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Motivation of this talk

• Wavelet based methods:
proven to be successful in signal and image analysis
main applications: edge-preserving smoothing and denoising of functions in L2(Rn), n ∈ N

• Recent concept of diffusion wavelets (Coifman et al.):
construction of wavelet bases for functions defined on other than Rn, such as certain do-
mains, manifolds and graphs.

• In this talk: study the use of classical wavelet algorithms in a graph based setting:

Input data: an image sequence, regarded as 2d + time data set
Model: the whole image sequence as a weighted graph
Output: Compressed data set, structure-preserving smoothing
Further goal: Spatiotemporal segmentation via diffusion wavelets
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Outline of this talk

1. Wavelets and Multiresolution Analysis on R

(a) Orthonormal Wavelet Bases

(b) Nonlinear Wavelet Approximation

2. Wavelet Analysis on a Graph

3. Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

4. Conclusion and Outlook Towards Spatiotemporal Segmentation

3



1. Wavelets and Multiresolution Analysis on R

(a) Orthonormal Wavelet Bases

• Wavelet transform:

Decomposition of a function (1d signal or 2d image) into a series constituent of localized
waves (ψj,l)j,l∈Z

f =
∑

j,k∈Z〈f, ψj,l〉ψj,l, where ψj,l are dilated (squeezed/stretched) and translated versions
of a mother wavelet ψ ∈ L2(R).
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In applications:

Calculation of coefficients via fast wavelet transform, using a cascade of filters

f
FWT−→ (dj,k)j,k∈Z,

f = a0 → a1 → a2 → . . . → aj−1 → aj
↘ ↘ ↘ ↘ ↘

d1 d2 dj−1 dj

where each horizontal arrow represents the same filtering and subsampling step
aj+1 =↓2 (aj ∗ g), and similarly, dj+1 =↓2 (aj ∗ h), g, h CMF.

(aj,l)l approximation coefficients at scale (resolution) j,
(dj,l)l = (〈f, ψj,l)l wavelet coefficients at scale j.
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(a) Nonlinear Wavelet Approximation

(ψj,l)j≥1,l∈Z ONB =⇒ for f ∈ L2(R),

‖f‖2L2(R) =
∑
j,l

|〈f, ψj,l〉|2.

=⇒ all the information of f maintained in the sequence of coefficients, salient information is
reflected in the largest coefficients

=⇒ efficient approximation using only the N largest coefficients for reconstruction, realized
by thresholding on the coefficients

=⇒ discontinuity preserving smoothing,

large theory relating the error of approximation to the function’s properties
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2. Wavelet Analysis on a Graph

• How to extend wavelet analysis on a graph?:

Dilations (stretching and squeezing) like on R cannot be used for scaling
⇒ use spectral methods to define a multiresolution analysis
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FAN R.K. CHUNG: SPECTRAL GRAPH THEORY, CMBS-AMS, NO. 92, 1997

Diffusion operator K:

averaging operator acting on functions f on G:

Kf(u) =
1√
du

∑
v,v∼u

(
f(v)√
dv

−
f(u)√
du

)
W (u, v)
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Diffusion Wavelets
R.R.COIFMAN, S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER AND S.W.
ZUCKER: GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE
DEFINITION OF DATA, PROC. NAT. AC. OF SC., VOL 102(21), MAY 2005
R.R. COIFMAN, M. MAGGIONI: DIFFUSION WAVELETS, ACHA, VOL. 21(1), JULY 2006

Diffusion operator K as dilation operator acting on functions on L2(G)

⇒ define multiresolution structure via dyadic powers of K: K2j , j ≥ 0

Recipe: Divide the spectrum (eigenvalues) of K into different ‘frequency bands’ and find or-
thonormal bases for the spaces spanned by the corresponding eigenvectors

⇒ Multiresolution Analysis and ONB for functions on G
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3. Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

• build a weighted graph G from the 3d image data

vertices: whole set of pixels, or due
to complexity considerations: a sub-
set (downsampled version of the se-
quences/ filtering/feature point selec-
tion)
edges and weights: difference of in-
tensities, distance in space, feature
point properties, information from a
motion prediction or a combination of
the above
function f on G: additional attributes
on the vertices, for the ‘pure’ graph
f ≡ 1.

=⇒ Encode local similarities in G
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Result: abstract graph G from the data, f ∈ L2(G)
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• Build diffusion wavelet basis (ψj,l)j≥0,l∈Z on G

• Calculate wavelet coefficients (〈f, ψj,l〉)

=⇒ Result:
sequence of coefficients like in classical wavelet transform, but:
information encoded now defers to structural similarity of the data instead of
properties on the fixed grid R

• Approximations on different scales available

• Structure-preserving compression via thresholding on the coefficients
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Example

function on a graph (edge weights
as differences of grey values)

wavelet approximations at different
scales

approximation via largest coeffi-
cients (thresholding)

• Function is smoothed where local changes of the weights are small,
where ‘discontinuities’ (large weight changes) are preserved

• Remember: weights encode local similarities (intensities, motion properties)
⇒ structure-preserving compression
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Structural approximation of the image sequence
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4. Conclusion and Outlook Towards Spatiotemporal Segmentation with Diffusion Wavelets

• Diffusion wavelet bases lead to a true multiscale decomposition on a graph
⇒ Opens the door for a multitude of (graph based) CV tasks

Presented here as a first step:

Algorithm for structure-preserving compression using diffusion wavelets

• derived from classical wavelet methods now lifted to a graph-based setting
⇒ theory relating properties of the function to the approximation error also available in this
setting

• data smoothed by the approximation, abrupt changes in the edge weights (which can de-
scribe object borders in single images or the main direction of movement) are preserved

⇒ Now working on implementation and experiments

Next step:

⇒ Future work: spatiotemporal segmentation using diffusion wavelets (labelling of vertices
via a HMM on the coefficients)
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Outlook: Spatiotemporal Structural Segmentation

Segmentation by labelling of graph vertices (different colors),
Grouping by local similarities (intensities/motion profile/combined) via classi-
fying diffusion wavelet coefficients across scales
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