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Vast amount of data
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• Structure the data and make use of it

• Localize and analyze anatomical structures

• Build models of anatomical structures

• They should by able to find structures in new 
data

• We want to learn them supervised ...

• ... or even better: un-supervised
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Example
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Erosion

JSW
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Georg Langs

Grasping bone contours

4

We have to localize anatomical structures
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Modeling bone contours
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Outline

1. Active Appearance Models (AAMs)

2. Autonomous Model Building

3. Structuring the Model: Shape Maps

6
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1. Active Appearance Models
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Active appearance models

• Idea is to build a model of shape and appearance

• Statistical model of shape variation

• Statistical model of entire texture 
living within the shape

• Build the model based on a training set

• Search in new images by fitting the model to the 
image content

8

[Cootes et al. PAMI 2002]
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AAM Concept
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A training set of 
annotated objects

Shape model

Texture model

[PAMI06, ICPR06]

Train search algorithm with 
artificial displacements of model 
paramaters. Model correlation 
between ∂p and residual.

Building

Search

Training

Iteratively calculate residual, 
∂p and update model fit.
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1. Shape model

• For a set of landmarks on the training images 
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• AAM represent shape 
based on landmarks

• For a set of landmarks, 
positions are known 
on each training image 
- correspondences

11

Shape representation
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Shape representation

• The sets of landmarks 
are aligned to exclude 
rotation, translation, 
and scaling variation

• Then PCA is 
performed on the 
shape vectors

12



{x1, . . . ,xn}

xi =





x1

y1
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PCA on the shape vectors
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Each example is represented by a 
vector encompassing the 
coordinates of the landmarks. 

After alignment the set of training 
examples is used to build a 
statistical model of shape variation. 
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Shape model

• The PCA results in a statistical shape model, comprising 
mean shape and a set of modes -  the eigenvectors of the 
covariance matrix which are plausible deformations of the 
shape.

14

Mean shape Modes of shape variation
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Using PCA to model shape

+ + +=

xnew = m̂ b1e1 b2e2 b3e3+ + +
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Texture model

• Unlike as ASMs, AAMs 
represent the entire texture 
enclosed by the landmarks

• The area that is covered is 
defined by 

• The convex hull of the 
landmarks, or a more 
restrictive hull, or

• By the hull spanned by 
additional automatic 
landmarks surrounding the 
shape 

16
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How to capture the texture?

• Triangulate the mean shape

• Propagate this 
triangulation to all training 
shapes

• Model the texture mapped 
onto the mean shape by 
warping all training shape 
triangles onto the mean 
shape triangles

17
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Texture representation

• The texture is 
represented by a 
normalization with 
respect to the shape

• All examples are mapped 
to the mean shape

• Then the texture model 
is built

18
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Texture mapping

• The triangles of the training examples are 
mapped onto the triangles of the mean shape
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Texture model

• After the shape 
normalization a mean 
texture can be calculated

• Analogous to the shape 
vectors the gray values 
of the mapped texture is 
read out columnwise to 
form texture vectors

20



Georg Langs

Texture representation

• After the shape 
normalization a mean 
texture can be calculated

• Analogous to the shape 
vectors the gray values 
of the mapped texture is 
read out columnwise to 
form texture vectors

21
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Texture representation
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{g1, . . . ,gn}

giTexture vector:

Set of texture vectors 
representing the 
textures in the training 
images:
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Combined model
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Shapes Textures

Shapes-
Eigenspace

Textures-
Eigenspace

combined Shapes-/
Textures-Eigenspace

P
C
A

P
C
A

P
C
A

Landmarks
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Combined models

• Shape and texture variation are represented 
by a single model

• It exploits correlations between texture and 
shape variation

• Provides a compact representation of the 
variation in the trianing set

24
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Model search?

• AAM is a generative model i.e. it is able to 
generate instances of the object class in the 
trianing set.

• But, how to use this combined model to 

• search for landmarks in images?

• Match the model texture onto images?

25
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Training necessary

• For AAMs first a training is necessary to 
enable a fast search

• Relations between a mismatch of the model, 
and the difference between generated image 
and observed images are learned

• They can be used to update the model 
parameters during search.

26



• We know the correct 
parameters

• We change them by a known 
difference vector

• We observe the resulting model 
match difference

• Capture the relation between model mismatch and 
model parameter displacement by regression:

Georg Langs

AAM training

27
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AAM training
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• We know the correct 
parameters

• We change them by a known 
difference vector

• We observe the resulting model 
match difference

• Capture the relation between model mismatch and 
model parameter displacement by regression:
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AAM training
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• We know the correct 
parameters

• We change them by a known 
difference vector

• We observe the resulting model 
match difference

• Capture the relation between model mismatch and 
model parameter displacement by regression:
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AAM training
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• We know the correct 
parameters

• We change them by a known 
difference vector

• We observe the resulting model 
match difference

• Capture the relation between model mismatch and 
model parameter displacement by regression:



Georg Langs

AAM training
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• We know the correct 
parameters

• We change them by a known 
difference vector

• We observe the resulting model 
match difference

• Capture the relation between model mismatch and 
model parameter displacement by regression:



• The relation between residuals and parameter 
vectors can be learned by either

• Linear regression

Georg Langs

Training how to fit the model

32

Residual errorDisplaced model
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Numerical differentiation
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• For each mode:

• Vary the parameter within a certain range

• And perform numerical differentiation with 
regard to the parameter

( )-
∑

Regression matrix



δpi =

Georg Langs

How to use during search?

• For each mode we can calculate the correction of the 
paremeter by simply projecting the current difference 
image onto the one in the regression matrix

34

,( )
Taken from one line in 
the regression matrix

Current observation 
during search
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AAM search
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Initialization Difference 
image

δp

Parameter 
update

Model update



δp

Georg Langs

AAM search
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Initialization Difference 
image

Parameter 
update

Model update
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AAM search
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Initialization Difference 
image

Parameter 
update

Model update
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Georg Langs

AAM search
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Initialization Difference 
image

Parameter 
update

Model update



δp
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AAM search

39

Initialization Difference 
image

Parameter 
update

Model update
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AAM Search
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Wrap up

• AAMs represent shape and texture variation

• They are generative (i.e., they can generate 
model instances)

• To be able to perform search with an AAM the 
relation between parameter displacements and 
residual difference image has to be learned

• Search is performed by initializing the model 
and updating the parameters according to 
training until the search converges

41
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Extensions to more dimensions

• The concept of AAMs can be extended to 
more dimensions.

• 3D landmarks

• Instead of a triangulation and a patch based 
texture representation ...

• ... the volume enclosed by the landmarks can 
be warped to the mean shape 

• It is represented analogously to the 2D case by 
vectorization

42
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Pitfalls ...

• 3D or 4D models suffer from the very high 
dimensionality of the examples

• Compared to that the number of training 
examples is very low

• Alternatives?

• Use active shape models in 3D data

• Use only selected texture parts close to 
the landmarks

43
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Summary

• AAMs capture

• Shape variation

• Texture variation of the texture enclosed by the 
landmarks

• AAMs are generative models i.e. the can generate 
instances of the learned object class

• AAMs can be used to search for the objects in 
images

• AAM search minimizes the residual error between 
generated model instance and observation to fit the 
model to an image

44
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1. Learning Models

46
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Stent Grafts
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Aorta

Stents

Heart
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Gated CT sequences
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Learning a model
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The manual way ...

• Find an expert, who 
has time

• Let the expert 
manually annotated 
lots of examples

50
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Learning and Analysis

• It is no longer feasible to perform supervised 
learning and then apply the algorithm to new 
data

• Unsupervised and weakly supervised 
learning approaches

• ... One more step: learning becomes a part of 
the analysis process, as we learn the variability 
and nature of the data, we acquire knowledge 
about its structure

51
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What we want
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Model 
Learning 

Algorithm
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Group-wise registration
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This can be tricky
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Group-wise registration

55

Reduce the problem to a set of interest points
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Representing data differently
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Local appearance descriptors

A set of interest points
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Correspondences on point sets
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... ... ...

? ?



DL expresses the compactness of a model given certain 
training data. Minimize description length to improve 
generalization behavior

C = CS + CT + a(t)CE

Georg Langs

Minimum Description Length

58

L = L(M) + L(D|M) +R
transmit model

transmit data encoded by model

residual error

Criterion function:  costs for encoding of shapes (CS), 
local texture (CT), and elasticity regularization (CE)

Shape Local Texture
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Evolving shape model of hands

Before optimization After optimization
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Correspondence encoding
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Frame 1 Frame 2 Frame 3 Frame 4

Landmark i

Correspondences are coded as indices into the 
lists of interest points for each image, resulting in 

matrix G
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Optimization
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Images
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of the interest points the 

landmark is assigned 

in the individual training 

images

Build model from remaining examples

Pick an example

Project single 

example into 

the model

Model

Search for best candidates for 

landmarks in the neighborhood 

of projection, and exchange 

elements in G accordingly.

Genetic Algorithm Search

Direct Search

Pick an example

Build model from remaining 
examples

      
Project single 
example into the 
model

      Search for best points in 
neighbourhood of projection

Images
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Each row holds the indices 

of the interest points the 

landmark is assigned 

in the individual training 

images

Build model from remaining examples

Pick an example

Project single 

example into 

the model

Model

Search for best candidates for 

landmarks in the neighborhood 

of projection, and exchange 

elements in G accordingly.

Genetic Algorithm Search

Direct Search

Correspondences are optimized by changing G, after convergence 
additional landmarks are added, by TPS interpolation.
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Dealing with incomplete data

62

Images

La
nd

m
ar

ks

Landmarks are reported missing 
if  posteriori prob. is low.

G =

G´=

The positions of missing landmarks are imputed by the 
preceding shape model. (i.e. similar to EM imputation)
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Examples
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Early model Optimization result

Landmark error to groundtruth: 5.84 px, contour error: 2.27 px
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Examples

64
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Examples

65
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Examples

66

# modes for 85% variation: before optim: 5   after optim: 2
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Examples
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1st mode 2nd mode 1st mode 2nd mode

After tracking After MDL based registration
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Stent deformation
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Local compactness Deformation
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Stent deformation

69
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Stent deformation

70
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Wrap Up

• Learn model: un-supervised or weakly 
supervised

• No manual annotation

• Learn correspondences between images by 
optimizing MDL criterion

• Necessary for models of complex data

• Can be used to capture information not 
accessible otherwise to human experts

71
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1. The Structure of Models

72
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Stent-Grafts

73
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Topology?

• In modelling we use topology to propagate 
information, to express and use dependencies

• Lets not define topology a priori

• Let the observed dependencies establish 
topology

74
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Artificial Example
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Measure dependencies

• Quantify dependencies between landmarks in 
the structure

• tool: model complexity / description length

• Represent the landmarks as vertices in a graph

• Weights of the edges correspond to the 
complexity of a model encompassing the two 
landmarks

• This is a Markov chain, and thus has nice 
properties

76
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Building a Markov chain

77

LandmarksSet of examples each 
with landmark positions
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Sampling with sub-models
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Choose a sub-set of landmarks
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Sampling with sub-models

79

Gather the positions of these landmarks in the training set
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Sampling with sub-models
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Gather the positions of these landmarks in the training set
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Sampling with sub-models
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Gather the positions of these landmarks in the training set



Ssub :

Georg Langs

Calculating sub-model complexity

82

For the sub-set of landmarks: 
calculate description length of the 
model and the data encoded with 
the model.

Model Data encoded 
with model

Can be viewed as affinity between 
these landmarks.

LSsub = L(M) + L(D|M) +R



k(i, j) = e−
d(i,j)

ε

d(i, j) = min
Ssub

(LSsub |i, j ⊆ Ssub and #Ssub = k)

d(i) =
∑

j

k(i, j)

Georg Langs

Building a Markov chain

83

Assign the edges connecting the landmarks values

p(i, j) =
k(i, j)
d(i)



∑

j

p(i, j) = 1

Georg Langs

Building a Markov chain

84

p(i, j) =
k(i, j)
d(i)

satisfies

and can be interpreted as the 
probability of  the transition 
from i to j in one step
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Building a Markov chain

85

The Markov chain can be represented by a matrix
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Building a Markov chain

86

The Markov chain can be represented by a matrix P
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Example: rotating boxes

87

Sequence of 300 
examples of 4 rotating 

boxes
Resulting matrix P
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Eigenspace: faces
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eigenspace: colors 
encode density
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Clusters in the eigenspace
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Landmarks in eigenspace: 4 
clusters

Landmarks
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Clusters: boxes
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Stents: deformation segmentation
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Landmarks in eigenspaceLandmarks
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Motion patterns
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[Langs et al. CVPR’08]



Stent Grafts

Local deformation complexity

93

Heart data 
(Maxime Taron, Ahmed Besbes)

Muscle data
(Salma Essafi)
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Wrap Up

• Models of appearance and shape variation:

• Active Appearance Models

• Learn models autonomously from un-
annotated data

• Find the structure of behavior in the data

• Necessary prerequisites to use the vast 
amount of information acquired with medical 
imaging modalities

94
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Thank you

95

Contact:  
georg.langs@ecp.fr

Try some of the code (coming soon) 
and have a look at literature:

www.mas.ecp.fr / vision / Personnel / langs


