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Multiscale analysis

Features in images present at various scales

Scale of interest depends on particular visual task

input image

coarser
scale levels

Multiscale representation as an ordered set of derived images at coarser scales.
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Size Distributions

A size distribution or granulometry is a set of openings {αr} with r from some
totally ordered set Λ with the following three properties:

αr(X) ⊆ X, (1)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (2)

αr(αs(X)) = αmax(r,s)(X), (3)

in the binary case, and in the grey scale case:

αr(f) ≤ f, (4)

f ≤ g ⇒ αr(f) ≤ αr(g), (5)

αr(αs(f)) = αmax(r,s)(f), (6)
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Anti-Size Distributions

An anti-size distribution is a set of closings {αr} with r from some totally ordered
set Λ with the following three properties:

X ⊆ αr(X), (7)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ), (8)

αr(αs(X)) = αmax(r,s)(X), (9)

in the binary case, and in the grey scale case:

f) ≤ αr(f), (10)

f ≤ g ⇒ αr(f) ≤ αr(g), (11)

αr(αs(f)) = αmin(r,s)(f), (12)

Note that scale parameter r is usually held to be negative.
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Example Using Area Openings and Closings

α−25600(f) α−6400(f) α−1600(f) α−400(f)

f α400(f) α1600(f) α6400(f)
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Comparison to Scale-Space Concept

Granulometries are related to scale spaces.

A scale space is defined as the embedding of an image f0 into a family
{Tt(f0)}t≥0 of filtered versions of f0, where T0(f0) = f0, satisfying:

recursivity :
Tt+s(f0) = Tt(Ts(f0)), ∀s, t ≥ 0.

No creation of additional structures in the image (maximum-minimum
principle)

Note the difference of the recusivity property of scale-space operators with the
absorption property of granulometries

αr(αs(f)) = αmax(r,s)(f),
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Morphological Scale Spaces

Morphological scale spaces also exist.

Consider grey-level dilation and erosion with structuring element of the form tB
with B a disc of radius 1, where t > 0 is a scaling parameter:

f+(x, y, t) = f ⊕ tB

f−(x, y, t) = f ª tB

f f ⊕ 3B f ⊕ 9B f ⊕ 21B
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Pattern Spectrum

The pattern spectrum sα(X) obtained by applying granulometry {αr} to a binary
image X is defined as

(sα(X))(u) = −∂A(αr(X))
∂r

∣∣∣∣
r=u

(13)

in which A(X) is a function denoting the Lebesgue measure in Rn.

In the case of discrete images, and with r ∈ Λ ⊂ Z, this differentiation reduces to

(sα(X))(r) = #(αr(X) \ αr+(X)) (14)

= #(αr(X))−#(αr+(X)), (15)

with r+ = min{r′ ∈ Λ|r′ > r}, and #(X) the number of elements of X.
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Opening Transforms

The opening transform ΩX of a binary image X for a granulometry αr is

ΩX(x) = max{r ∈ Λ|x ∈ αr(X)} (16)

The pattern spectrum of a binary image X using granulometry {αr} is the
histogram of ΩX obtained with the same size distribution, disregarding the bin for
grey level 0.
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Computing Pattern Spectra in Grey Scale

For structural openings, we generally use a set of structuring elements {Br} (e.g.
discs) of increasing size.

From this we construct a granulometry {αr} for which

αr(f) = f ◦Br (17)

In this case the pattern spectrum is generally computed by naive implementation
of the equation for the patter spectrum sf(r)

sf(r) =
∑
x

((f ◦Br−1)(x)− (f ◦Br)(x)) (18)

This requires one structural opening per bin of the spectrum.
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Using Connected Filters

The nesting property of peak components makes computation of patterns spectra
in the case of connected filters very simple.

Any of the algorithms for attribute openings can be adapted to computation of
pattern spectra with any number of bins in just one application of the algorithm.

As each peak component is processed, simply add its grey-level sum to the
appropriate bin based on the attribute.

The method also works for shape spectra using attribute thinnings rather than
openings.
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Shape distributions I

A shape distribution is a set of operators {βr} with r from some totally ordered set
Λ, with the following three properties

βr(X) ⊂X (19)

βr(Xλ) =(βr(X))λ (20)

βr(βs(X)) =βmax(r,s)(X), (21)

for all r, s ∈ Λ and λ > 0 in the binary case, and in the grey-scale case:

(βr(f))(x) ≤f(x) (22)

βr(fλ) =(βr(f))λ (23)

βr(βs(f)) =βmax(r,s)(f), (24)
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Shape distributions II: Example

Shape distributions can be implemented using families of attribute thinnings.

Care must be taken that the third (absorption) property holds.

If τ(C) is scale, rotation, and translation-invariant attribute of connected set C,
the family of shape filters {ΦTλ} is a shape distribution, if T has the form:

T (C) = (τ(C) > λ). (25)

An example would be:

T (C) =
(
I(C)
A2(C)

> λ

)
. (26)
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An Application

In angiography it is often necessary to enhance curvilinear detail before
segmentation.

Standard multi-scale techniques require filtering at multiple scales and
orientations, and may require > 1 hr CPU-time.

Shape filtering using I/V 5/3 > λ as 3D shape criterion can be used instead.

The result can be computed in 12 s on a Pentium 4 at 1.9 GHz for a 2563 volume.
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An Example

Applying the I/V 5/3-based shape distribution to an angiogram (top left) with λ =
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0.

SSIP, Vienna, July 11, 2008 15 of 37



Multi-Variate Pattern Spectra

Computation of pattern spectrum using Max-Tree (Subtractive):
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2D-spectra
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Application to Diatom Identification

Original σ = 0.64
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Classification Performance

Classification performance in %

Method Diatoms Brodatz COIL-20 COIL-100
Max-tree 91.1 (1.6) 96.5 (0.6) 98.9 (0.5) 96.9 (0.6)
S.E. BV 93.8 (2.8) 82.9 (1.5) 99.0 (0.8) 97.4 (0.6)

Diatoms Brodatz

Computing time
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Results

Performance on noisy images
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Rotation Invariance

Performance on rotated images
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Spatial Insensitivity

Pattern spectra only retain the amount of detail present at scale r, but are blind
to the spatial distribution.
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Various methods have been proposed to amend this.
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Spatial Pattern Spectra

One solution is computing some parameterization of the spatial distribution in an
image αr(X) \ αr+(X) as a function of r.

Let M(X) be some parameterization of the spatial distribution of detail in the
image X. The spatial pattern spectrum SM,α is then defined as

(SM,α(X))(r) = M(αr(X) \ αr+(X)). (27)

with r and r+ two consecutive scales.

In grey scale this becomes

(SM,α(f))(r) = M(αr(f)− αr+(f)). (28)
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Shape Description using Moments

(Central) moments up to some order (p+ q) are computed:

Moments: mpq = mij(X) =
∑
(x,y)

f(x)xiyj (29)

Central moments: µpq =
∑
(x,y)

f(x)(x− x̄)i(y − ȳ)j (30)

where x̄ =
m10

m00
and ȳ =

m01

m00
(31)

Normalized central moments: ηpq =
µpq
µγ00

(32)

where γ =
p+ q

2
+ 1 (33)

(34)
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Hu’s Moment Invariants

Hu’s set of seven moment invariants is defined as:

φ1=η20 + η02 (35)

φ2=(η20 − η02)2 + 4η2
11 (36)

φ3=(η30 − 3η12)2 + (3η21 − η03)2 (37)

φ4=(η30 + η12)2 + (η21 + η03)2 (38)

φ5=(η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (39)

φ6=(η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03) (40)

φ7=(3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η12 − η30)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (41)

Note that these seven moment invariants are computed using central moments
up-to(and including) order 3.
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Using Moments

Note that the standard pattern spectrum uses the area of image αr(X) \ αr+(X),
or the sum of grey levels of all pixels in image αr(f)− αr+(f).

This is just geometric moment m00.

Standard algorithms for pattern spectra can readily be adapted to computing
other moments.

Focusing on the case of 2-D binary images, the moment mij of order ij of an
image X is given by

mij(X) =
∑

(x,y)∈X

xiyj. (42)

The spatial moment spectrum Smij,α of order ij is

(Smij,α(X))(r) = mi,j(αr(X) \ αr+(X)). (43)
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Derived Spectra

Derived parameters such as coordinates of the centre of mass, (co-)variances,
skewness and kurtosis of the distribution of details at each scale can be computed
easily.

The pattern mean-x and variance-x spectra (Sx̄,α and Sσ(x),α) are defined as:

Sx̄,α =
Sm10,α

Sm00,α
(44)

and

Sσ(x),α =

√
Sm20,α

Sm00,α
− Sx̄,α. (45)

Note that these definitions hold only where (Sm00,α(f))(r) 6= 0. For all other
values of r they will be defined as zero.

Further post-processing can be done to compute central moments and moment
invariant from pattern moment spectra (e.g. Hu, 1962).
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Example
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Example II

X

Sx̄,α
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Computing Spatial Pattern Spectra

In the binary case, after an opening transform has been computed, it is
straightforward to compute the standard pattern spectrum:

Set all elements of array S to zero

For all x ∈ X increment S[ΩX(x)] by one.

To compute the pattern moment spectrum, the only thing that needs to be
changed is the way S[ΩX(x)] is incremented.

Set all elements of array S to zero

For all (x, y) ∈ X increment S[ΩX(x, y)] by xiyj.

Similar adaptations can be made to any other algorithm for pattern spectra.

Post-processing yields the derived pattern spectra.
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Spatial Size-Distribution

Ayala and Domingo (2002) propose a scheme to incorporate spatial information in
patterns spectra which compute the overlap between the (filtered) images and
their shifted counterparts.

In the binary case this results in the following (cumulative distribution) functions,
called spatial size distribution SSD:

SSDX,U(λ, µ) =
1

A(X)2

∫
µU

A(X∩(X+h))−A(Ψλ(X)∩(Ψλ(X)+h))dh (46)

In grey scale we have

SSDf,U(λ, µ) =

∫
µU

∫
W
f(x)f(x+ h)−Ψλ(f(x))Ψλ(f(x+ h))dxdh

(
∫
W
f(x)dx)2

(47)

U is a convex and compact subset containing the origin in its interior and W the
window over with equation (47) is defined.
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Connectivity Classes

A connectivity class C is the set of all connected subsets of some universal set E.

Some limitations apply:

∅ ∈ C and {x} ∈ C

if {Ci} ⊆ C and
⋂
Ci 6= ∅ then

⋃
iCi ∈ C

A useful notion is the so-called connected opening Γx(X) which returns the
connected component x belongs to if x ∈ X, and ∅ otherwise.

Many generalizations of the standard (4 or 8) connectivity have been proposed
based on clustering or partitioning operators.

If ψ is such an operator Cψ denotes the connectivity class and Γψx the
corresponding connected opening.

Such connectivities are called second-generation connectivities because they rely
on an underlying connectivity.
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Clustering-based Connectivity

Let ψc be an extensive operator, i.e. X ⊆ ψc(X).

If x ∈ X, the connected opening Γψx now looks at connected components of
ψc(X), and intersects the one returned with X.

This clusters nearby connected components according to C into new, larger ones.

The connected opening based on this connectivity is given by

Γψcx =

{
Γx(ψc(X)) ∩X if x ∈ X
∅ otherwise.

(48)

Suitable choices of ψc are closings or dilations.
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Clustering-based Connectivity Example

X ψ(X) Γψp (X)

Note that p = (65, 85).
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Multi-Scale Connectivity Spectra

Spatial information in pattern spectra can be extracted by using the clustering
based connected opening.

From the original image, a (regular) pattern spectrum can be obtained, using a
connected filter.

We then use clustering operators at different scales to obtain a connectivity
pyramid of clustering connectivities.

For each of the connecivities, obtain a (attribute opening) pattern spectrum.

This encodes how close objects are together in the image.

Unlike the other two generalizations, this method only works for connected filters.
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Content-Based Image Retrieval

All three methods for adding spatial information were implemented and tested for
area openings in the application of content-based image retrieval.

The SSD-method performed poorly, but the other two were close to or better than
a commercial package.

The multi-scale connectivity method worked best

The spatial pattern spectrum was fastest.

The performance could be improved by

including anti-size distributions

including colour information.
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Questions

?
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