Towards Modelling of Trabecular Bone Microstructure

SSIP 2008 Project 20

Outline

- Myths behind Bone
- Need for peronalized bone analysis
- Method and Materials
 - Materials
 - segmentation and Mesh generation
 - Finite Elment Analysis
 - Elastic property and Direction
- Results and Discussion

Objective

- Hypothesis: there exists a relationship between the direction (orientation) of bone and the forces it endures
- Challenges:
 - Trabecular bone is anisotropic, but how does the arrangement look like
 - Irregular geometry shapes
 - What kind of relationships between the architecture and mechanical properties

Insights of Bone

Ack, Bert van Rietbergen, Finite Element Modeling, The Physical Measurement of Bone, 475-510

Experimental data: tomography of a bone-cartilage sample

Data acquired at:

ID17 Biomedical Beamline European Synchrotron Radiation Facility (ESRF) Grenoble, France

Technique:

phase-contrast imaging (propagationbased imaging technique)

Meshing

- Divide the volume into elements
 - Surface meshing
 - Triangle shape elements (3 nodes)
 - volumetric
 - Cube shape elements (8 nodes)

The Materials

• Elasticity

- Young's Modulus
- Poisson Ratio

Table 1 Material properties of models		
Property	Tissue	Holes
Young modulus [GPa]	6	0.006
Poisson ratio	0.3	0.3

Ack: Brozovsky et al Computers and Structures 85 (2007)

Finite Element Model

- Elasticity Model
 - Geometry
 - Material properties

 A better one: Poroelasticity Model?

Preliminary Results (1)

Preliminary Results (2)

Lin STRESS Lc=1 Lin DEF Lc=1

Discussion and Future Work

- The deformation of trabeculae seems to be along bone's direction
- More data and quantitative analysis
- A descriptor of trabecular bone orietantion
- Better modelling
 - More complicated but detailed meshing
 - More time for FEM
- Validation real mechanical testing

Acknowledgements

- SSIP 2008 staff
- Dr. A.Bravin, Dr. P.Coan (ID17 ESRF, Grenoble, France) for the data
- Google
- Vienna's good weather

Thank you