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Motivation of this talk

e Wavelet based methods:
proven to be successful in signal and image analysis
main applications: edge-preserving smoothing and denoising of functions in L?(R"™), n € N

e Recent concept of diffusion wavelets (Coifman et al.):
construction of wavelet bases for functions defined on other than R", such as certain do-
mains, manifolds and graphs.

e In this talk: study the use of classical wavelet algorithms in a graph based setting:

Input data: an image sequence, regarded as 2d + time data set
Model: the whole image sequence as a weighted graph

Output: Compressed data set, structure-preserving smoothing
Further goal: Spatiotemporal segmentation via diffusion wavelets
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1. Wavelets and Multiresolution Analysis on R
(a) Orthonormal Wavelet Bases

e Wavelet transform:

Decomposition of a function (1d signal or 2d image) into a series constituent of localized

waves (1) ez

=2, kezlfs ¥i0)¥;1, where ¢, are dilated (squeezed/stretched) and translated versions
of a mother wavelet ¢ € L?(R).
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In applications:
Calculation of coefficients via fast wavelet transform, using a cascade of filters

FWT
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where each horizontal arrow represents the same filtering and subsampling step
aj+1 =|» (aj * g), and similarly, dj_|_1 =|» (aj * h), g, h CMF.

(a;1); approximation coefficients at scale (resolution) j,
(d;1)1 = ({f, ;1) wavelet coefficients at scale j.



(a) Nonlinear Wavelet Approximation

(¥;1)i>1.0cz ONB = for f € L?(R),

112y = D 14F )l
7.l
—> all the information of f maintained in the sequence of coefficients, salient information is
reflected in the largest coefficients

—=> efficient approximation using only the N largest coefficients for reconstruction, realized
by thresholding on the coefficients

—=> discontinuity preserving smoothing,

large theory relating the error of approximation to the function’s properties
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<} Wavelet 1-D -- Compression
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) Wavelet 2-D
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) Wavelet 2-D -- Compression
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2. Wavelet Analysis on a Graph

e How to extend wavelet analysis on a graph?:

fe L"2(R"2) fe L 2(G)
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Dilations (stretching and squeezing) like on R cannot be used for scaling
= use spectral methods to define a multiresolution analysis
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FAN R.K. CHUNG: SPECTRAL GRAPH THEORY, CMBS-AMS, No. 92, 1997

Diffusion operator K:

averaging operator acting on functions f on G:

1\ <f<v>_f<u>
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Diffusion Wavelets

R.R.COIFMAN, S. LAFON, A.B. LEE, M. MAGGIONI, B. NADLER, F. WARNER AND S.W.
ZUCKER: GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE
DEFINITION OF DATA, PROC. NAT. ACc. OF Sc., VoL 102(21), MAy 2005

R.R. COIFMAN, M. MAGGIONI: DIFFUSION WAVELETS, ACHA, VoL. 21(1), JuLy 2006

Diffusion operator K as dilation operator acting on functions on L?(G)
= define multiresolution structure via dyadic powers of K: K2, j > 0

Recipe: Divide the spectrum (eigenvalues) of K into different ‘frequency bands’ and find or-
thonormal bases for the spaces spanned by the corresponding eigenvectors

= Multiresolution Analysis and ONB for functions on G
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3. Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

e build a weighted graph G from the 3d image data

—= Encode local similarities in G

vertices: whole set of pixels, or due
to complexity considerations: a sub-
set (downsampled version of the se-
quences/ filtering/feature point selec-
tion)

edges and weights: difference of in-
tensities, distance in space, feature
point properties, information from a
motion prediction or a combination of
the above

function f on G: additional attributes
on the vertices, for the ‘pure’ graph

f=1.
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Result: abstract graph G from the data, f € L2(Q)

.
f on a weighted graph
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e Build diffusion wavelet basis (1) j>0,1ecz oN G
e Calculate wavelet coefficients ((f,;;))

— Result:

sequence of coefficients like in classical wavelet transform, but:

information encoded now defers to structural similarity of the data instead of
properties on the fixed grid R

e Approximations on different scales available

e Structure-preserving compression via thresholding on the coefficients
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Example

&0 0000000 ;

\ function on a graph (edge weights
-0 O0—0—e0—(0—@@ . asdifferences of grey values)

wavelet approximations at different

approximation via largest coeffi-
0—0— o0\ 0—0—0 ?/ cients (thresholding)

e Function is smoothed where local changes of the weights are small,
where ‘discontinuities’ (large weight changes) are preserved

e Remember: weights encode local similarities (intensities, motion properties)
= structure-preserving compression
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Structural approximation of the image sequence

18



4. Conclusion and Outlook Towards Spatiotemporal Segmentation with Diffusion Wavelets

e Diffusion wavelet bases lead to a true multiscale decomposition on a graph
= Opens the door for a multitude of (graph based) CV tasks

Presented here as a first step:

Algorithm for structure-preserving compression using diffusion wavelets

e derived from classical wavelet methods now lifted to a graph-based setting
= theory relating properties of the function to the approximation error also available in this
setting

e data smoothed by the approximation, abrupt changes in the edge weights (which can de-
scribe object borders in single images or the main direction of movement) are preserved

= Now working on implementation and experiments
Next step:

= Future work: spatiotemporal segmentation using diffusion wavelets (labelling of vertices
via a HMM on the coefficients)
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Outlook: Spatiotemporal Structural Segmentation

Segmentation by labelling of graph vertices (different colors),
Grouping by local similarities (intensities/motion profile/combined) via classi-
fying diffusion wavelet coefficients across scales
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