Spectral Graph Theory and Diffusion Wavelets

Marie Wild

Date/time: February/5th/2007, 16.00
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ABSTRACT:

This talk is meant to provide an overview of the general framework of spectral graph tech-
niques and their (existing and possible) applications for computer vision tasks. This includes
the recent concept of diffusion wavelets, developed by R. R. Coifman, M. Maggioni et al.,
which allows wavelet analysis on graphs. The talk is planned in order to wake your interest
on these topics and should serve as a basis for subsequent discussion.

DISCLAIMER:

As this talk is meant to serve as an introduction to the above techniques rather than a presen-
tation of the authors own scientific work, all the results (including pictures) are borrowed
from the sources and authors cited therein.
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Motivation of this talk

e Introduction on the abstract framework of spectral graph theory (and
wavelets on graphs as a subtopic)

e Glance on existing and POSSIBLE applications
in Computer Vision (Clustering, Segmentation, Tracking)

—— Convince you that these issues are worth to be studied
—=> Looking for people interested in collaboration
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1. Spectral Graph Theory- Global Analysis

FAN R.K. CHUNG: SPECTRAL GRAPH THEORY, CMBS-AMS, No. 92, 1997

e Properties and structure of a graph from the spectrum (Eigenvalues) of a matrix describing
local properties of a graph, e.g. connectedness, bottlenecks

e Random walk interpretation (global information from local information)

e Interpretation in terms of Fourier Analysis — Extension to Wavelet Analysis possible
(Information on multiple scales from local information)

R.R.CoOIFMAN, S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER AND S.W.
ZUCKER: GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE
DEFINITION OF DATA, PROC. NAT. ACc. OF Sc., VoL 102(21), MAY 2005

R.R. COIFMAN, M. MAGGIONI: DIFFUSION WAVELETS, ACHA, VoL. 21(1), JuLy 2006



(a) Basics: Diffusion on a graph

e G = (V, E) undirected graph with weight matrix W : V. x V. — RT,
ody =3,y W(u,v) degree of vertex v.
e (normalized) Laplacian on G-

1 — Wlw) ity = ¢ and d, # O,

L= _VY/S‘_;;’) if u, v adjacent,
0 otherwise.

L =1 — D 12w D-1/2, D diagonal matrix with entries d,.

e Diffusion on G:



L (or K) describes local similarity in the graph.
Global properties can be explored from its Eigenvalues.

Let n be the number of vertices in G.
L is symmetric and positive semidefinite, \; > Oforall: =0,...,n — 1.
LetO = Xg < A1 < ... < N1

e Example (Connectivity):

If G is connected, then A; > 0. If \; = 0 and X\;1.; # O, then G has exactly
1 + 1 components.



(b) Random Walk Interpretation

Yowey K(u,v) =1=

K can be interpreted as transition matrix of a random walk on G,

K™(u,v) represents the probability of walking from u to v in m steps.
‘Explore the graph by walking on it’

Properties of this random walk (stationary distribution, speed of convergence) can be ex-
plored by the spectrum.

e Diffusion distance, COIFMAN ET. AL.:

Dm(uwv) — ||Km(u7 ) - Km(va )||2

Measures the strength of all paths between vertices ~ likelihood of getting from one vertex
to another = robustness to noise
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(b) Fourier Analytic Interpretation

e Fourier Transform in Engineering: Discrete Fourier Transform (DFT)
Discrete-Time, finite signal (z,)o<n<n LLEN (Tk)o<k<nN

A~ 2m .
Tr = Y. xpe~ ™", Frequency representation of (z,,).

~ _om
Tn =+ 2 pTre N

Amplitude
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T
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e Mathematical Formulation: DFT corresponds to discretization of Fourier Series

For f € L?(7),
f(t) — Z<f7 627ritn>627rz’tn’

nez

(e2mitn), ., ONBin L2(T)
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.+ Transform
Constituent sinusoids of different frequencies

1
[
1

1 h
1 L]
[N h ! | ! ' , '
1 .. 1 . K ' ! | . ! L '
e | -\..-""__ | . Il \ Lo ' . f ot 1
. — + — = — I_'ul_' — =T
\ ' ' .
1 '_ ' . ' ! o , ! ol lI 1
|. .I I. .I . . 1 . R .| |.I -.I I.. -.I l_ I.I
. . 1 . ) ., ! L

11



The Fourier basis is known to diagonalize certain operators T
(among them Convolution operators, Laplace and Diffusion operators), furthermore

T(e?™) = \,(e?™") = e2™" Eigenvectors of 7.

Leads to natural generalization of Fourier analysis on a graph G:

Go the other way round: define the eigenvectors ¢; (sorted by decreasing eigenvalues) of the
diffusion operator K as generalized Fourier basis functions =-

for f € L?(G)
=Y (f o)

iel
the larger ¢, the more oscillating ¢; and A;l measures the frequency of ¢;

= Fourier analysis on a graph
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This can be used to organize local information into global parametrization:

e back to the Diffusion distance :

1

1/2
D™(u,v) = [|[K"(u,) = K™(v,-)|l2 = (Z A7 i) — ¢i(v)|2>

= Diffusion map: The (nonlinear) embedding
z € G — X(z)={ ¢} €?
maps diffusion distance to euclidean distance

frequency grows with ¢ = diffusion distance can be aprroximately calculated by a truncated
series, using only a few eigenvectors

= dimensionality reduction of high dimensional data

13
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(d) Applications

Spectral methods:

e start from the knowledge of the local geometry and infers a global repre-
sentation

e allow a non-linear re-organizing and dimension reduction of data sets
(graphs and more general manifolds)

e are well-suited for subsequent tasks s.a. visualization, clustering and
partitioning of data

18



e Visualization (Coifman et. al.)

An example of a text document corpus'

Consider about 1000 Science News articles, from 8 different categories. For each
we compute about 10000 coordinates, the i-th coordinate of document d
representing the frequency in document d of the i-th word in a fixed dictionary.

The diffusion map gives the embedding below.
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e Segmentation via normalized cuts

J. SHI, J. MALIK, NORMALIZED CUTS AND IMAGE SEGMENTATION,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO.8,
AUGUST 2000

M. MEILA, J. SHI, A RANDOM WALKS VIEW OF SPECTRAL SEGMENTATION,
AISTATS 2001

Task:

partition a weighted graph G = (V, E, W) into disjoint sets A, B, such that

1 1
Ncut(A, B) = cut(A, B) (assoc(A, V) T assoc(B, V))

(where cut(A, B) = ZuGA,UEB W (u,v) and assoc(A, V) = >
iS minimized.

W (u,v))

ucAweV

‘find a cut of relatively small weight between two subsets with strong internal connection’
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Minimization of NCut is NP-hard.
Ncut algorithm:
Approximate method of solving the Ncut problem using a spectral method:

Calculate Eigenvalues and Eigenvectors of the Laplacian matrix, use Eigenvector of the sec-
ond smallest Eigenvalue to bipartition the graph.

Random walk point of view:

Small Eigenvalues of the Laplacian are (up to normalization) the large Eigenvalues of the
Diffusion matrix associated to a random walk

= Partitioning of the graph into two parts such that the random walk, once in one of the parts,
tends to remain in it

Fourier analysis point of view:

Functions f on a graph are projected on a subspace of low-frequency approximations (first
term(s) of a Fourier series)

= ideal low pass filtering

21



e Data matching

S. LAFON, Y. KELLER AND R.R. COIFMAN, DATA FUSION AND MULTI-CUE DATA MATCHING BY
DIFFUSION MAPS, TO APPEAR IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE

Given two data sets, both represented by a graph = instead of direct comparison, compare
their embedding via diffusion maps

© 2005 by Stéphane Lafon

Example: lip reading
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There are a lot of other applications (e.g. event detection in video: Zhong, Shi, Visontai;
Porikli, Hada).

Spectral graph theory provides an abstract framework for all of these methods
(global information from local similarities).

This abstract framework, especially the ‘Frequency point of view’ allows to go further:
information on multiple scales through local similarities

= Techniques from harmonic analysis allow

Wavelet (Time-Frequency) Analysis on a graph

23



2. Spectral Graph Theory - Multiscale Analysis

(a) Wavelets on R
. . FWT
For engineers: Wavelet transform signal © = (zn)nez — (dj 1) kez,

r=—ay — a1 — a2 — ... — Qj_-1 — Qj

N\ N\ N\ N\ N\
dy do dj_1 d;

where each horizontal arrow represents the same filtering and subsampling step
aj4+1 =|> (aj * g), and Similarly, dj_|_1 =l (a,j * h), g,h CMF.

(a;,); approximation coefficients at scale j,
(d;;:); wavelet coefficients at scale j.

24



e Mathematical Formulation:

FWT corresponds to discretization of Wavelet Series

For f € L?(R),

=2 kenlf s 500050,

(v;,) ONB in L?(R),

where +;; are dilated and translated versions of a mother wavelet ) € L?(R).

Signal

Wavelet -J*- jk:zg | -J*- jk:=-11 | -J*_
—» L“I"_ Y J::D{ — d'i‘_ Ez'
Transform :

_ =
_“JW_]!D Jk=1 _“,/\ﬁ/‘_

Constituent wawvelets of different scales and positions
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Comparison to Fourier series:

e Fourier series

— decomposition into sines and cosines having infinite support:
frequency representation

— global analysis

— analysis of smooth functions (Sobolev class)

e Wavelet series

— decomposition into localized functions at different scales:
time-frequency representation

— analysis on multiple scales
— analysis of not-so-smooth functions (Besov class)
Wavelet algorithms are widely used for compression and denoising of images

Recipe: use largest coefficients for (non-linear!) approximation /+ Thresholding (‘Wavelet
Shrinkage’[Donoho])
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e How to extend wavelet analysis on a graph?:

Dilations (stretching and squeezing) like on R cannot be used for scaling
= use increasing powers of diffusion operators (K?') ;-0 as a scaling tool

e Formal framework: multiresolution analysis:

A multiresolution analysis (MRA) is a sequence of closed subspaces (V;) ez of L2(R), such
that

{oyc...cWwcCcWViCcVC...L*R),

there is (¢;1)1cz € V;, which is an orthonormal basis for V.

(¢,,): is called the family of scaling functions for (V).

In this setting (functions on R), ¢,, = (279/2¢(277 - —1))), ez, Where ¢ € L2(R) is called
the scaling function.
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e But where are the wavelets?:

Define the spaces W; by
Via =V @ W;.

An L? function v is called wavelet, if

(WiDiez = (2792277 - ~1)))iez

is an orthonormal basis for ;.
In addition, we have

L*(R) = EH W,
JEZL

and the system (3);,) ez constitutes an orthonormal basis for L2(R).

Projections on the spaces V;: approximations of a function f at different resolutions,
partial wavelet series: difference between two approximation levels.

28



e Multiresolution Analysis on a Graph: Diffusion Wavelets [Coifman, Maggioni et al.]

Diffusion operator K as dilation operator acting on functions on L?(G)
= define multiresolution structure

{Ai}i>o0 (decreasingly ordered) spectrum of K with eigenvectors {¢;},
O<e<1,t;:=2%t1—-1,57>0.

Divide the spectrum into ‘low-pass’ portions:

oi(K) ={\€o(K): A\ >¢e},

for 7 > 0 define the approximation spaces by

Vi i=span{&\ : XA € 0;(K)}

and wavelet spaces by V;,_1 = V; @ W;.
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= Build localized orthonormal bases for V;;, W

Possible because for K with a fast decaying spectrum:
rank of K decreases = compressibility
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Algorithm:

_'l|. )rl:l

) By
G G
Th =4 T2 :
<I’1 $ 2

Fig. 1. Diagram for downsampling, orthogonalization and operator compression.
(All triangles are commutative by construction)

= Multiresolution analysis on graphs (in order n(logn)?)

(Matlab code available on Mauro Maggioni’s website)

With this construction: Calculating scaling and wavelet coefficients of functions on a graph
(in order n).

= Multiscale transform in the spirit of classical wavelet analysis on non-linear structures
(graphs, manifolds, general metric spaces)
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(c) Examples
Back to the document problem

An example of a text document corpus'

Consider about 1000 Science News articles, from &8 different categories. For each

we compute about 10000 coordinates, the i-th coordinate of document d
representing the frequency in document d of the i-th word in a fixed dictionary.

The diffusion map gives the embedding below.
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Multiscale construction on a document corpus
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Example of approximations on several scales of a planar domain with holes

[Szlam, Maggioni, Coifman, Bremer: Diffusion- driven Multiscale Analysis on Manifolds and
Graphs: top-down and bottom-up constructions]
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Figure 1. levels 2, 4, 6, and 8 in the decomposition of a planar domain with holes, uniformly sampled at 28,000 points.
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3. Conclusion and POSSIBLE FURTHER APPLICATIONS

Spectral graph methods such as diffusion maps or diffusion wavelets:

e Qive abstract framework and tools for describing and processing non-linear (and maybe
high dimensional) data structures such as graphs

e provide analogs to Fourier and wavelet based methods on these types of data

e connect harmonic analysis to a broad range of applied sciences, such as computer
vision
e Possible applications:
— Compression, structural complexity minimization, approximation; Denoising
— (Multiscale) graph segmentation
— (Multiscale) graph matching

— (Multiscale) structure for learning tasks
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First concrete suggestions :

e Study the relationship between diffusion wavelet pyramids on a graph and graph pyra-
mids (KRW et al.)
= first step: what does dual graph contraction to the eigenvalues of the Laplacian?
How ‘multiscale’ is the algorithm?
Derive hybrid constructions?

e Use the diffusion map embedding for matching images via graphs of feature points?
e Do this in a multiscale fashion using diffusion wavelets?

e Use the diffusion distance for the eccentricity transform (KRW et al.): Finding eccentric
points on a surface by looking at their euclidean embedding via diffusion maps?
(In this context, one should also study the embedding by Tenenbaum et.al (Science
2000) preserving geodesic distance.)

36



