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1. Human perception of color images (1)

• Perception of color – crucial for many machine vision applications

• General observation:
• most color image processing algorithms consider one pixel at a time,
• but in the HVS – the color perceived at a spatial location is influenced by 

the color of all the spatial locations in the field of view!

• Future issues for color image processing: use the human visual 
models to describe the color appearance of spatial information, to 
replace the common low level (pixel-level) approaches => future 
trends: develop color image processing and analysis algorithms 
based on high level concepts

Color image processing & analysis 
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1. Human perception of color images (2)

• The human color vision system:
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1. Human perception of color images (3)

• Photoreceptors in retina:
• Rods = sensitive to low levels of light; can’t perceive color

= absent in the fovea; maximum density in 180 eccentricity annulus 
=> “peripheral vision field”

• Cones = sensitive to normal light level (daylight); perceive color
= 3 types of cones: long (L), medium (M), short (S) wavelength
= maximum density in fovea (“central visual field”, 20 eccentricity)

• Types of vision (visual response):
• Scotopic vision

= monochromatic vision
= rods only active below 0.01 cd/m2

• Photopic vision
= color vision
= cones only active above 10 cd/m2

• Mesopic vision => rods and cones active

Color image processing & analysis 
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1. Human perception of color images (4)

• Human color visual models – basic visual process:

• Spatial and temporal perception:
• Visual info – simultaneously processed in several “visual channels”:

- high frequency active channels (P-channels): perception of details
- medium frequency active channels: shape recognition
- low frequency active channels (M-channels): perception of motion

=> The simultaneous results of the 3 channels, achromatic & chromatic,
- filtered by specific spatial and temporal contrast sensitivity 
functions (CSFs); achromatic CSF > chromatic CSF 
- combined further in the vision process 

Color image processing & analysis 

Luminance;
Opponent 

chrominance
channels

Optic nerve

Basic processing;
Feature extraction;
Cognitive functions



SSIP’08 – Vienna, Austria

1. Human perception of color images (5)

• Human color visual model – a point of view:
• Still an open research issue; gap between traditional computer vision and 

human vision sciences => new human vision models needed
• The mixed image-based and learning-based model approach:

Color image processing & analysis 
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2. Color imaging applications - overview 

I. Consumer imaging applications:
• Mostly involves image processing, image enhancement
• Color management challenges => achieve WYSIWYG concept, by 

color appearance models & color management methods – standardized
• Basic applications fields: graphics arts; HDTV; web; cinema; archiving, 

involving image/video restoration, colorization, image inpainting 
II. Medical imaging applications:

• Mostly involves image analysis
• Challenges => model image formation process & correlate image 

interpretation with physics based models;
=> analyze changes over time

• Methods: use low level features & add high level interpretation to assist 
diagnostic

III. Machine vision applications:
• Robot vision; industrial inspection => image analysis & interpretation 

methods – similar to medical imaging

Color image processing & analysis 
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3. Color spaces, properties, metrics (1)

• Color spaces properties:

• P1. Completeness:
Def.1: A color space SC is called visually complete iff includes all the colors

perceived as distinct by the eye
Def.2: A color space SC is called mathematically complete iff includes all the

colors possible to appear in the visible spectrum

• P2. Compactness:
Def.: A color space SC is called compact if any two points of the space si, sj are

perceived as distinct colors
• Note: One can obtain a compact color space from a mathematically complete color

space through color space quantization (e.g.: vector quantization)

Color image processing & analysis 
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3. Color spaces, properties, metrics (2)

• P3. Uniformity:
Def.1: A color space SC is called uniform if a distance norm dC over SC can be

defined so that: dC(si, sj) ~ perceptual similarity of si and sj
• Note: Usually, dC = Euclidian distance

• P4. Naturalness:
Def.: The color space SC is called natural if its coordinates are directly correlated

to the perceptual attributes of color.
The perceptual attributes of color = the HVS specific attributes in the perception

and description of a color: Brightness; Nuance (Hue); Saturation (Purity).
• Note: the RGB space (the primary color space) only satisfies completeness =>

the need to define other spaces for color representation.

Color image processing & analysis 
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3. Color spaces, properties, metrics (3)

• Conventional color spaces:
• Reversible transforms of the primary (RGB) color space
• Classified as linear and non-linear
• Linear transforms to obtain color spaces = rotations and scalings of  the 

RGB cube (OPP, YUV, YIQ, YCbCr, XYZ, Ohta I1I2I3 …)

Color image processing & analysis 
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3. Color spaces, properties, metrics (4)

• Conventional color spaces (2):
• Non-linear transforms to obtain color spaces => needed to match the 

perceptual color attributes by their coordinates (CIE L*a*b*, CIE L*u*v*, 
HSV, HLS, HSI, Munsell…)

Color image processing & analysis 
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3. Color spaces, properties, metrics (5)

• Denote: r, g, b – color primaries normalized to [0;1]
=> HSV space transformations:

Color image processing & analysis 
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3. Color spaces, properties, metrics (6)

• Ad-hoc color spaces:
• Ideea: define the color space according to the most characteristic color 

components of a set of images application-dependent 
=> e.g. YST color space for human faces: Y – luminance; S – color 
average value from the set of faces; T – the orthogonal to Y and S 

• Some basic approaches:
(1) For image segmentation:

Fischer distance strategy to segment object-background (LDA 
generated color space)

(2) For feature detection:
Diversification principle strategy for selection & fusion of color 
components => automatically weight color components to 
balance between color invariance & discriminative power

(3) For object tracking:
Adaptive color space switching strategy => dinamically select 
the best color space for given environment lighting (from all 
conventional color spaces)

Color image processing & analysis 
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3. Color spaces, properties, metrics (7)

• Color difference metrics in color spaces:
• In linear transformed-based color spaces => Euclidian metric –

common choice
• In non-linear transformed based spaces => metrics should take into 

account what is linear and what is angular! (i.e. see hue! – an angle)
• Some basic metrics:

(1) Variants of Euclidian distance for linear spaces: 
Minkowski distance (q=1 – city-block; q=2 – Euclidian):

Mahalanobis distance:

Color image processing & analysis 
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3. Color spaces, properties, metrics (8)

• Color difference metrics in color spaces – contnd.:
(2) CIEDE2000: 

defined for CIELAB space:

Color image processing & analysis 
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3. Color spaces, properties, metrics (9)
Color image processing & analysis 
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4. Basic color image processing

• Important note: Color image processing is not merely the 
processing of 3 monochrome channels!!!

• Yet => some generalizations and applications of monochrome 
(grey-level) image processing can be derived/used in color image 
processing and analysis:

• Generalization of scalar algorithms to the vectors case (color space)

• Processing of the luminance (brightness) component alone

• Independent & different processing of each coordinate, after the color 
space transform (linear or non-linear transform)

Color image processing & analysis 
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4.1. Color image quantization (1)

• Goal of quantization: build a reduced color space, with the smallest possible 
number of colors (the representative image colors), so that the perceived difference 
between the quantized image and original image → 0.

• Open problem: definition of “perceived difference”;
• 1st approach: minimize the sum of distances between colors and the 

centers of color clusters resulting in the quantization process ( minimize 
the sum of distances within each cluster)

• 2nd approach: maximize the sum of distances between the colors in 
different clusters ( maximize the sum of distances between cluster pairs)

• Typical approach for color space quantization: VQ

Color image processing & analysis 
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4.1. Color image quantization (2)

• Vectorial Quantization (VQ) of the color space:

• Several versions; all based on LBG original algorithm
• Motivation: reduce (usually drastically!) the number of colors in a group 

of images. How? Cluster similar colors together (color points = vectors 
=> the name “vector quantization” = VQ); determine the cluster centers; 
replace each image color with the closest cluster center

Color image processing & analysis 
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4.1. Color image quantization (3)

• Vectorial Quantization (VQ) of the color space – basic algorithm:
• Let: N – # of colors in the (set of) image (s); M – target number of colors

(M<<N); each color = si[3 1] (e.g. si=[R G B]T), i=1,2,...,M clusters
• Algorithm:

1. Initialization: choose M “codewords”, { sq1, sq2,..., sqM} lying in the 
color space chosen for quantization codeword initialization

2. Codebook optimization:
2.1. For each i=1,2,...,M, assign si to the cluster k that satisfies:

=> The initial partition regions = the initial clusters B1, B2,...,BM.
2.2. Compute the overall distortion:

2.3. If D>ε => update codewords:

and go to step 2. Otherwise => convergence reached => final 
codebook and codewords.

Color image processing & analysis 
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4.2. Color image filtering (1)

• Most popular filtering goal : remove noise (color noise) from the original

• Why is noise disturbing?
Perceptually: image appearing visually unpleasant,...
For analysis applications: noise = high frequency => same as sharp edges...

• Noise filtering algorithms for color images:
Most common types of noise: impulse noise; Gaussian noise; speckle noise; 
stripping noise
Several types of vector filtering operators derived in last 10 years
Important class of noise filtering operators for color images: rank vector filters
Open issues: develop adaptive filters for color images, to preserve fine details & 
reduce all types of noise efficiently (including additive!) filters capable to 
adapt to local image statistics!
Other filtering approaches: morphological operators; wavelets; PDEs...

Color image processing & analysis 
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4.2. Color image filtering (2)

• Vector median filters for color images: 
• Particular case of rank filters
• Principle: for each pixel location (i, j): 

- take the brightness/color values in a window W(i, j)
- order the brightness/color values in increasing order
- output: new brightness/color at (i, j) = middle of string

• Very useful for impulse color noise:

Color image processing & analysis 
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4.2. Color image filtering (3)

• Vector median filters for color images – some practical algorithms: 
Note:

o Biggest problem in vector median filtering generalization for color images:     
(1) how to define the ordering?; (2) what means “increasing color values”?

o “Brute approach” (i.e. in RGB space => treat each channel independently, apply 3 
median filters independently) does not work! (color distortion):
3 1 window, s1=[7 117 182], s2=[250 250 80],  s3=[25 10 75]=> filter 
independently: s=[25 117 80]... 

=> solutions:

1. The Adaptive Scalar Median Filter:

• Consider 2 representations of the image: in RGB and HSI color space => 
denote: sp=[R G B]T; sh=[h s i]T

• W – any window around the current pixel (x,y); e.g. W(x,y)[3 3].
• Let: rm, gm, bm – average R, G, B values inside W(x,y); 
• Compute: [hm sm im]T =HSI([rm gm bm]T);

Color image processing & analysis 
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4.2. Color image filtering (4)
• Additional :  (xR,yR) = pixel position in W(x,y) that satisfies:

R(xR,yR)=median{R(x,y)|(x,y) in W(x,y)}
(xG,yG) = pixel position in W(x,y) that satisfies:
G(xG,yG)=median{G(x,y)|(x,y) in W(x,y)}
(xB,yB) = pixel position in W(x,y) that satisfies:
B(xB,yB)=median{B(x,y)|(x,y) in W(x,y)}

⇒ We can now build a “median matrix” M[3×3]:

• Note:
o The diagonal of M – most likely to be the median color, but is a new color!!! 
o Any column of M = an existing color , but not necessarily really the median!
o => Virtually one can select as filter’s output any combination of RGB values 

=> how do we know which one is optimal?

Color image processing & analysis 
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4.2. Color image filtering (5)
• Selection criteria for the output color of the adaptive scalar median filter:

C1. The hue changes should be minimized
C2. The shift of saturation should be as small as possible.
C3. An increase in saturation is preferable to a decrease in saturation
C4. Maximize the relative luminance contrast.

⇒ In mathematical (algorithmical) form:
1. Find (l,p,q) so that:

2. If (l,p,q) is unique  => output = [M(1,l) M(2,p) M(3,q)]T ; otherwise:
on the subset of (l,p,q)  candidates, find (l’,p’,q’) so that:

3. If (l’,p’,q’) is unique  => output = [M(1,l’) M(2,p’) M(3,q’)]T ; otherwise: 
on the subset of (l’,p’,q’) candidates, select the one with largest s and i.

Color image processing & analysis 
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4.2. Color image filtering (6)
• Results of scalar adaptive filtering:

Color image processing & analysis 
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4.2. Color image filtering (7)

2. The Vector Median Filter:

• Unlike the scalar adaptive median filter => it guarantees that its output = 
always a color that is present in the image window

• Consider the RGB color space representation of the image, s=[R G B]T; 
• W – any window around the current pixel (x,y); e.g. W(x,y)[3 3].
• ||•||L – some vector norm (e.g. Euclidian distance)
• Let: {s1, s2,..., sN}= the colors inside W(x,y) => the vector median filter:

so that:
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4.2. Color image filtering (8)
• Results of vector median filtering: 

Color image processing & analysis 
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4.2. Color image filtering (9)

2. The Median Filter Based on Conditional Ordering in the HSV Space :

• Consider the representation of the image in HSV color space => denote: 
s=[h s v]T , h – angle, s,v – [0;1] valued

• W – any window around the current pixel (x,y); e.g. W(x,y)[3 3].
• Principle of the conditional ordering based filter: 

(1) select a-priori an importance order for the vectors’ components
(2) order the vectors based on their components’ relation in the 
predefined order 

• In the HSV color space: conditional ordering based filtering principles:
(1) sort the color vectors in W based on v: order from smallest to largest v
(2) ordering colors with same v: sort based on s: from largest to smallest s
(3) ordering colors with same v and s: from smallest to largest h

Color image processing & analysis 
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4.2. Color image filtering (10)
⇒ Define the operators: <hsv ,=hsv for color ordering in the HSV color 

space as follows:
if: = 2 colors in HSV,

then:

⇒ Let: {s1, s2,..., sN}= the colors inside W(x,y)=>the HSV conditional ordering 
median filter algorithm:
1. Order {s1, s2,..., sN} increasingly in respect to <hsv :

2. Output the color in the middle of the ordered strig: med{s’1, s’2,..., s’N}

Color image processing & analysis 
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4.2. Color image filtering (11)
• Results of HSV conditional ordering median filter:
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4.3. Color image enhancement (1)

• Can have various goals (more than grey level image enhancement) ; some typical:

1. Image contrast enhancement
2. Color enhancement increase of color saturation, illuminant lighting 

compensation, etc.
... and others....

pointwise operations
3. Image de-blurring
4. Edge enhancement
... and others...
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4.3. Color image enhancement (2)
• E.g. Contrast enhancement in color images:

• Basic (popular) approach:
⇒ human eye - 5 more sensitive to brightness contrast then color contrast
⇒ can achieve good contrast enhancement on brightness component alone!
⇒ typically:

Color image processing & analysis 
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4.3. Color image enhancement (3)
• A simple approach: fuzzy rule-based contrast enhancement:

Color image processing & analysis 
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4.3. Color image enhancement (4)
Color image processing & analysis 
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5. Color image segmentation

• Segmentation = partition the image in disjoint homogeneous regions
• “Good segmentation” (Haralick & Shapiro) :

• Uniform + homogeneous regions in respect to some visual features
• Regions interiors – simple, without many small holes
• Adjacent regions – significantly different visual feature values
• Region boundaries – simple, smooth, spatially accurate 

• Formal definition:  I – image set of pixels => segmentation of  I = the partition P 
of N subsets Rk ; H – some homogeneity predicate =>:

• Color & texture – basic homogeneity attributes for segmentation
• Main color image segmentation categories:

1.  Feature space based methods => no spatial neighborhood constraints
2.  Image domain based methods => spatial neighborhood constraints
3.  Physics based methods => special class; not found on grey scale methods

Color image processing & analysis 
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5.1. Feature space color image segmentation (1)

• “Generalizations” of classical grey scale image segmentation strategies
• Two main approaches:

1.  Color clustering
2.  Histogram thresholding

• Main issue: what color features are the most suitable for clustering/histogram 
analysis?  => application/image content dependent! 

• Segmentation strategies => still research/open issues, since good segmentation = 
“basic ingredient” for good image analysis

• Current state-of-the art trends:
- to combine the use of low level, intermediate level and high level features;
- to use learning => supervised segmentation (model-based)
- describe and make “clever” use of a-priori info!

Color image processing & analysis 
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5.1. Feature space color image segmentation (2)

1. Color clustering:
= Non-supervised classification of objects/pixels algorithms that generate 
classes/partitions without any a-priori knowledge
=>All basic methods for any feature vectors clustering can be applied;  any color 
space can be used => feature space = the color space; most common:

• K-means:  (iterative procedure)
K – number of clusters (user–defined); S={s1, s2,…, sN} – pixels’ colors; V={v1,… ,vK} 
– an initial random set of color prototypes; ||.|| – a distance norm in the color space
U[K N] = membership degrees matrix for the N colors in S to the K classes: U={uji}, 
j=1,2,…,K; i=1,2,…,N:

Clustering objective: find U, V that minimize the cost function:
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5.1. Feature space color image segmentation (3)
• Fuzzy K-means ( fuzzy c-means): the “soft version” of K-means

Color image processing & analysis 
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5.1. Feature space color image segmentation (4)

• Many other clustering methods: ISODATA, mean shift, constrained gravitational 
clustering, graph partitioning, adaptive k-means, and supervised methods 
(Bayesian color models, Kohonen maps, elipsoidal constrained color clusters)

• Note: selection of the color space – application dependent; controls the success of 
correct clustering => quality of the segmentation!

Color image processing & analysis 
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5.1. Feature space color image segmentation (5)

2. Histogram thresholding:
- Very popular for grey scale images: peaks & valleys detection; peaks = significant 
clusters; valleys = boundaries between clusters
- Main problem in generalization to color image segmentation: histogram = 3-D 

support function => unlike the 1-D support function for grey scales
=> (1) Attempt to find the most relevant color feature to have a 1-D histogram in 

the color space case; commonly – use the hue H

Color image processing & analysis 
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5.1. Feature space color image segmentation (6)

(2) Independently threshold the 3 color features histograms (in some color 
space) + use logical predicates to combine segmentation results

(3)  Use pairwise features: e.g. (H,S) 
=> 3-D surfaces as histograms
=> find peaks and valleys
=> segmentation

(4)  Histograms modeling by Gaussian 
pdfs on each component in a decorrelated 
color space

.... Etc....

Color image processing & analysis 
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5.2. Image domain segmentation of color images

• Previous techniques don’t guarantee spatial compactness of regions
⇒ Image domain segmentation techniques add spatial constraints to improve 

segmentation (wrt compactness)

• Two main approaches (as in grey scale):
1.  Split – and – merge; e.g. most typical: quad-trees decomposition + merging
2.  Region growing; as in grey level case => need solutions to find good seeds 

• Main issue: the similarity concept must be expressed in 3-D space! (distance 
measures similarity measures between colors, not between grey levels)
(E.g. use RGB and Euclidian distance as measure of “closeness” of colors) 

• Some approaches use subsets of color features - i.e. H, S or H, V

• Note: edges can be also used; either on brightness, or the generalized 3-D gradient

Color image processing & analysis 
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6. Color image analysis
• Analysis – image content interpretation, far beyond processing & segmentation:

* Several studies say: color = the most expressive visual feature

• Main challenges in color image analysis (esp. image retrieval, object recognition):
(1) develop high-level features for semantic modeling the image content; 
(2) fill the gap between existing (low-level, intermediate-level features) and high 
level features + variety of features that can be described by an observer

Color image processing & analysis 
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6.1. Color features
• What are they?

- Everything that can be extracted from color spaces
• How can they be used?

- in color image indexing/retrieval: used to match objects by color similarity
- in medical analysis, aerial imaging: used to classify color regions & to 

recognize specifically colored objects
- Classical object matching applications (using color): color template matching;  

color histogram matching; hybrid models
- More advanced use of color features: embed information about the spatial 

organization of colors (=intermediate level feature) & pixel independence 
relationships; => compare images with EMD (Earth Mover Distance)

• Open issues?
- Usually – color features vary under various illuminant condition => suggested: 

define high-order invariant color features & entropy-based similarity measure 
• Standardizations:

- MPEG-7 color descriptors: color space; color quantization; dominant colors; 
scalable color; color layout; color structure; GOF/GOP color; room for more...

Color image processing & analysis 
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6.2. Color-based object tracking
• Many applications: surveillance; video analysis; robotics; videos coding; human-

computer interaction; etc.

• Why is the color so useful for such applications?
- robust in partial occlusion cases
- robust against shape deformation & field of view changing

• Main approaches: color models based:
- Semi-parametric models: mixtures of Gaussians (MoG) ; combined with EM
- Non-parametric models: color histograms; combined with Bhattacharrya 

distance, mean-shift algorithm

• Other approaches: stereo vision + color; active color appearance models

Color image processing & analysis 
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6.3. Some analysis examples
Color image processing & analysis 

Face detection & localization

Liver biopsy morphometry

Cell counting
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6.4. Some open issues: 
color saliency; color constancy

• Color saliency:
• Color saliency models   = model how HVS perceives color based on its spatial 

organization
• Theory: HVS => ROI selection guided by neurological + cognitive processes

• Neurological selection: by bottom-up (stimuli-based) info
• Cognitive selection: by top-down (task-dependent) cues

• Currently => color models don’t use color saliency info satisfactory (some 
saliency maps exist only from RGB data, not spatial info); 

=> e.g. don’t use HVS learned knowledge as: more attention given to 
color details than uniform large patches; color perception is depending on the 
surrounding colors

=> future research needed on developing perceptual multiscale 
saliency maps based on competition between bottom-up cues (color, intensity, 
orientation, location, motion)

Color image processing & analysis 
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6.4. Some open issues: 
color saliency; color constancy

• Color constancy:
• In HVS: Color constancy = the subconscious ability to separate the illuminant 

spectral distribution from spectral surface reflectance function 
to recognize  the color appearance of an object invariant to illuminant

⇒ In machines: Color constancy = ability to measure colors independent on the 
color of the light source (illuminant)

⇒ Important goal, but very difficult to achieve; open research issue

• Some approaches:
- Illuminant estimation algorithms: max-RGB, gray-world, gammut 

mapping, Bayesian models, neural networks;
- Use high-level visual information for illuminant estimation: model objects 

by semantic info (i.e. green grass, blue sky) + add color knowledge
- Use physics scenarios => but don’t always match the real illuminant 

source mixture...

Color image processing & analysis 
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