. A method for the auto-
matic creation of a unified triangulation from
these possibly redundant data is described by
Soucy and Laurendeau (1995a, b). In order to
generate a geometric representation that describes
fine variations in the object shape and color, and
to avoid making a priori assumptions on the
object surface, it is generally necessary to use
a small surface-sampling step. Therefore, the
colored 3D triangulations built from color 3D
digitizer data often contain a large number of
triangles — in the order of hundreds of thousands.
This represents an important limitation when the
target application is the inclusion of the object
model within a virtual environment. This paper
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addresses the problem of compressing high-
resolution colored 3D triangulations to create
compact and realistic geometric descriptions that
can be displayed in real time on state-of-the-art
graphics workstations. We propose a two-step
approach for the generation of compact texture-
mapped models from high-resolution colored
models. First, the initial triangulation is deci-
mated with a new compression technique that
maintains a mapping between the original
vertices and the compressed 3D shape. The map-
ping information is then used to generate a tex-
ture map automatically for the compressed 3D
shape.
Several approaches have been proposed to model
a surface triangulation at various levels of resolu-
tion. De Floriani (1989) and Schmitt et al. (1991)
first compute a coarse triangulation from a user-
selected set of points and edges. Vertices are then
iteratively added to this model to refine the initial
approximation. Both methods require that the set
of vertices be mapped onto a 2D plane. The algo-
rithm reported by Schroeder et al. (1992) takes as
input a high-resolution 3D surface triangulation.
Vertices that minimize the triangulation error are
then removed iteratively to compress the initial
triangulation. The error criterion is the distance
between a point and the average plane modeling
its neighborhood. A method for compressing
a high-resolution triangulation is also presented
by Hoppe et al. (1993). The resulting triangulation
is obtained through a least-squares minimization
technique. Therefore, the error criterion uses
a quadratic norm. The hierarchical triangulation
algorithm reported by Soucy and Laurendeau
(1996) uses a sequential optimization process to
remove, at each iteration, the vertex minimizing
the retriangulation error. The vertices used to
generate compressed triangulations are thus
a subset of the original set of vertices. The oper-
ator controls the compression process by specify-
ing a 3D tolerance level, defined as the maximum
3D distance between the original model vertices
and the compressed surface representation. Once
the triangulation error crosses a specified toler-
ance level, the compressed representation is
saved in a file. Two major improvements have
been brought to this original algorithm. First,
the time complexity has been reduced almost to
O(n), which makes the compression of large
models more tractable. Second, the new compres-

sion technique maintains a mapping between
the original vertices and the compressed model.
Once a model has been compressed, all removed
vertices are attributed the barycentric coordi-
nates (u, v, w) of their projection on the larger
triangles of the remaining model. Thus each
triangle of the compressed model has a color
triplet at each vertex, as well as a variable number
of removed vertices mapped onto its planar
surface. Each carries three barycentric coordi-
nates (u, v, w) and a color triplet (RGB). The color
information associated with the removed vertices
is transformed into a high-resolution texture map
to be applied onto the compact triangulated
mesh.
Texture mapping is an efficient technique that has
been developed to give the illusion of a complex
object with a small number of polygons (Heckbert
1986; Haeberli et al. 1993). A texture map is de-
fined as a rectangular array of RGB colors. An
element in this array has two discrete coordinates
(s, t) and is the center of a square of side 1. The
squares associated with each array element are
named texels. In order to texture map a 3D poly-
gon, two real texture coordinates (s, t) are asso-
ciated with each polygon vertex. These texture
coordinates define a corresponding polygon in the
texture space. When a 3D polygon is rendered,
a filling algorithm shades each screen pixel en-
closed within its boundaries. Defining a corre-
sponding texture polygon allows the interpolation
of the surface material colors in the texture space
instead of using a single color for the whole tri-
angle. Texture mapping enables the rendering of
complex surfaces such as trees, water, and moun-
tains by mapping a realistic or photographic pic-
ture onto simple planar polygons, such as triangles
and rectangles. The same idea is exploited in this
paper, with the notable difference that the texture
to be mapped is not an independently defined 2D
image, but the result of the projection of color
information from a high-resolution 3D triangu-
lated geometric model onto a decimated one.
Such a triangulated model with attached color
may come, as is the main motivation for the work
presented here, from a laser color-range sensor,
but also from a geographical information system
or a scientific visualization system. Traditional
usages of texture mapping can be seen as mostly
applications of a 2D pattern onto a 2D surface, or
the intersection of a 3D volume texture with the
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rendered 2D surface, in the case of simulation of
sculptured material such as wood or marble. The
situation described in this paper differs from these
two classic cases in that it is concerned with the
projection of spatially located color information
onto a surface embedded in three dimensions with
no a priori restriction on the topology of the
triangulation and its efficient storage in a 2D
texture map.
This paper presents an algorithm for generating
a compact texture-mapped model having the vi-
sual impact of a high-resolution surface model
with a smaller number of triangles. It is assumed
that an initial high-resolution 3D triangulation is
available and that RGB color components are
attached to each triangulation vertex. This model
is input to the multiresolution triangulation algo-
rithm described by Soucy and Laurendeau (1996),
yielding a compressed triangulation. At the end of
this process, all removed vertices have three
barycentric coordinates (u, v, w) that define their
mapping on one triangle of the compressed tri-
angulation. Generating a texture map for a tri-
angulation raises three important problems:
1. How will the texture space be shared among
the triangles? 2. What values will be given to each
texel of the texture map? 3. How will the continu-
ity of the texture space be ensured? All these
aspects must be considered simultaneously in or-
der to design an efficient algorithm to build a tex-
ture map for a compressed triangulation. Section
2 overviews the original solution that was de-
veloped to overcome these problems. The texture
space is tessellated to accommodate the triangles
of the compressed model. Each triangle has its
own texture space. Each high-resolution vertex is
projected in the texture space and its RGB colors
are associated with the nearest texel center. An
interpolation algorithm finally assigns to each of
the remaining empty texels the RGB values of the
nearest texel center on the 3D surface. Constraints
are imposed to ensure that the texture space is
continuous. Sections 3 and 4 address more spe-
cific aspects of this construction scheme. The
method for tessellating the texture map is present-
ed in Sect. 3, while the interpolation algorithm is
described in Sect. 4. In Sect. 5, experimental re-
sults illustrate the performance of the proposed
algorithm.

2 Construction of a texture map
for a triangulation

This section overviews the original solution that
was designed to generate a texture-mapped model
from a compressed colored 3D triangulation. The
texture map is tessellated so that each triangle of
the compressed model has its own texture space.
Adjacent 3D triangles are not mapped contigu-
ously onto the texture map so that the repre-
sentation of models of any topology is possible.
However, texture continuity between triangles is
enforced by constraining the shape and size of the
texture triangles and the RGB values of the edge
texels. To assign RGB values to the texels of the
map, the high-resolution vertices are projected in
the texture space and their RGB colors are as-
signed to the nearest texel center. If two vertices
are projected onto the same texel, their RGB
components are simply averaged. A 3D nearest-
neighbor interpolation algorithm is used to assign
RGB values to empty texels into which no vertices
were projected.
It may be useful to start with a summary of how
a texture map is used to interpolate surface mate-
rial colors for polygon rendering. A triangle hav-
ing vertices p

1
—p

2
—p

3
is drawn on a computer

screen (Fig. 1). These 3D vertices are first projec-
ted on the 2D screen space with the appropriate
transformation. It should be noted that the pro-
jected vertices do not generally coincide with dis-
crete screen pixels. A filling algorithm is used to
determine which screen pixels are enclosed within
the projected triangle. If texture coordinates have
been defined for the triangle, it is possible to
interpolate the surface material colors onto the
texture map. In this paper, a nearest-texel texture
rendering mode is chosen: the reasons for this
choice are discussed later. The barycentric coordi-
nates of a screen pixel with respect to the projec-
ted triangle are first computed. These coordinates
are then used to determine a real position on the
texture map. The surface material colors asso-
ciated with the screen pixel are chosen as the RGB
colors of the nearest texel center on the texture
map. The dimension of a triangle in the texture
space determines the texture resolution on the
screen that can be reached for that geometric
primitive.
The first issue to address is the tessellation of
the texture map. Each triangle of the compressed
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Fig. 1. Interpolating the surface material colors in the
nearest-texel texture-rendering mode

Fig. 2. Mapping of two adjacent 3D triangles in texture
space. Continuity is achieved by the constraint that
t
b1
"t

a1
"t

a2
and t

b2
"t

a3
"t

a4

Fig. 3. Projection of original vertices (represented by white
squares) onto a texture triangle. The hatched texels are
empty, and their RGB values have to be interpolated

triangulation must have its corresponding texture
triangle on the texture map. We decided to map
each triangle independently onto the texture map.
This independent mapping of the triangles allows
us to process any triangulation topology. As a re-
sult, adjacent 3D triangles are not necessarily ad-
jacent, once they are projected onto the texture
map. This design choice implies that the shape
and size of the texture triangles and the RGB
values of the texels have to be constrained in order
to achieve texture continuity over the triangula-
tion. In the context of this paper, a texture map is
defined as continuous if the rendered image of any
triangulation vertex or edge is uniquely defined.
Indeed, vertices and edges are usually shared by
more than one triangle (except along triangula-
tion boundaries ) and, consequently, are described
by the same number of texture triangles. Texture
continuity at a vertex of the triangulation can be
achieved with constraint that all texels into which
the vertex is mapped have the same RGB values.
This constraint ensures that the image of a vertex
is uniquely defined. To achieve texture continuity
for a 3D edge, one must ensure that all texture
edges corresponding to this edge are equivalent.

A 3D edge shared by two adjacent triangles has
two texture edges. Three conditions must be im-
posed to meet the continuity requirement. Firstly,
the three vertices of a triangle must lie directly on
texel corners. Secondly, a texture triangle must be
a half-square triangle of dimension d

t
, i.e., a tri-

angle resulting from the diagonal subdivision of
a square of side d

t
. The advantage of using half-

square triangles is that d
t
texels now lie on each of

its three edges (see Fig. 2). Finally, the ratio of the
largest over the smallest of the dimensions d

t1
and

d
t2

of two texture triangles that are adjacent in 3D
space must be an integer number. Figure 2 shows
how texture continuity between two adjacent tri-
angles can be achieved when these conditions are
verified. Triangle t

1
and t

2
are adjacent by edge

t
1
—t

2
. Their vertices lie on texel corners, and they

are both half-square triangles of dimension 4 and
2 respectively. Texture continuity may then be sim-
ply achieved with the constraint that texels t

b1
, t

a1and t
a2

be equal and that texels t
b2

, t
a3

and t
a4

be
equal. In addition to the continuity constraints, it
is also necessary to allow different sizes of texture
triangles, since the corresponding 3D triangles do
not have the same sizes and may contain different
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amounts of color data. A hierarchy of triangle
dimensions based on powers of 2 has been chosen
for that purpose. This choice meets the require-
ment of an integer ratio of triangle sizes, while
being well adapted to current sizes of hardware
texture memory on numerous graphic systems.
Section 3 presents an algorithm to select texture
triangle sizes and tessellate the texture map.
Once each triangle has its own texture space,
color data attached to each original vertex of the
high-resolution triangulation are projected in the
texture space. Vertices that are part of the com-
pressed triangulation are mapped directly into the
texture space by means of their texture coordi-
nates. As for removed vertices, their barycentric
coordinates are used to map them in the texture
space of their circumscribing triangles. The RGB
colors of a removed vertex mapped onto a texture
triangle are assigned to the nearest texel center. If
several vertices are mapped onto the same texel,
their RGB contributions are averaged. The RGB
colors of texels that are constrained to be equal in
order to have texture continuity are also aver-
aged. Figure 3 illustrates the projection of the
original vertices onto a triangle. Triangle p

1
—

p
2
—p

3
is described by ten texels in the texture

space. The original color 3D vertices have been
mapped onto eight of these texels, thus setting
their RGB values. As in Fig. 3, some texels may
remain empty after all original vertices have been
mapped in the texture space. An interpolation
step is thus required to assign RGB values to these
empty texels. To get as close as possible to the
original color data and avoid the use of an
arbitrary interpolation function, we decided to
implement a 3D nearest-neighbor interpolation
algorithm. The RGB values of an empty texel
should be equal to the RGB values of the nearest
texel center on the 3D surface modeled by the
triangulation. An iterative 3D interpolation algo-
rithm is described in Sect. 4.

3 Tessellation of a rectangular
texture map

This section presents an algorithm for the tessella-
tion of a rectangular texture map into a set of
half-square texture triangles having dimensions
that are powers of 2. It is assumed that a ¼]H

texture map is available and that the width ¼ is
a power of 2. A texture filtering scheme indepen-
dent of the 3D shape compression is also de-
scribed. Texture filtering may be required to
achieve antialiased imaging of the 3D models.
Let us define D

i
as the average distance between

the vertices of the high-resolution triangulated
models. The average distance between the original
vertices mapped onto a compressed triangulation
can also be reasonably approximated by D

i
. To

obtain a high-resolution texture map and avoid as
much as possible the averaging of RGB color
data, the original vertices should be mapped onto
distinct texels. This can be achieved by defining
half-square texture triangles that oversample the
projected color vertices. Let us consider E

max
, the

length of the longest edge of triangle ¹. Then, one
can reasonably expect that, on average, the orig-
inal vertices mapped onto triangle ¹ will lie on
distinct texels if the corresponding texture triangle
has a dimension larger than E

max
/D

i
. Therefore,

the ratio E
max

/D
i
is computed for each triangle of

the compressed triangulation and rounded up to
the next power of 2 in order to set the dimension
of the corresponding texture triangles. Now that
initial dimensions have been defined for the tex-
ture triangles, two important issues must be ad-
dressed. Firstly, one must design an efficient
method for the tessellation of a ¼]H texture
map into a set of texture triangles. Secondly, one
has to devise a technique to reduce the dimension
of the texture triangles if the size of the required
texture map is larger than the available texture-
map space.
To simplify the tessellation algorithm, triangles
are paired to form rectangles. The pairing of half-
square triangles is illustrated in Fig. 4. Triangles
of equal dimension d

t
are paired to form rec-

tangles of dimension d
t

by (d
t
#1). It is worth

noting that the width of these rectangles remains
a power of 2. Since the width ¼ of the texture
map is also a power of 2, we can implement a very
simple custom tessellation algorithm. Rectangles
are placed in the texture map from the largest to
the smallest, always at the highest position avail-
able in the texture map. Since rectangle widths
and the texture map width ¼ are powers of 2, the
texture map is always fully used in the x-axis. An
example of a tessellated texture map is shown in
Fig. 5. One may notice that the only loss of tex-
ture space occurs at the bottom of the map.
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Fig. 4. Half-square triangles are paired to form rectangles: a two triangles of dimension 2 form a 2]3 rectangle; b two triangles
of dimension 4 form a 4]5 rectangle

Fig. 5. Example of a tessellated texture map

The tessellation algorithm described is adequate
when the required texture map is smaller than
¼]H. However, it would be desirable to design
a tessellation algorithm capable of dealing with
arbitrary texture-map sizes. A texture map must
contain a minimum of 3*n—tri texels to accom-
modate a triangulation, where n—tri is the number
of triangles. This corresponds to a situation in
which each texture triangle is a half-square tri-
angle of dimension 2. An algorithm for the tessel-
lation of any texture map larger than this minimal
texture map is presented here. If the allocated
texture map is smaller than the space needed for
the initial texture triangles, the texture triangle
dimensions are iteratively reduced until the tex-
ture map can accomodate all triangles. As stated
in Sect. 2, multiple color vertices projected onto
one texel are averaged. Therefore, reducing the
texture-triangle dimensions results in a low-pass
filtering of the color information. The size of the
texture map can thus be used to control the level
of texture filtering, independently of the 3D shape
compression achieved by the hierarchical tri-
angulation algorithm. This texture-filtering pro-
cess may be helpful to eliminate the aliasing effects
observed when a high-resolution texture map is
used to display an object located far from the
observer. Indeed, standard approaches for tex-
ture-map filtering cannot be applied to our tex-

ture maps, since the triangles are not necessarily
mapped contiguously onto the texture map.
Texture filtering is achieved through an iterative
algorithm that reduces the size of the initial tex-
ture triangles. As stated in Sect. 2, the dimensions
of the texture triangles are powers of 2. Each
power of 2 may thus be considered as a class to
which a given number of triangles belong. The
classes are ordered from the largest to the
smallest. At each iteration, the filtering algorithm
reclassifies the triangle nearest to the next inferior
class. The ratio between E

max
/D

i
, as we have de-

fined it, and the size of the nearest inferior class is
defined as the proximity coefficient of a texture
triangle. Let us consider a pair of triangles ¹

1
and

¹
2

for which E
max

/D
i
equals 17.5 and 11, respec-

tively. Initially, their corresponding texture tri-
angles have dimensions 32 and 16 since E

max
/D

i
is

rounded up to the next power of 2. To reduce the
sizes of the texture triangles, their proximity
coefficients are evaluated and are equal to
17.5/16"1.09375 and 11/8"1.375, respectively.
Therefore, triangle ¹

1
is the nearest to an inferior

class at iteration 1 and the dimension of its texture
triangle is set to 16. The proximity coefficient of
triangle ¹

1
is now equal to 17.5/8"2.1875.

Hence, triangle ¹
2

is the nearest to an inferior
class at iteration 2 and the dimension of its texture
triangle is set to 4. This reduction process can be
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performed, in the worst case, until all texture
triangles have the dimension 2. In practice, the
size of the allocated texture map limits the reduc-
tion process. At each iteration, the size of the
required texture space needed to accommodate the
actual set of texture triangles is evaluated. Once the
space becomes smaller or equal to the size of the
allocated ¼]H texture map, the iterative process
is ended and the texture map can effectively be
tessellated. Just before tessellation, an adjustment
step takes place to ensure that there is an even
number of triangles classified in each dimension
class but the smallest. This guarantees that no
texture space is wasted between classes.

4 Three-dimensional nearest-neighbor
interpolation of empty texels

The projection of the original vertices onto the
texture map may leave numerous empty texels, as
illustrated in Fig. 3. However, RGB values must
be defined for all texels enclosed within texture
triangles in order to define a usable texture-
mapped model. An interpolation step is thus
needed to assign RGB values to these empty
texels. To get as close as possible to the original
color data and to avoid the use of an arbitrary
interpolation function, we decided to implement
a 3D nearest-neighbor interpolation algorithm.
The RGB colors of an empty texel should be equal
to the RGB colors of the nearest texel center on
the 3D surface modeled by the triangulation. An
iterative algorithm for this 3D nearest-neighbor
interpolation is presented in this section.
The texels of a texture map are distributed along
a square grid topology. Finding the nearest neigh-
bor within a texture triangle can thus be efficiently
implemented with a distance transformation. A
distance transformation is an operation that con-
verts a binary picture, consisting of feature and
nonfeature elements, to a picture in which each
element has a value that approximates the dis-
tance to the nearest feature element (Borgefors
1984). In this paper, a feature element is the center
of a texel that has RGB values and a nonfeature
element is the center of an empty texel. A distance
transformation is computationally efficient since
it can be implemented as a sequence of raster
scans. As a result, such a transformation has a lin-
ear time complexity functions O (n), where n is the

size of the picture. Several measures of distance
are reported in the literature (Borgefors 1984). In
terms of distance precision, the best technique
reported by Borgefors (1984) is the 8-neighbor
euclidean distance transformation first proposed
by Danielsson (1980). An optimized implementa-
tion can be found in Leymarie (1992). The key
advantage of this technique is that its maximal
error is bounded by a constant. Therefore, the
precision achieved by the technique will be the
same for all triangles even though these triangles
may have different sizes. A modified 8-neighbor
euclidean distance transformation has been de-
signed and implemented in this work. Distances
are computed with the 3D coordinates of the texel
centers instead of the 2D texel coordinate metric.
In addition to the 3D nearest-neighbor distance,
an integer number is also attributed to each
empty texel. This integer number is the index of
the nearest neighbor on the texture map, which is
eventually used to copy the RGB values of the
nearest neighbor onto the empty texel. Once the
distance transformation has been applied to a tex-
ture map, each empty texel within a texture tri-
angle has been assigned a nearest neighbor within
that triangle. Figure 6 shows the results of ap-
plying the distance transformation to a texture
triangle. The texel centers are mapped onto the
3D triangles to illustrate the effects of the algo-
rithm. The nearest-neighbor regions surrounding
each nonempty texel are drawn with dotted con-
tours. These regions are analogous to Voronoi
cells in a 2D Voronoi diagram except that they
represent 3D neighborhoods on a surface. In
Fig. 6, nearest-neighbor regions are shown for
two adjacent triangles ¹

1
and ¹

2
. One can notice

that the centers of the two empty texels t
3

and t
5lying on the edge p

1
—p

2
are not part of the same

regions in the two triangles. It is even possible that
the nearest neighbor of an interior texel of triangle
¹ is part of another triangle (see for example texel
t
4

of Fig. 6). Hence, a single distance transforma-
tion is not sufficient to implement a global 3D
nearest-neighbor interpolation technique.
It is necessary to design a way to propagate the
distance transformation results between triangles
that are adjacent in the model, but not necessarily
on the texture map. Therefore, the nearest-neighbor
interpolation has been designed as an iterative
process. Following the first distance transforma-
tion, all empty texels lying on triangle edges are
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Fig. 6. Nearest-neighbor regions surrounding each
nonempty texel following the first distance transformation
performed on triangles ¹

1
and ¹

2

Fig. 7. Nearest-neighbor regions after distance propagation
across edge

Fig. 8. Nearest-neighbor regions following the second
distance transformation

found. For each of these edge texels, the best
nearest neighbor is determined, among the two
possible nearest neighbors found independently in
the two triangles adjacent to the edge. A second
distance transformation is then applied to the
texture map. During this distance transformation,
edge texels are considered feature elements and
are thus equivalent to nonempty texels. However,
a distance offset must now be added to distances
measured between an edge texel and an empty
texel. This distance offset is the 3D distance be-
tween the edge texel center and its nearest neigh-
bor. The total distance between an empty texel
center of triangle ¹ and its nearest neighbor now
becomes the sum of two distances: one computed
by the distance transformation within triangle
¹ and one representing a distance computed in
triangles adjacent to ¹. Following the second
distance transformation, results are again
propagated between the triangle edges. The pro-
cess is iterated until no new nearest neighbors are
found for the empty texels. Since this iterative
algorithm uses distances that are the sum of dis-
tances computed within triangle boundaries, it
performs a true 3D nearest-neighbor interpola-
tion on the surface of the model. The results of
propagating the distance transformation on the
triangles of Fig. 6 are shown in Fig. 7. One can
notice that the nearest neighbors of texels t

3
and

t
5

are now respectively t
2

and t
1
, which are part of

triangle ¹
1
. A second distance transformation is

then applied to the two triangles and as a result,
texel t

4
of triangle ¹

2
has a new nearest neighbor

part of triangle ¹
1
, as can be observed in Fig. 8.

Indeed, the sum of distances t
2
—t

3
and t

3
—t

4
is

smaller than the distance between t
6

and t
4
. Texel

t
2

is thus the nearest neighbor of texel t
4

on the
surface modeled by the triangulation.
Once the nearest neighbors are determined for all
empty texels, the RGB values of the nearest neigh-
bors are copied in the empty texels. The continu-
ity constraints previously described in Sect. 2
remain valid for edge texels.

5 Experimental results

This section explains and illustrates the character-
istics of the texture-mapping algorithm. An
experimental protocol has been designed to assess
objectively the quality of the texture-mapped
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9a 9b

10a 10b

Fig. 9. Texture-mapped image of the telephone for the chessboard image (512]512
texture map): a texture-mapped image; b histogram of the texture-mapping error

Fig. 10. Texture-mapped image of the telephone for the chessboard image (256]256
texture map); a texture-mapped image; b histogram of the texture mapping error

images. Due to the lack of space, we only present
the main conclusions of our experimental work.
A range image is a matrix of z values that
describes an explicit surface z"f (x, y). Five
256]256 range images from the National Re-
search Council of Canada (NRCC) database
(Rioux 1984; Rioux and Cournoyer 1988) were
used in our experiments. These 3D images pro-
vided a sample of complex surfaces: a space
shuttle replica, a hand, a toy soldier, a teapot, and
a telephone. Actual object sizes varied from about
15 to 20 cm. All range images were triangulated,
and these high-resolution triangulations were
compressed by specifying 3D tolerances of 1.0, 2.0,

and 4.0 mm. The compression levels achieved by
the multiresolution algorithm were typically lar-
ger than 95%. Following the compression, all
original range image points were mapped onto
the compressed models. To measure quantita-
tively the fidelity of the texture mapped images,
two 256]256 synthetic test images were mapped
orthogonally on the range images in place of the
actual surface colors. The first test image was
a chessboard image made of 8]8 pixel, black and
white squares. The second test image consisted of
a ramp image in the red and green channels. The
red component varied from 0 to 255 in the x-axis,
while the green component varied from 0 to 255 in
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Fig. 11a–f. Results of applying the algorithm to the digitized model of wood duck. The original (a) and compressed (b) models are
shaded with a uniform gray surface color. The high-resolution model is displayed with the color associated with each vertex (c).
The compressed texture-mapped model (d) is rendered with smooth shading. Since they are 3D models, the original (e) and
compressed models (f ) can be viewed from a different angle

Fig. 12. The 512]512 texture map generated by the algorithm for the compressed model of the duck

the y-axis. The chessboard image was useful for
evaluating the performance of the texture-map-
ping algorithm near color discontinuities. The
ramp image allowed a measure of the quality of
color representation when the color varied
smoothly on the surface. All experiments were
performed on a Silicon Graphics Crimson work-
station with Reality Engine graphics. The tri-
angles were rendered with the standard texture
mapping functions of the IRIS GL library.
In two sets of experiments, we generated texture-
mapped models from the 15 compressed models,
using both the chessboard and ramp images, and
allocating 512]512 texture maps. The texture-
mapping error was measured by a pixel-to-pixel
comparison between the original test pattern and
the rendered image of the texture-mapped model.
We used the same projection that would map the
full resolution model back to the 256]256 orig-
inal range image. We computed the mean square

error introduced by our texture-mapping algo-
rithm, as well as histograms of the texture-map-
ping error. When the ramp image was used, we
found that the texture-mapping error was very
small. This result demonstrated that our method
is efficient for representing surfaces on which the
color varies smoothly. In practice, we observed
that such small errors could not be detected by the
human eye. From the results obtained with the
chessboard image, we observed that the texture-
mapping error mainly occurs near color discon-
tinuities on the surface.
In a third experiment, two texture-map sizes were
used to represent the chessboard image mapped
onto the telephone model having a 1.0 mm error.
In Figs. 9 and 10, the allocated texture maps have
the dimensions 512]512 and 256]256, respec-
tively. The resulting texture-mapped image is de-
picted in Figs. 9a and 10a, while the histogram of
the error is shown in Figs. 9b and 10b. One can
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observe how the texture is filtered as the size of the
texture map is reduced from Fig. 9 to Fig. 10.
A high-resolution, colored, 3D triangulation was
used for the last experiment. Twelve color-range
images of a wooden duck were first acquired with
the NRCC color-range sensor (Baribeau et al.
1992), then integrated with the method described
by Soucy and Laurendeau (1995b). The resulting
high-resolution model is composed of 166 278 tri-
angles and 83 141 vertices. Figure 11 shows the
results of applying the compression and texture-
map generation methods to this model. The com-
pression algorithm is used to create a compressed
model composed of 1000 triangles, corresponding
to compression rate of 99.4%. The original high-
resolution model is shown in Fig. 11a, and its
compressed version in Fig. 11b: both models are
rendered with a uniform gray surface color and
flat shading on the triangles to enhance their
geometric structure. The original colored model
appears in Fig. 11c, whereas Fig. 11d shows the
compressed model drawn with a 512]512 texture
map computed by our algorithm. The compressed
model is rendered with smooth shading over the
triangles.
The visual impression given by the two rendered
versions is very similar. Most of the noticeable
differences are around the silhouette of the duck,
since the high compression rate polygonizes the
outline. The smooth shading method also intro-
duces slight differences in the computed surface
intensities, since finer surface-normal details such
as on the duck’s back are lost in the geometric
compression. Figure 11e and f show the same
model from another viewpoint, in high resolution
and compressed versions, respectively. The duck
model was closed and homeomorphic to a sphere,
but the algorithm could have handled a different
topology in the same manner since the triangles
are processed independently.
Figure 12 shows the 512]512 texture map gener-
ated by the algorithm. The tessellation structure
and hierarchical organization described pre-
viously are visible. It can be noted that the largest
texture triangles (in the top rows of the map) all
represent the natural wood color of the bottom of
the duck (as seen in Fig. 11e and f ), since this flat
area produces the largest triangles in the com-
pressed model. Conversely, the small triangles
located on the red beak, a region of high curva-
ture, produce small texture triangles that are

found mostly at the bottom of the texture map.
This behavior illustrates the ability of the pro-
posed algorithm to maintain a texture resolution
adapted to the structure of the original model.

6 Conclusion

A growing number of applications requires the
real-time display of colored 3D objects represent-
ed by a triangulation with color information at-
tributed to each vertex. Such models arise from
the integration of multiple color-range images as
described here, but also, for example, in geo-
graphic information systems. To obtain a high
refresh rate while maintaining an acceptable level
of realism in simulation systems, it is necessary to
reduce the number of polygons describing these
objects while preserving the visual impact by
maintaining a high resolution for the color in-
formation. Towards such a goal, this paper de-
scribed a texture-mapping approach that allows
the efficient compression and representation of
colored 3D triangulations. This algorithm can
deal with any triangulation topology and allows
the compression of the color itself, resulting in
antialiased images. The performance of the algo-
rithm is assessed through a series of experiments.
One of the experimental results has shown that
a 99.4% compression of a model can be achieved
while a highly realistic color image of this model is
maintained. Therefore, the proposed algorithm is
expected to be applicable to virtual reality sys-
tems requiring fast and realistic imaging of com-
plex colored 3D objects.
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