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1 Preface

Tomography is a technique to explore inside of objects without touching it at all. Normally
electromagnetic radiation is emitted by an application, goes through the examined object and
are measured on the opposite side how much radiation is absorbed. The result of the checking
is a set of vectors, so called projection vectors, that contain the sum of the absorbed rays from
different directions. The main goal is to reconstruate the original image from the projection
vectors. We deal only with 2D binary images. This method is very useful in medicine,
archaeology, geophysics, astrophysics and other sciences.

In the following we define the problem and give some possible solutions to it with examples.

2 Problem specification

A quadratical binary P image is given (e.g. a slice of a human). Afterwards, we make the
projection vectors from 2, 4 or 6 directions. . Let D be a matrix where di,j equals the length
of a certain ray going through the pi,j pixel and let c be the projection vector. An example of
how projections work can be seen in Figure 1.

Figure 1: Calculation of projection vectors with horizontal and vertical projections.

For every emittor of every direction we can calculate the D̂ vector by concatenating the
row vectors of D matrix. We concatenate the ck projection vectors to a b. The x variable is
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the vectorized form of the original binary image.

A =




D̂1,1

D̂1,2
...

D̂m,m


 b =




c1

c2
...
cn


 x =




x1,1

x1,2
...

xm,m


 (1)

Now we can write our system in a compact way:

Ax = b (2)

Consider that our system is a highly undetermined linear equation. For example if the input
image has size 50×50 and we have only vertical and horizontal projections then we will have
100 equations and 2500 unknown variables. Because of the underdetermined system the one
possible way is to use optimization techniques to obtain a global minium

3 Methods on Binary Tomography

In this section we discuss different optimization techniques to solve the previous binary pro-
gramming problem. We give examples of how they work, what advantages and disadvantages
they have.

3.1 Reconstruction with Simulated Annealing

Simulated annealing [6] is an algorithm, inspired by nature (metallurgy), that can be used to
solve optimization problems of all kinds, i.e. not only convex or linear as most other methods.
It can be proven to converge to the global optimum, which of course is a nice property. Sadly,
the convergence can not be guaranteed in finite time so in practice you have to know something
about your problem to decide weather simulated annealing is a good method or not.

There are a few things that can be varied in an implementation and the most important
design choices will be discussed above.

Objective functions

What is going to be optimized is the goal or objective. The objective function in simulated
annealing is the one that describes weather the current proposed solution is good or not. In
our case, the natural objective must be to minimize the projection error

EP (x) = ||Ax − b||, (3)

which was defined above. This is the only criteria if nothing is known or can be assumed about
the true solution.



3 METHODS ON BINARY TOMOGRAPHY 4

Set Initial Temperature, T=2

Generate Initial Solution

WHILE T>0 DO

1. Create A New Possible Solution

2. Choose The Best Solution According To The Objective Function Or

Choose The Worst With Probability ~exp(delta E / T)

3. Lower The Energy According To Scheme

END

Figure 2: A pseudocode outline of the simulated annealing algorithm.

Since information is between uniformity and entropy, some homogeneity can usually be
expected in the solution.

We measure homogeneity as the number of border elements in the image over the total
number of elements. The number of border elements is calculated by subtraction of the eroded
image from the original and then summation of the remaining elements.

EH(Img) =
∑ ∑

(Img − Img ª strel) (4)

Solution generator

The following methods were tried:

1. Move one element pixel randomly. This preserves the total number of picture elements.

2. Pick a pixel randomly and let it diffuse a few steps.

3. Pick one pixels randomly and flip its value.

It turned out that the last, and most simple alternative, was the best performing. Not in the
number of steps but in computing time.

Temperature scheme and use

Since the log-scheme is theoretically the best, it was chosen. I.E.

T =≈ log(2 − iter/NITER) (5)

where iter is the current iteration and NITER is the total number of iterations.
To make it easy to plug in different objective functions we propose that the main algorithm

should keep track of the maximal energy difference and use it to normalize the values of the
objective function. This is implemented.
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Files:

• bsm.m: The main skeleton. Here are all easy settings. This is to be run by the user.

• bsm main.m: The main loop.

• bsm newTemp.m: Contains the temperature scheme.

• bsm proposeNewImage.m: Make the next guess.

• bsm objectiveFunction.m: What it sounds like.

Results

Results can be seen in the Appendix A.

Discussion

The convergence is very slow at the end. This is because the probability that the right
pixel is changed decreases as the number of pixels in the correct state increases. A solution to
this problem could be to let the algorithm that proposes new solutions be more systematic as
the temperature decreases. There are many things that can be optimized, the most relevant
is probably to implement the alghoritm in a more efficient environment like c++.
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3.2 Reconstruction with Branch and Bound

Branch and Bound algorithm is a widely used optimazation framework. It consists of two
critical functions, called branching and boundary functions. Now we define these in order to
solve the optimization problem in an efficient way.

The optimization problem can be interpreted as the following:

max
∑n

i=1

∑n

j=1 xi,j

subject to Ax = b
xi,j ∈ 0, 1

(6)

• Branching Let L be the set of feasible solutions of the original binary program. The
branching function should divide L into two disjoint subsets. With this the original
problem can be solved indirectly by solving two subproblems with smaller size. In this
paticular case, we select a variable of vector X, let this be xj and branch the root with
L0 and L1 nodes. Here Li contains vectors where xj = i stands. Afterwards branching
is called recursively on the sub nodes.

• Bounding Of course we do not want to build the whole tree. For a 50 × 50 image
there are 22500 possible solutions, so we must use cuts in the Branch and Bound tree.
Therefore in every selected node we solve the relaxtion of the actual problem. This
means that variables are not binary but real. If Li is the set of the feasible solutions
of the actual problem and L∗

i is the set of the feasible solutions of the relaxation, then
Li ⊂ L∗

i the following stands:
Z(x∗) ≥ Z(y∗), (7)

where x and y are the optimal solutions to the appropiate linear programs. In case
a node has optimal solution x∗ and with optimal value Z(x∗) it means that objective
function value less than Z(x∗) is not possible in the whole subtree, thus if we have a
binary solution from previous iterations better than x∗, the node shouldn’t be extracted.

In Figure 2 you can see how the tree is built. The lower we go in the tree, the less dimensional
LPs must be solved. If all the possible nodes are extracted we can read down the optimal
solution by searching the leaf with the lowest objective function value.

Results

We solved the problem in Matlab with two projections. The following images were tested
with vertical and horizontal projections without any noise. On the first image the cross has a
vertical and a horizontal extension, that is why our approach is successful, the original image is
almost perfect. On the second image the rotated cross has to be reconstructed, but with only
two projections it is only similar to the original one. The third image is almost excellent except
for some pixels. On the last image you can notice that for complex objects two projections is
not enough and reconstruction is unsuccessful.
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Figure 3: The branch and bound tree after 2 node extraction.
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Original Reconstructed Difference

Original Reconstructed Difference

Original Reconstructed Difference

Original Reconstructed Difference

Figure 4: Results of branch and bound routine on different objects without any noise
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3.3 SPG-based reconstruction

The Spectral Projected Gradient (SPG) algorithm is a deterministic, iterative optimization
method, introduced by Birgin, Mart́ınez and Raydan (2000) in [4] for solving the convex-
constrained optimization problem

min
x∈Ω

f(x)

where the feasible region Ω is a closed convex set in Rn. The requirements for application
of SPG algorithm are: i) f is defined and has continuous partial derivatives on an open
set that contains Ω; ii) the projection, PΩ of an arbitrary point x ∈ Rn onto a set Ω is
defined. The algorithm uses the following parameters: integer m ≥ 1; 0 < αmin < αmax,
γ ∈ (0, 1), 0 < σ1 < σ2 < 1 and initially α0 ∈ [αmin, αmax] (see [5] for details). Starting
from an arbitrary configuration x0 ∈ Ω, the below computation is iterated until convergence.

SPG iterative step [5].

Given xk and αk, the values xk+1 and αk+1 are computed as follows:

dk = PΩ(xk − αk∇f(xk)) − xk;
fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,m − 1}};
xk+1 = xk + dk; δ = 〈∇f(xk), dk〉; λk = 1;
while f(xk+1) > (fmax + γλkδ)

λtemp = −1
2
λ2

k/(f(xk+1) − f(xk) − λkδ);
if (λtemp ≥ σ1 ∧ λtemp ≤ σ2λ) then λk = λtemp else λk = λk/2;
xk+1 = xk + λkd

k;
end while;
sk = xk+1 − xk; yk = ∇f(xk+1) −∇f(xk); βk = 〈sk, yk〉;
if βk ≤ 0 then αk+1 = αmax else αk+1 = min{αmax, max{αmin, 〈sk, sk〉βk}}

The SPG algorithm is particularly suited for the situations when the projection calculation
is inexpensive, as in box-constrained problems, and its performance is shown to be very good in
large-scale problems (see [5]). This motivates us to apply the SPG algorithm in defuzzification,
which is a convex, box-constrained large-scale optimization problem.

3.3.1 SPG Based Algorithm for Binary Tomography

We consider the binary tomography problem (2) as a following binary optimization problem

min
x∈{0,1}n

1

2


‖Ax − b‖2 + α

∑

i

∑

j∈N(i)

(xi − xj)
2


 (8)

where A is the projection matrix and b is the projection vector. A rule of the last term is to
enforce the coherency of the solutions. The objective function in (8) can be reformulate in
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following way [3]

Φ(x) = xT Qx + qT x,

where
Q = AT A + αL,

xT Lx =
∑

i

∑

j∈N(i)

(xi − xj)
2,

q = −AT b.
Since the matrix Q is positive definite, a function Φ is convex. Instead of problem (8) we

consider a relaxed convex constrained problem

min
x∈[0,1]n

Φ(x) + µ · xT (x − e) , µ > 0 (9)

where e = [1, 1, 1, .., 1]n, and µ is a binary enforcing term. Our strategy is to solve a sequence
of optimization problems (9), with gradually increasing µ, which will lead, to a solution of the
binary optimization problem (8). We define the projection PΩ of an arbitrary vector x ∈ RN

onto a set Ω = [0, 1]N as

[PΩ(x)]i =





0, xi ≤ 0
1, xi ≥ 1
xi, elsewhere

, where i = 1, . . . , N . (10)

PΩ is a projection with respect to the Euclidean distance. Since the the objective function in
(9) is differentiable and the projection onto a feasible set is given, a problem (9) can be solved
by SPG algorithm. More precisely, we suggest the following optimization algorithm:
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SPG based algorithm for binary tomography.

Parameters: εin > 0; εout > 0; µ∆ > 0

x0; µ = 0; k = 0;
do

do

xk+1 from xk by SPG iterative step; k = k + 1;
while ‖xk − xk−1‖∞ > εin

µ = µ + µ∆;
while max

i
{min{xk

i , 1 − xk
i }} > εout.

The initial configuration is the original fuzzy set. In each iteration in the outer loop we
solve, by using the SPG method, an optimization problem (9), for a fixed binary factor µ > 0.
By iteratively increasing the value of µ in the outer loop, binary solutions are enforced. The
termination criterion for the outer loop, εout, regulates the tolerance for the finally accepted
(almost) binary solution.

The termination criterion for the inner loop, εin, affects the number of iterations made
for the specific binary enforcement setting µ. If εin is chosen too small, it may lead to an
unnecessarily large number of inner iterations, and by that slow down the process, without
any significant improvement on the final binary solution. Its value, however, should be small
enough to ensure reasonably good output of the SPG algorithm.

The starting value of µ is 0, to ensure that the influence of the features observed in
defuzzification is sufficiently high in the beginning of the process, compared to the influence
of the binary enforcement term. The parameter µ∆ regulates the speed of enforcement of
binary solutions. Too fast binarization (high value of µ∆) usually leads to a poor result. On
the other hand, too small µ∆ step may lead to an unnecessary big number of outer iterations.

3.3.2 Discusion

Deterministic optimization algorithms, in contrary to non-deterministic ones, always con-
verge to the same result with the same convergence speed, which makes such methods prac-
tically appealing. On the basis of our experiments the algorithm perform well. Its main
advantages are: the deterministic nature, good reconstruction results in compare with other
two consider methods (SA and B&B) and relatively low sensitivity for noise. However, the
convergence in a case of noise data is low, which can be a challenge for further work.

3.3.3 Experiments

We implemented our method in Matlab. The algorithm are tested by using two, three and
four projections. Also, in a case of four projections we add Gaussian noise to the projection
vector with mean 0 and variance 0.001.
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Original 2 Proj. 3 Proj. 4 Proj. 3 Proj. + Hom.

Figure 5: Reconstructions obtained by SPG based algorithm without any noise.

A Results of simulated annealing
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Original Original Original

Reconstruction Reconstruction Reconstruction

Error: 148 pixels.
Elapsed time: 266 s.

Error: 179 pixels.
Elapsed time: 256 s.

Error: 253 pixels.
Elapsed time: 382 s.

Figure 6: Reconstructions from projections obtained by SPG based algorithm with Gaus-
sian noise. The homogenity prior term is included.
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Figure 7: Simulated annealing. 50000 iterations. 2 Projections.
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Figure 8: Simulated annealing. 50000 iterations. 3 Projections.
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Figure 9: Simulated annealing. 50000 iterations. 4 Projections.
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Figure 10: Simulated annealing. 50000 iterations. 2 Projections. seconds.
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Figure 11: Simulated annealing. 50000 iterations. 3 Projections. seconds.
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Figure 12: Simulated annealing. 50000 iterations. 4 Projections. seconds.
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Figure 13: Simulated annealing. 50000 iterations. 2 Projections. seconds.
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Figure 14: Simulated annealing. 50000 iterations. 3 Projections. seconds.
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Figure 15: Simulated annealing. 50000 iterations. 4 Projections. seconds.
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Figure 16: Simulated annealing. Three projections. 200000 iterations. Reannealing after
100000 iterations. The noise in each projection was ∈ N(0, 0.01)
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