$16^{\text {th }}$ Summer School on Image Processing, 9 July, 2008, Vienna, Austria

Discrete Tomography

Péter Balázs

Department of Image Processing and
Computer Graphics
University of Szeged, HUNGARY

Outline

- Computerized Tomography
- Discrete and Binary Tomography
- Binary Tomography using 2 projections
- Ambiguity and complexity problems
- A priori information
- Reconstruction as optimization
- Applications

Computerized Tomography

- A technique for imaging the 2D cross-sections of 3D objects (usually human parts)

The Mathematics of CT

Projection geometries

Parallel

Fan beam

Projections

Line integrals

Area integrals

Discrete Tomography

- In CT we need a few hundred projections
- time consuming
- expensive
- may damage the object
- In certain applications the range of the function to be reconstructed is discrete and known \rightarrow DT (only few (2-10) projections are needed)

KNOWING THE DISCRETE RANGE

\# projs. Conv. method Discretized image DT method

L. Ruskó, A.K., Z. Kiss, L. Rodek, 2003

Binary Tomography

the range of the function to be reconstructed is $\{0,1\}$ (absence or presence of material)

- angiography: parts of human body with X-rays
- electron microscopy: structure of molecules or crystals
- non-destructive testing: obtaining shape information of homogeneous objects

Discrete Sets and Projections

- discrete set: a finite subset of Z^{2}

- reconstruct a discrete set from its projections

Reconstruction from 2 Projections

.
.

Reconstruction from 2 Projections

Example for Uniqueness

unique

Example for Inconsistency

inconsistent

Classification

inconsistent

unique

non-unique

Main Problems

Consistency: Does there exist a discrete set with a given set of projections.
Uniqueness: Is a discrete set uniquely determined by a given set of projections.
Reconstruction: Construct a discrete set from its projections.

Reconstruction \rightarrow Consistency

Uniqueness and Switching Components

configuration

The presence of a switching component is necessary and sufficient for non-uniqueness

Reconstruction

Ryser, 1957 - from row sums R and column sums S
Order the elements of S in a non-increasing way by $\pi \rightarrow S^{\prime}$
Fill the rows from left to right $\rightarrow B$ (canonical matrix)
Shift elements from the rightmost columns of B to the columns where $S(B)<S^{\prime}$

Reorder the colums by applying the inverse of π

Complexity: $O(n m+n \log n)$

$34_{4}^{4} \quad 3 \quad 2 \begin{array}{lllllll} & & 1 & & S\end{array}$

$$
\begin{array}{lllllll}
5 & 4 & 3 & 2 & 0 & 0 & S(B) \\
4 & 3 & 3 & 2 & 1 & 1 & S^{\prime}
\end{array}
$$

$\begin{array}{llllllll}5 & 4 & 3 & 2 & 0 & 0 & S(B)\end{array}$
S^{\prime}

$\begin{array}{llllllll}4 & 3 & 3 & 2 & 1 & 1 & & S^{\prime}\end{array}$

$\begin{array}{lllllllll}5 & 4 & 3 & 1 & 0 & 1 & S(B)\end{array}$
$\begin{array}{lllllll}4 & 3 & 3 & 2 & 1 & 1 & S^{\prime}\end{array}$

$34_{5}^{4} \quad 3 \quad 2 \begin{array}{lllllll} & & 1 & & S\end{array}$

2	1	1				= B	2	1	1					
4	1	1	1	1	\rightarrow		4	1	1	1			1	
$R 3$	1	1	1				3	1	1	1				
4	1	1	1	1			4	1	1	1)		
1	1						1	1						
	5	4	3	2	0	$S(B$		5	4	3	1	0	1	$S(B)$
	4	3	3	2	1	S^{\prime}		4	3	3	2	1	1	S^{\prime}

$$
\begin{aligned}
& \begin{array}{llllllll}
5 & 4 & 3 & 0 & 1 & 1 & S(B)
\end{array} \\
& \begin{array}{lllllll}
4 & 3 & 3 & 2 & 1 & 1 & S^{\prime}
\end{array}
\end{aligned}
$$

R	1		4			
	1		4	1		1
	1	1		1		
4	1	1	1		1	
1	1					
4121						
	4	3	3	2	1	1

Consistency

- Necessary condition: compatibility

$$
\begin{aligned}
& \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} s_{j} \\
& r_{i} \leq n(i=1, \ldots, m), s_{j} \leq m(j=1, \ldots, n)
\end{aligned}
$$

- Gale, Ryser, 1957: there exist a solution iff

$$
\sum_{j=1}^{k} s_{j}^{\prime} \leq \sum_{j=1}^{k} s(B)_{j} \quad k=1, \ldots, n
$$

Ambiguity

Due to the presence of switching components there can be many solutions with the same two projections

Suggestions:

1. Take further projections along different lattice directions
2. Use a priori information of the set to be reconstructed

Suggestion 1

- In the case of more than 2 projections uniqueness, consistency and reconstruction problems are in general NP-hard - Gardner, Gritzmann 1999
- For an arbitrary number of projections there might be different discrete sets having the same projections

Proof

Convexity

	1	1			
	1	1	1	1	1
1	1				
1	1	1			
1					
h-convex					

	1				
	1		1	1	1
1	1	1			
1	1	1			
1					

v-convex

	1				
	1	1	1	1	1
1	1	1			
1	1	1			
1					

$h v$-convex
h-convex or v-convex: NP-complete - Barcucci et al., 1996 $h v$-convex: NP-complete - Woeginger, 1996

Connectedness

	1	1			
	1	1	1		1
1	1			1	
1	1	1			
1					

not 4-connected but 8-connected

	1				
	1		1	1	1
1	1	1	1		
1	1	1			
1					

4-connected

4-connected: NP-complete - Woeginger, 1996
h-convex or v-convex, 4-connected: NP-complete - Barcucci et al., 1996

hv-Convex and Connected Sets

$h v$-convex 8-connected: hv-convex 4-connected:

	1				
	1	1	1	1	1
1					
1					
1					

- Chrobak, Dürr, 1999 $O\left(m n \cdot \min \left\{m^{2}, n^{2}\right\}\right)$

	1				
	1	1	1	1	1
1	1	1			
1	1	1			
1					

- Kuba, 1999 $O\left(m n \cdot \min \left\{m^{2}, n^{2}\right\}\right)$
hv-convex 8- but not 4-connected:
- Balázs, Balogh, Kuba, 2005
$O(m n \cdot \min \{m, n\})$

Reconstruction as Optimization

$$
\underbrace{}_{P x} \begin{array}{rl}
x_{1}+x_{2} & =2 \\
& x_{3}+x_{4} \\
& =2 \\
x_{5}+x_{6} & =1 \\
x_{1}+x_{3}+x_{5} & =2 \\
x_{2}+x_{4}+x_{6} & =3
\end{array}\} b
$$

Optimization

$$
P x=b \quad x \in\{0,1\}^{m \times n}
$$

Problems:

- binary variables
- big system
- underdetermined (\#equations << \#unknowns)
- inconsistent (if there is noise)

$$
\begin{gathered}
x \in\{0,1\}^{m \times n} \\
C(x)=\|P x-b\|^{2}+g(x) \rightarrow \min
\end{gathered}
$$

Term for prior information: convexity, similarity to a model image, etc.

Solving the Optimzation Task

- Problem: Classical hill-climbing algorithms can become trapped in local minima.
- Idea: Allow some changes that increase the objective function.

Simulated Annealing

- Annealing: a thermodinamical process in which a metal cools and freezes.
- Due to the thermical noise the energy of the liquid in some cases grows during the annealing .
- By carefully controlling the cooling temperature the fluid freezes into a minimum energy crystalline.
- Simulated annealing: a random-search technique based on the above observation.

Outline of SA

Set inital solution x and temperature T_{0}

I
Calculate $C\left(x^{\prime}\right)$

$x_{\mathrm{act}}=x^{\prime}$ with probability $p=e^{-\Delta C / T}$
Lower temperature

Finding the optimum

- Tuning the parameters appropriately SA finds the global optimum
- Fine-tuning of the parameters for a given optimization problem can be rather delicate

Parameterization of SA

- Initial temperature: T_{0}
- Stopping criteria: e.g. T_{N}
- Cooling schedule

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{0}-\mathrm{i} \frac{\mathrm{~T}_{0}-\mathrm{T}_{\mathrm{N}}}{\mathrm{~N}}
$$

SA in Pixel Based Reconstruction

- A binary matrix describes the binary image
- Randomly invert matrix value(s)

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

SA in Geometry Based Reconstruction

- The binary image is described by parameters of geometrical objects, e.g. (x, y, r)
- Randomly modify parameter(s) of object(s)

Angiography

Heart chambers
Blood vessels

Neighbouring Slices

Slices which are close to each other in space or time are similar
previous slice

1	1	1	
1	1	1	1
	1	1	

cost matrix

8	7	6	7	8	9
7	4	3	4	5	8
7	4	2	2	4	7
9	8	4	4	5	8
9	9	7	7	8	9

$x \in\{0,1\}^{m \times n}$
$C(x)=\|P x-b\|^{2}+\sum_{i, j} c_{i j} x_{i j} \rightarrow$ min

Non-destructive testing

- Pipe corrosion and deposit study
- 32 fan beam projections

no noise

10 \% Gaussian noise

Neutron Tomography I.

- Gas pressure controller
- 18 projections, pixel based

FBP
DT

Neutron Tomography II.

- Reconstruction of disks (air bubbles)
- 4 projections, geometry based

FBP 60 proj.
DT 4 proj.

Electron Microscopy I.

Transmission electron microscopy (TEM): a

 technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through it.

- biological macromolecules are usually composed esentially of ice, protein, and nucleic acid
- the sample may be damaged by the electron beam \rightarrow few projections

Electron Microscopy II.

QUANTITEM: a method which provides quantitative information for the number of atoms lying in a single atomic column from HRTEM images

Crystal defects

Nonograms

3.3 .2.																			
2.3 .2.																			
2.2 .2 .2 .2 .2.																			
3.2 .2 .1 .2.																			
7.3 .3 .3.																			
3.3 .9 .2 .3																			
2.3 .3.																			
2.3 .2 .1.																			

DIRECT http://www.inf.u-szeged.hu/~direct

Thank you for your attention!

