16th Summer School on Image Processing, 9 July, 2008, Vienna, Austria

Discrete Tomography

Péter Balázs

Department of Image Processing and Computer Graphics University of Szeged, HUNGARY

Outline

- Computerized Tomography
- Discrete and Binary Tomography
- Binary Tomography using 2 projections
- Ambiguity and complexity problems
- A priori information
- Reconstruction as optimization
- Applications

Computerized Tomography

 A technique for imaging the 2D cross-sections of 3D objects (usually human parts)

The Mathematics of CT

Reconstruct f(x,y) from its projections where a projection in direction u (defined by the angle σ) can be obtained by calculating the line integrals along each line parallel to u.

$$g(s,\sigma) = \int_{-\infty}^{\infty} f(x,y) du$$

Projection geometries

Projections

Discrete Tomography

- In CT we need a few hundred projections
 - time consuming
 - expensive
 - may damage the object
- In certain applications the range of the function to be reconstructed is discrete and known → DT (only few (2-10) projections are needed)

KNOWING THE DISCRETE RANGE

L. Ruskó, A.K., Z. Kiss, L. Rodek, 2003

Source: Attila Kuba

31

Binary Tomography

the range of the function to be reconstructed is {0,1} (absence or presence of material)

- angiography: parts of human body with X-rays
- electron microscopy: structure of molecules or crystals
- non-destructive testing: obtaining shape information of homogeneous objects

Discrete Sets and Projections

discrete set: a finite subset of Z²

reconstruct a discrete set from its projections

Reconstruction from 2 Projections

Reconstruction from 2 Projections

Example for Uniqueness

Example for Inconsistency

inconsistent

Classification

Main Problems

Consistency: Does there exist a discrete set with a given set of projections.

Uniqueness: Is a discrete set uniquely determined by a given set of projections.

Reconstruction: Construct a discrete set from its projections.

Reconstruction → Consistency

Uniqueness and Switching Components

The presence of a switching component is necessary and sufficient for non-uniqueness

Reconstruction

Ryser, 1957 – from row sums *R* and column sums *S*

Order the elements of S in a non-increasing way by $\pi \rightarrow S'$

Fill the rows from left to right $\rightarrow B$ (canonical matrix)

Shift elements from the rightmost columns of *B* to the columns where S(B) < S'

Reorder the colums by applying the inverse of π

Complexity: $O(nm + n\log n)$

R 3 4 3 2 1 1S

4 3 3 2 1 1

S'

3 4 3 2 1 1

S

l S'

R

R

3 4 3 2 1 1

S

4 3 3 2 1 1 S'

23

R

2 1 1

2 1 S(B)2 1 1

S(B)S'

T R

4 3 2 1 1

S(B)

S'

S(B)S'

R

4 3

S(B)0 1 S'2 1 1

S(B)

S'

S(B)

S'

 $R = \frac{2}{3}$

2 1 1

2 1 1

2 1

4 3

R

S(B) S'

S(B)

S'

5 2 3 2 1 1 S(B) 4 3 3 2 1 1 S'

Consistency

Necessary condition: compatibility

$$\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} s_j$$

 $r_i \le n \ (i = 1, ..., m), \ s_j \le m \ (j = 1, ..., n)$

• Gale, Ryser, 1957: there exist a solution iff $\sum_{j=1}^{k} s'_{j} \leq \sum_{j=1}^{k} s(B)_{j} \quad k = 1,...,n$

Ambiguity

Due to the presence of switching components there can be many solutions with the same two projections

Suggestions:

- 1. Take further projections along different lattice directions
- 2. Use a priori information of the set to be reconstructed

Suggestion 1

- In the case of more than 2 projections uniqueness, consistency and reconstruction problems are in general NP-hard – Gardner, Gritzmann 1999
- For an arbitrary number of projections there might be different discrete sets having the same projections

Convexity

h-convex or *v*-convex: NP-complete - Barcucci et al., 1996 *hv*-convex: NP-complete - Woeginger, 1996

Connectedness

not 4-connected but 8-connected 4-connected

4-connected: NP-complete - Woeginger, 1996

h-convex or v-convex, 4-connected: NP-complete - Barcucci et al., 1996

hv-Convex and Connected Sets

hv-convex 8-connected:

hv-convex 4-connected:

- Chrobak, Dürr, 1999 $O(mn \cdot \min\{m^2, n^2\})$

- Kuba, 1999 $O(mn \cdot \min\{m^2, n^2\})$

hv-convex 8- but not 4-connected: - Balázs, Balogh, Kuba, 2005 $O(mn \cdot \min\{m, n\})$

Reconstruction as Optimization

Optimization

 $Px = b \qquad x \in \{0,1\}^{m \times n}$

Problems:

- binary variables
- big system
- underdetermined (#equations << #unknowns)
- inconsistent (if there is noise)

$$x \in \{0,1\}^{m \times n}$$

$$C(x) = \|Px - b\|^2 + g(x) \to \min$$

Term for prior information: convexity, similarity to a model image, etc.

Solving the Optimzation Task

- Problem: Classical hill-climbing algorithms can become trapped in local minima.
- Idea: Allow some changes that increase the objective function.

Simulated Annealing

- Annealing: a thermodinamical process in which a metal cools and freezes.
- Due to the thermical noise the energy of the liquid in some cases grows during the annealing.
- By carefully controlling the cooling temperature the fluid freezes into a minimum energy crystalline.
- Simulated annealing: a random-search technique based on the above observation.

Finding the optimum

- Tuning the parameters appropriately SA finds the global optimum
- Fine-tuning of the parameters for a given optimization problem can be rather delicate

Parameterization of SA

- Initial temperature: T_o
- Stopping criteria: e.g. T_N
- Cooling schedule

SA in Pixel Based Reconstruction

- A binary matrix describes the binary image
- Randomly invert matrix value(s)

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

SA in Geometry Based Reconstruction

- The binary image is described by parameters of geometrical objects, e.g. (x,y,r)
- Randomly modify parameter(s) of object(s)

 $[(16,53,17), (44,35,25), (26,13,12), (43,8,12)] \rightarrow [(13,50,23), (44,35,25), (26,13,12), (43,8,12)]$

Angiography

Heart chambers

Blood vessels

Neighbouring Slices

Slices which are close to each other in space or time are similar

previous slice

cost matrix

 $x \in \{0,1\}^{m \times n}$ $C(x) = \|Px - b\|^{2} + \sum_{i,j} c_{ij} x_{ij} \to \min$

Non-destructive testing

Pipe corrosion and deposit study – 32 fan beam projections

no noise

10 % Gaussian noise

Source: A. Nagy

Neutron Tomography II.

Reconstruction of disks (air bubbles)
 – 4 projections, geometry based

FBP 60 proj.

Source: L. Rodek

Electron Microscopy I.

Transmission electron microscopy (TEM): a technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through it.

- biological macromolecules are usually composed esentially of ice, protein, and nucleic acid
- the sample may be damaged by the electron beam → few projections

Electron Microscopy II.

QUANTITEM: a method which provides quantitative information for the number of atoms lying in a single atomic column from HRTEM images

Source: Batenburg, Palenstijn

Crystal defects

Source: Internet

DIRECT

http://www.inf.u-szeged.hu/~direct

Thank you for your attention!