Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

Marie Wild

ACV Kolloquium PRIP, TU Wien, April 20, 2007

1

Motivation of this talk

• Wavelet based methods:

proven to be successful in signal and image analysis main applications: edge-preserving smoothing and denoising of functions in $L^2(\mathbb{R}^n)$, $n \in \mathbb{N}$

• Recent concept of diffusion wavelets (Coifman et al.):

construction of wavelet bases for functions defined on other than \mathbb{R}^n , such as certain domains, manifolds and **graphs**.

• In this talk: study the use of classical wavelet algorithms in a graph based setting:

Input data: an image sequence, regarded as 2d + time data setModel: the whole image sequence as a weighted graph Output: Compressed data set, structure-preserving smoothing Further goal: Spatiotemporal segmentation via diffusion wavelets

Outline of this talk

- 1. Wavelets and Multiresolution Analysis on ${\mathbb R}$
 - (a) Orthonormal Wavelet Bases
 - (b) Nonlinear Wavelet Approximation
- 2. Wavelet Analysis on a Graph
- 3. Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets
- 4. Conclusion and Outlook Towards Spatiotemporal Segmentation

1. Wavelets and Multiresolution Analysis on $\mathbb R$

(a) Orthonormal Wavelet Bases

• Wavelet transform:

Decomposition of a function (1d signal or 2d image) into a series constituent of localized waves $(\psi_{j,l})_{j,l\in\mathbb{Z}}$

 $f = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,l} \rangle \psi_{j,l}$, where $\psi_{j,l}$ are dilated (squeezed/stretched) and translated versions of a mother wavelet $\psi \in L^2(\mathbb{R})$.

Constituent wavelets of different scales and positions

In applications:

Calculation of coefficients via fast wavelet transform, using a cascade of filters

 $f \stackrel{\mathrm{FWT}}{\longrightarrow} (d_{j,k})_{j,k \in \mathbb{Z}}$,

where each horizontal arrow represents the same filtering and subsampling step $a_{j+1} = \downarrow_2 (a_j * g)$, and similarly, $d_{j+1} = \downarrow_2 (a_j * h)$, g, h CMF.

 $(a_{j,l})_l$ approximation coefficients at scale (resolution) j, $(d_{j,l})_l = (\langle f, \psi_{j,l} \rangle_l$ wavelet coefficients at scale j.

(a) Nonlinear Wavelet Approximation

 $(\psi_{j,l})_{j \ge 1, l \in \mathbb{Z}} \text{ ONB} \Longrightarrow \text{ for } f \in L^2(\mathbb{R}),$ $\|f\|_{L^2(\mathbb{R})}^2 = \sum_{j,l} |\langle f, \psi_{j,l} \rangle|^2.$

 \implies all the information of f maintained in the sequence of coefficients, salient information is reflected in the largest coefficients

 \implies efficient approximation using only the N largest coefficients for reconstruction, realized by thresholding on the coefficients

 \implies discontinuity preserving smoothing,

large theory relating the error of approximation to the function's properties

📣 Wavelet 1-D

File View Insert Tools Window Help

📣 Wavelet 1-D 😔 Compression

χ+

Х-

🛃 Start

10 🙆 🔞

O Posteingang - Micros...

😻 3 Firefox

File View Insert Tools Window Help

💋 WinEdt/MiKTeX - [C:\...

📣 6 MATLAB

😕 4 Adobe Acrobat 7.0 🔹 👻

DE 🛛 Eigene Dateien 📇 Ei 🎽 🔇 💕 14:53

- 7 🗙

📣 Wavelet 2-D -- Compression File View Insert Tools Window Help detail (359 x 371) analyzed at level 3 with sym4 Data (Size) detail (359x371) Wavelet sym 4 Retained energy 94.04 % -- Zeros 94.04 % Level 3 Original image Compressed image Global thresholding ~ 50 50 Select thresholding method 100 100 🛱 Balance sparsity-norm ¥ 150 150 Select Global Threshold 1 3 4 F 35.97 200 200 Retained energy % 94.04 Number of zeros % 94.04 250 250 300 300 Residuals Compress 350 🖗 350 der f 50 100 150 200 250 300 350 100 150 200 250 300 350 50 100 90 80 70 ----- Global threshold 60 Retained energy in % 50 Number of zeros in % 40 30 20 10 Colormap pink ¥ 0_0 150 200 50 100 250 Nb. Colors 64 4 F Brightness + -10 χ+ Y+ XY+ Y Х= Х <____ _> Center View Axes Close Info History On Y = Y-XY-<<. Х-

🍻 WinEdt/MiKTeX - [C:\...

🧏 5 Adobe Acrobat 7.0 🔹 👻

📣 5 MATLAB

DE 🛛 Eigene Dateien 📇 Ei ု 💦 🗊 15:17

🛃 Start

🕑 🥖 🕑

🕒 Posteingang - Micros...

😻 3 Firefox

- 2. Wavelet Analysis on a Graph
- How to extend wavelet analysis on a graph?:

Dilations (stretching and squeezing) like on \mathbb{R} cannot be used for scaling \Rightarrow use spectral methods to define a multiresolution analysis

FAN R.K. CHUNG: SPECTRAL GRAPH THEORY, CMBS-AMS, NO. 92, 1997

Diffusion operator *K*:

averaging operator acting on functions f on G:

$$Kf(u) = \frac{1}{\sqrt{d_u}} \sum_{v,v \sim u} \left(\frac{f(v)}{\sqrt{d_v}} - \frac{f(u)}{\sqrt{d_u}} \right) W(u,v)$$

Diffusion Wavelets

R.R.COIFMAN, S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER AND S.W. ZUCKER: **Geometric diffusions as a tool for harmonic analysis and structure definition of data**, Proc. Nat. Ac. of Sc., Vol 102(21), May 2005 R.R. COIFMAN, M. MAGGIONI: **Diffusion Wavelets**, ACHA, Vol. 21(1), July 2006

Diffusion operator K as dilation operator acting on functions on $L^2(G)$

 \Rightarrow define multiresolution structure via dyadic powers of K: $K^{2^{j}}$, $j \ge 0$

Recipe: Divide the spectrum (eigenvalues) of K into different 'frequency bands' and find orthonormal bases for the spaces spanned by the corresponding eigenvectors

 \Rightarrow Multiresolution Analysis and ONB for functions on G

3. Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

• build a weighted graph G from the 3d image data

 \implies Encode local similarities in G

vertices: whole set of pixels, or due to complexity considerations: a subset (downsampled version of the sequences/ filtering/feature point selection)

edges and weights: difference of intensities, distance in space, feature point properties, information from a *motion prediction* or a combination of the above

function f on G: additional attributes on the vertices, for the 'pure' graph $f \equiv 1$. **Result:** abstract graph *G* from the data, $f \in L^2(G)$

- Build diffusion wavelet basis $(\psi_{j,l})_{j\geq 0,l\in\mathbb{Z}}$ on G
- Calculate wavelet coefficients ($\langle f, \psi_{j,l} \rangle$)

\implies **Result**:

sequence of coefficients like in classical wavelet transform, **but**: information encoded now defers to structural similarity of the data instead of properties on the fixed grid \mathbb{R}

- Approximations on different scales available
- Structure-preserving compression via thresholding on the coefficients

Example

- Function is **smoothed** where local changes of the weights are small, where '**discontinuities**' (large weight changes) are **preserved**
- Remember: weights encode local similarities (intensities, motion properties)

 structure-preserving compression

Structural approximation of the image sequence

4. Conclusion and Outlook Towards Spatiotemporal Segmentation with Diffusion Wavelets

• Diffusion wavelet bases lead to a true multiscale decomposition on a graph

 \Rightarrow Opens the door for a multitude of (graph based) CV tasks

Presented here as a first step:

Algorithm for structure-preserving compression using diffusion wavelets

 \bullet derived from classical wavelet methods now lifted to a graph-based setting \Rightarrow theory relating properties of the function to the approximation error also available in this setting

• data smoothed by the approximation, abrupt changes in the edge weights (which can describe object borders in single images or the main direction of movement) are preserved

 \Rightarrow Now working on implementation and experiments

Next step:

 \Rightarrow Future work: spatiotemporal segmentation using diffusion wavelets (labelling of vertices via a HMM on the coefficients)

Outlook: Spatiotemporal Structural Segmentation

Segmentation by labelling of graph vertices (different colors),

Grouping by local similarities (intensities/motion profile/combined) via classifying diffusion wavelet coefficients across scales