Surgical Planning and Biomechanical Analysis

Balázs Erdőhelyi ${ }^{1}$
Endre Varga², Attila Kuba¹

Department of Image Processing and Computer Graphics ${ }^{1}$, Department of Trauma Surgery ${ }^{2}$ University of Szeged, Hungary

Overview - Surgical Planning

Region Growing

- Joined regions
- Undetected regions

Fuzzy Connectivity

- The weakest link in the strongest path

Segmentation - Post Processing

- Remove possible noise
- Fill holes
- Morphological operations
- Dilate
- Errode
- Opening
- Closing

Surface Generation

1. Use the Segmented volume and create a triangle mesh of the surface

2. Simplify geometry

Contour following

Segmented image

Contour points

Contour Simplification

- Collinear points are deleted
- Only the first and the last is kept
- Maximum distance as parameter of the simplification

Contour Simplification

All contour points before simplification

After simplification

2D contour reconstruction

- Bernhard Geiger (INRIA) : NUAGES
- Input: a set of simple closed polygons on parallel planes
- Output: 3D surface

Marching Squares I.

- Marching Squares (2D)
- 16 configurations

23

Marching Cubes

- Fully 3D
-256 situations
- generalized in 15 families by rotations and symetries

Marching Cubes II.

Surface Simplification Methods

- Vertex Decimation

- Edge Collapse
- Vertex Clustering

- Face Merging

28

Vertex Decimation

- Schroeder et al, 92
- Based on controlled removal of vertices
- Loop
- choose a removable vertex v
- delete v and its incident faces
- re-triangulate the hole
- Until
- no more removable vertex exists or reduction rate fulfilled

Vertex Decimation

- Vertex is removable iff
- Distance to average plane is lower than $\mathrm{e}_{\max }$
- Distance to boundary is lower than $\mathrm{e}_{\text {max }}$
- Properties

- Efficient
- Simple implementation \& use
- Works on large meshes
- Implemented in VTK
d: distance to plane

Edge Collapse

- Examine all vertex pairs
- Build queue of edges or $\mathrm{V}_{1}, \mathrm{~V}_{2}$ pairs where

$$
\left\|\vec{V}_{1}-\vec{V}_{2}\right\|<t
$$

- Loop
- Take edge e from the queue with the least error
- Delete e and its triangles
- Update queue
- Until
- Queue is empty or target reduction reached

Edge Collapse

- Error of a vertex is the sum of squared distances to its planes
- Position of the new vertex is where the vertex error is minimal

Vertex Clustering

- Object's bounding box is subdivided into a grid
- All vertices inside a cell are clustered to one representative vertex
- Layout of the grid controls the simplified model
- Properties
- Very fast
- Poor quality
- No direct controll of reduction rate

Co-planar face merging

- Kalvin, Taylor '96
- Partitions the surface into connected disjoint co-planar regions
- Regions are replaced by a polygon
-Polygon boundary is simplified
- Boundary retriangulated

Repositioning with the Mouse

Repositioning - Heptic device

http://www.sensable.com/index.htm

Surgical Planning

- Treat bone surfaces as objects in 3D space
- Transformations
- Translation
- Rotation
- Implants
- Screw
- Fixation Plate

39

Surgical Planning

- 3D object positioning requires learning
- The model is 3D but the screen and the mouse is 2 D
- Collision detection can help
- Automatic tool is needed

Repositioning using Registration

- Semi-automatic: user selects surface pairs
- Do registration on every pair one-by one
- Cost function: sum of distances to the nearest neighbours
- Search in 6 dim. space for the minimum of cost function

Collision Detection

\qquad

Properties

- With constraints: good matching of points
- Fast: 5-8 seconds
- BUT: possible errors
- Segmentation
- Simplification
- User input
- Errors accumulate in complex cases

Complex Fracture

Male, 40Y, 7 fragments

Pairwise Surface Registration

Global Optimization

- All surface pairs are considered simultaneously
- Search space is $(n-1) * 6$ dim.
- Stronger constraints
- Improves overall result

- Model contains 12 k points
- Points used for registration $2 k-6 k$
- Slow

Surgical Planning - Fixation Screw

- Screw parameters
- Length
- Insertion depth
- Shank diameter
- Tip length
- Head length/diameter
- Thread length
- Major / minor diameters
- Pitch

Gethenthtern

Surgical Planning - Fixation Plate

- Fixation plate
- Width
- Height
- Length
- Follow surface

Surgical Plan - Example II.

Surgical Plan - Example II.

Stress

- Stress is a measure of the internal distribution of force per unit area within a body that balances and reacts to the loads applied to it.
F : force,
A: crossectional area
$\sigma=F / A$

- Unit: $\mathrm{N} / \mathrm{m}^{2}=\mathrm{Pa}$

Strain

Strain is the geometrical expression of deformation caused by the action of stress

$$
\varepsilon=\Delta \mathrm{L} / \mathrm{L}
$$

L : original length
ΔL : change in length
Unit: no unit

Deformation

- Elastic region: the deformation is proportional to the force
- Plastic region: the material undergoes a non-reversible change

Hooke's law

- Hooke's law (1676): F, is proportional to u by a constant factor, k
$F=k u$

F
WWM-
Where, k is the spring constant, u stretching distance

- Elastic materials: E is the elastic modulus.

$$
\sigma=\mathrm{E}_{\varepsilon}
$$

- Generalised to 3D by Cauchy

$$
\begin{aligned}
& {\left[\begin{array}{c}
\sigma_{\mathrm{xx}} \\
\sigma_{\mathrm{yy}} \\
\sigma_{z z} \\
\sigma_{\mathrm{yz}} \\
\sigma_{\mathrm{zx}} \\
\sigma_{\mathrm{xy}}
\end{array}\right]} \\
& \text { Stress } \\
& \text { Stress }
\end{aligned}
$$

$t 1$

Hooke's law

Hooke's law

- Izotropic material: the material properties are independent of direction (2 elastic constants)

- Ortotropic material: 2-3 orthogonal planes of symmetry, where material properties are independent of direction within each plane
- Anisotropyc (21 elastic constants)

Young's modulus

- Modulus of elasticity
- The slope of the stressstrain curve
$\mathrm{E}=\sigma / \varepsilon$
- SI unit: Pa

Material	E (GPa)
Diamond	1200
Steel	210
Iron	196
Aluminium	69

Poisson's ratio

- Defined as the ratio of the contraction strain normal to the applied load divided by the extension strain in the direction of the applied load
- $\mathrm{n}=-\varepsilon_{\text {trans }} / \varepsilon_{\text {longitud }}$
- $-1<=\mathrm{n}<0.5$

Rubber	0.495
Steel	0.28
Bone	0.3
Cork	0.0

Negative Poisson's Ratio Materials

Finite Element Method

- If we can not solve the original problem, let's brake it into smaller, but well known pieces and solve it that way!

$K=2 \mathrm{r} \pi$

$\mathrm{K}_{\mathrm{n}}=\mathrm{nK}_{\mathrm{ij}}$
$\mathrm{K}_{\mathrm{ij}}=\mathrm{K}_{45}=2 \mathrm{r} \sin (\pi / \mathrm{n})$
$\pi_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}} / 2 \mathrm{r}=\mathrm{n}$

Finite Element Mesh

- The model is a mesh of springs
- Nodes define the geometry
- Elements define which nodes are connected

Element library I.

- Primitive elements

Real
Rod element

Pipe element

Arbitrary profil

Element library II.

- Shell elements: 2D, but with thickness

Real

Triangle

Quadrangle

Discrete

Element library III.

- 3D elements

Hexahedron

How an engineer works

How an engineer works

How an engineer works

How an engineer works

Loaded area is marked with red arrows

How an engineer works

Generation of the finite element mesh

How an engineer works

How an engineer works

Irregular objects

- There is no CAD model of the patients broken bone
- No automatic mesh generation
- Fixed points and loaded areas

Mechanical Model

- Geometrical model
- Nodes
- Finite elements (shell, tetra, hexa)
- Material properties (Young's modulus, Poisson' ratio)
- Load
- Boundary conditions
- Connections between objects

Load and boundary conditions

Mechanical Model Generation

- Ul for Load and BC
- Mesh generation
- Shell elements
- Solid (tetra-, hexahedron) elements
- Quadtree / Octree
- Advancing Front
- Delaunay

Mechanical Model Shell Elements

- Based on the geometry \rightarrow 3-node shell el.
- Relation between objects $\rightarrow 2$-node el.

- Start with bounding box
- Recursively build quadtree

Mechanical Model Generation

Octree/Quadtree

Intersection Point

- Triangulate Intersection, Side, and Corner Points

Advancing Front

- Bundary is the initial front
- Process front segments
- Calculate ideal position for triangle

Advancing Front

- Check radius around optimal node for existing front nodes

Advancing Front

- Delete orig. front elements and insert new ones
- Continue while front exists

Advancing Front

- Delete orig. front elements and insert new ones
- Continue while front exists

- Delete orig. front elements and insert new ones
- Continue while front exists

Advancing Front

- In case of multiple possibilities, chose best quality

Bowyer-Watson algoritmusa

Iteratively insert new points

1. Find all triangles whose circumcircle contains the new node.
2. Remove edges interior to these triangles
3. Connect nodes of this empty space to new node.

Example II. - Pelvis

Example IV. - Jaw

Conclusion

- Results match to the clinical expectations
- Quantitative comparative measurements still pending
- Possible Applications
- Clinical practice
- Education
- Navigation
- Research

