
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113

CVWW
#22

CVWW
#22

CVWW 2013 Submission #22. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Localizing and Segmenting Objects with 3D Objectness

Aitor Aldoma, Markus Vincze
Vision 4 Robotics, Technical University of Vienna

aldoma@acin.tuwien.ac.at

Federico Tombari
DEIS, University of Bologna

Walter Kropatsch
PRIP, Technical University of Vienna

Paper ID 22

Abstract. This paper presents a novel method to lo-
calize and segment objects on close-range table-top
scenarios sensed with a depth sensor. The method is
based on a novel objectness measure that evaluates
how likely a 3D region in space (defined by an ori-
ented bounding box) could contain an object. Within
a parametrized volume of interest placed above the
table plane, a set of 3D bounding boxes is generated
that exhaustively covers the parameter space. Effi-
ciently evaluating — thanks to integral volumes and
parallel computing — the 3D objectness at each sam-
pled bounding box allows efficiently defining a set
of regions in space with high probability of contain-
ing an object. Bounding boxes characterized by high
objectness are then processed by means of a global
optimization stage aimed at discarding inconsistent
object hypotheses with respect to the scene. We eval-
uate the effectiveness of the method for the task of
scene segmentation.

1. Introduction and related work

Accurate robotic perception is a fundamental fea-
ture for most envisioned application scenarios related
to service and industrial robotics. The capability of
segmenting a scene perceived by a sensor onboard
a robotic agent into a set of coherent patterns (or
objects) is a classical - though challenging - step
standing at the grounds of numerous tasks related
to robotic perception such as 3D object recognition,
point cloud registration, object grasping and manipu-
lation. As commonly deployed onboard most robotic
architectures, we assume the presence of a 3D per-

ception system, acquiring RGB-D data (a color frame
plus an associated organized point cloud), as well as
that of a dominant plane in the scene, which can be
represented by either the ground floor or a table on
which objects are lying. The assumption of a dom-
inant plane has been extensively used in the field of
robotic perception to speed up segmentation such as
in [6, 1, 2]. Other 3D segmentation methods without
the dominant plane assumption are those presented in
[8, 9]; even though they are more general than those
constrained by the dominant plane assumption, they
are characterized by a higher computational com-
plexity.

Under these conditions, we have devised a novel
algorithm aimed at automated localization of salient
volumes from the data related to the scene currently
in front of the robot. Our definition of saliency is
driven by the concept of objectness, i.e. a portion
of volume of the analysed 3D space is salient if the
characteristics of the surface therein enclosed have a
high probability of representing an object, and vicev-
ersa. To this aim, the first contribution of this work
is the definition of an objectness measure for 3D data
which can be computed on a 3D bounding box of
generic dimensions, inspired from the work of Alexe
et al. [4] that proposed an analogous measure for
images. Based on our definition of objectness, we
then propose an effective optimization framework to
simultaneously detect the presence of several salient
bounding boxes in a 3D scene, which is able to dis-
card unrealistic object hypotheses such as objects
intersecting one another or bounding boxes that do
not fit tightly the object surface. Although not ex-
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Figure 1: Typical results obtained by the proposed
method. The green bounding boxes show the regions
selected by the method that are likely to contain an
object. The green sphere depict the center of the
bounding box.

plicitly aimed at segmentation, in order to reproduce
some quantitative and qualitative experimental anal-
ysis, we compare the results of our approach with
those of state-of-the-art segmentation methods for
point clouds, demonstrating the effectiveness of our
proposal. We expect our method to prove useful as
a pre-processing step of 3D object recognition algo-
rithms, in order to reduce the number of false posi-
tives and improve the efficiency of current proposals
relying on matching global - as well as local - 3D
descriptors [10, 1, 2, 3, 11].

1.1. Objectness for images

Alexe et al. presented in [4] an objectness mea-
sure for color images in an attempt to evaluate the
presence of an object without any specific object
class knowledge. They present several image cues
aimed at capturing the closed boundaries of objects,
saliency as well as color contrast that are finally com-
bined into a single objectness measure, to be com-
puted on a 2D rectangular bounding box. The ob-
jectness measure is evaluated at different randomly
sampled locations and proved to be useful in speed-
ing up specific object class detectors.

In our case, the availability of 3D information pro-
vides powerful cues to reason about objects directly
on the same 3D domain where the actual objects re-
side. This allows computing tight volumes enclos-
ing the objects as well as the ability to reason about
free and occupied space. Additionally, normals com-
puted on the surface of the objects provide a power-
ful cue to assess surface continuity and smoothness.

Throughout the work, we will show how this addi-
tional tools prove useful to evaluate the presence of
an object within a closed region in 3D space.

2. Notation and preliminaries

For a scene of interest, letM represent the depth
map acquired from the RGB-D sensor and S, in sen-
sor coordinates, the 3D point cloud, as seen from a
certain viewpoint ~vp, reconstructed from M. We
assume that S contains a dominant planar surface
P = {~n, d}, ~n being the normal to the plane, d being
the distance to the global reference frame, on which
objects lie upon. Using P , we apply a rotation and
translation to the global reference frame of S so that
its z-axis is aligned with ~n and its origin is on the
plane (d = 0). We are now able to compute the Vol-
ume of Interest (VoI), a region in the 3D space con-
taining all objects of interest, by checking the max-
imum extensions of the points above the table. The
VoI defines as well the region where the bounding
boxes will be sampled and the objectness measure
evaluated.

2.1. Complexity of the parameter space

Differently to [4], in a 3D domain each bound-
ing box b is characterized by 9 degrees of freedom:
b = b(x, y, z, sx, sy, sz, rx, ry, rz), where (x, y, z)
represents the reference corner of a bounding box,
(sx, sy, sz) its extension along the positive direction
of the 3 axes and (rx, ry, rz) its orientation. To
reduce the complexity of the parameter space, we
model only rz (rotations about ~n), assuming rx =
ry = 0, this being motivated by the fact that most ob-
jects lying on a table are well contained by a bound-
ing box with one plane parallel to the dominant pla-
nar surface P . Additionally, since objects lie on P , it
is possible to set z = 0, this resulting in 6 dimensions
to be sampled and yielding b = b(x, y, sx, sy, sz, rz)
(the dependency of b from its independent variables
will be dropped hereinafter for conciseness of nota-
tion).

Even after reducing the complexity of the prob-
lem, the number of bounding boxes that need to be
evaluated remains high. However, thanks to Inte-
gral Volumes (IV) [5] it is possible to evaluate in
constant time sums of elements (points, edges, etc.)
contained in the volume of space within (x, y, z) and
(x + sx, y + sy, z + sz). To model rz , it is possible
to rotate S at different angles (0◦ ≤ rz < 90◦) and
compute additional IVs for each ρi. Modeling rz al-
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lows to obtain bounding boxes that enclose the object
tightly. Next section discusses the different IVs that
need to be computed to represent the cues required
for the 3D objectness measure. Where not differently
stated, the IVs are computed at a resolution of 1 cm.

2.2. Sampling bounding boxes

To cover the VoI, we perform an exhaustive sam-
pling of the parameter space generating a bounding
box b at each possible location. Corners defined by
triplets (x,y,z = 0) are sampled every 2 cm along
x and y directions; the bounding box extension de-
fined by triplets (sx, sy, sz) are sampled respectively
every (2,2,1) cm; finally, rz - the rotation angle about
z - is sampled every 5◦. We include a prior on the
minimum and maximum size of objects, thus restrict-
ing sx, sy, sz to be within the range [3; 45]cm. Such
parameterization typically results in about 600 mil-
lion bounding boxes to be evaluated for each scene
acquired by the sensor. Thanks to the IVs and the
parallel computing capabilities of GPU devices, it is
possible to evaluate such amount of bounding boxes
efficiently.

2.3. Occlusion and occupancy volumes

Previous to the definition of the 3D objectness
measure, we need to introduce the concepts of oc-
clusion volume and occupancy volumes. These are
binary volumetric representations with an extension
equal to that of the VoI and will allow us, later on, to
derive important cues such as the free space inside a
bounding box.

The occupancy volume – V , is simply a binary
representation of Sp where a voxel takes the value
of 1 when at least a point p ∈ Sp falls inside the
voxel boundaries, 0 otherwise. The occlusion vol-
ume – VO, is likewise a binary set of voxels encod-
ing whether a voxel is visible from the viewpoint ~vp
or not, respectively taking values 0 and 1. To build
VO we make use of the depth map M and the VoI
previously computed. Concretely, we build a dense
point cloud CO spanning the VoI with a resolution of
1cm. Afterwards, we backproject each point pi ∈ CO
toM using the calibration parameters of the sensor
and reject all pi with a depth value lower than the cor-
responding depth value inM. The last step removes
all visible points in CO and allows us to generate VO
by simply checking if the voxel is empty or not. The
middle part of Figure 2 shows an occlusion volume
for a specific scene.

3. 3D Objectness

This section presents the cues as well as how they
are combined together to define the 3D objectness
measure. Similar to [4], the goal behind such cues is
to capture the closed boundaries of objects in order to
obtain high values for bounding boxes that contain an
object entirely and that enclose it tightly.

3.1. Edge density

The first cue under consideration regards edges.
Differently from [4], by reasoning in the 3D space
it is possible to define a much richer set of edges
than on the image plane. Specifically, we have de-
ployed an edge extraction algorithm, available on the
Point Cloud Library (PCL) 1, which is able to ex-
tract and discriminate between edges derived by sur-
face curvature variations (blue), edges causing occlu-
sions (orange), edges caused by occlusions (green)
as well as scene border edges (red); reported colors
refer to the left image of Figure 2, where a sample
scene is depicted together with the extracted edges.
The whole set of edges associated to a bounding box
b will be referred to as ε(b).

A nice property of such edges is that they are usu-
ally found on the surface of the objects. Therefore,
when a bounding box encloses a high number of
edges compared to the area of its visible faces, this
intuitively represents a strong cue for the presence
of an object inside it. Observe that from a certain
viewpoint, there will be always at most 3 faces of
a bounding box that are visible. We thus define the
edge density cue δi for a bounding box b as follows:

δi(b) =
|ε(b)|
a(b)

(1)

where | · | is the cardinality operator and a(b) is the
visible area of b.

3.2. Outer edges

A second cue derived as well from edges is aimed
at penalizing bounding boxes that contain edges in
their immediate surroundings. The neighborhood of
a bounding box b is defined by a bigger bounding
box bε = b(x, y, sx + sx,ε, sy + sy,ε, sz + sz,ε, rz)
(we set sx,ε = sy,ε = 2cm and sz,ε = 4cm). This
cue is represented by the ratio between the number
of edges inside b, and the number of edges inside the

1www.pointclouds.org/blog/gsoc12/cchoi/
index.php
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Figure 2: From left to right: different types of edges computed on the point cloud, occlusion volume and smooth
superpixels.

expanded bounding box bε:

δo(b) =
|ε(b)|
|ε(bε)|

(2)

It is worth noting that this term is close to 1 when
the surroundings do not contain edges and decreases
linearly to 0 otherwise.

3.3. Smooth superpixels straddling

A third cue on which our objectness term re-
lies aims at penalizing bounding boxes that intersect
smooth surface segments (superpixels), as this is usu-
ally the indication that the bounding box does not
contain entirely one object. Indeed, since one com-
mon assumption is that superpixels do not to straddle
different objects, bounding boxes intersecting a su-
perpixel are penalized. The smooth segments are ob-
tained performing an over-segmentation of S based
on point proximity and surface curvature smooth-
ness. The right part of Figure 2 shows the results
of such over-segmentation stage. Observe how non
smooth regions are all assigned the same label 0 (de-
picted in red).

Let |p(b)| be the number of points inside a bound-
ing box b with a superpixel label different than 0,
|p(s)| the number of points in S assigned to a super-
pixel s and |p(b∩ s)| the number of points belonging
to s and within b; the third cue δl(b, s) relative to a
single superpixel s is then defined as follows:

δl(b, s) =
|p(b ∩ s)|2

|p(s)|
(3)

The final term δl(b) relative to a bounding box b and
all its enclosed superpixels can then be obtained as

follows:

δl(b) =

∑
s∈Ω

δl(b, s)

|p(b)|
(4)

where Ω is the set of superpixels extracted from S.

3.4. Free space

A final cue taken under consideration regards the
free space within a bounding box aim at favoring
bounding boxes that tightly enclose the object of in-
terest. Let |pVO(b)| be the number of occluded vox-
els inside a bounding box b computed by means of
the occluded volume VO, and let V (b) be the volume
of b; the free space cue is then defined as follows:

δf (b) =
V (b)− |p(b)| − |pVO(b)|

a(b)
(5)

3.5. 3D Objectness measure

Given the aforementioned cues, we can thus de-
fine the objectness measure for a bounding box b by
weighted sum of the previously introduced cues:

δ(b) = wi · δi(b) + wo · δo(b) · δl(b) + wf · δf (b)
(6)

As it can be seen, eq. 6 includes also a feature com-
bination aimed at dimensionality reduction of the
weights (δo(b) being multiplied by δl(b)), this being
motivated empirically. Instead of a heuristic measure
like the one in eq. 6, a learning approach for the dif-
ferent weights and combination of cues is desired.
We leave a more grounded approach outside of the
scope of the paper and will address it in future work.

4. Point cloud segmentation

This section details how the objectness measure
presented in the previous section can be successfully

4
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Figure 3: Left: Remaining bounding boxes after the
post-processing stage in SubSection 4.1. Right: the
final bounding box selected by the method presented
in Section 4.2 that simultaneously considers the in-
teraction between all hypotheses to find out a consis-
tent segmentation of the scene.

applied for the task of point cloud segmentation. We
carry out this by means of three successive steps: (i)
we use the measure itself to filter out bounding boxes
below a certain object threshold (ii) the remaining
bounding boxes are clustered together based on the
amount of scene overlap within them, then for each
cluster only those with the highest objectness mea-
sure are kept, finally (iii) a global cost function is de-
fined over the scene aimed at determining a globally
consistent subset of bounding boxes that best seg-
ment the scene. The output of the algorithm is thus
represented by the set of bounding boxes surviving
these three steps or, equivalently, the scene segment
associated to each bounding box, where a segment
includes all pixels falling within a bounding box.

4.1. Filtering bounding boxes based on objectness

Consider B = {b1, · · · , bN} a set of bounding
boxes with an associated objectness score. As a
first step, bounding boxes are discarded by thresh-
olding the objectness score.Successively, we group
the remaining bounding boxes into a set of clusters
C = {c1, ..., cm}, where each cluster ci groups to-
gether all bounding boxes having their center within
the same radius. Within each cluster ci we analyze
the first nb, sorted by their objectness score, look-
ing for conflicting bounding boxes. We say that two
bounding boxes bi, bj are in conflict if they share
at least 95% of scene points within them (with re-
spect to the bounding box with a higher amount of
points). We create a conflict graph within each clus-
ter and perform a non-maxima supression based on
the objectness measure to keep the best bounding box
among those in conflict. This process results in a new
set of bounding boxes B∗ = {b1, · · · , bn}, with usu-
ally n << N . The left part of Figure 3 shows the

bounding boxes after this stage while, on the right, it
depicts the finally selected bounding boxes by means
of the final post-processing stage, presented in the
next section.

4.2. Global hypotheses selection

Here we provide a framework for establishing the
most plausible configuration of salient objects in the
current scene under evaluation. The problem can be
formalized as follows. We start from a set of n ob-
ject hypotheses, B∗ = {b1, · · · , bn}, represented by
the bounding boxes that survived the filtering step de-
scribed in Section 4.1.

We adopt the framework (and notation) proposed
in [3] to optimize the problem of finding the best
configuration of plausible hypotheses simultaneously
present in S. Specifically, a cost function is defined
over the solution space defined by the set of boolean
variables X = {x0, · · · , xn} having the same car-
dinality as B∗, with each xi ∈ B = {0, 1} indicat-
ing whether the corresponding hypothesis hi ∈ B∗
is dismissed/validated (i.e. xi = 0/1). Hence, the
problem can be formulated as finding the best con-
figuration that minimizes a cost function expressed
as F (X ) : Bn → R, Bn being the solution space, of
cardinality 2n:

X̃ = argmin
X∈Bn

{ F (X )} (7)

where

F (X ) =
n∑
i=1

δf (bi) · xi + λ
∑
p∈S′

ωX (p) (8)

As it can be seen from (8), the cost function we aim
at minimizing is composed by two terms weighted
by a regularizing parameter λ. The left-hand term
aims at enforcing tight bounding boxes around the
objects, and thus penalizes the free space (through
term δf (bi)) of the currently activated bounding box
hypotheses within configuration X . As for the right-
hand term, it is a sum over all points of the scene
surface S ′: for each point, a weight ωX (p) is thereby
associated which enforces instead several cues penal-
izing invalid combinations of active bounding boxes
over p in the current configuration X . S ′ represents
the initial scene S downsampled to a lower resolu-
tion (for efficiency reasons) after removing points on
P or below it.

To define this weight, we first have to introduce a
new term, κ(p, b), which takes the value 1 when the

5
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point p is within the bounding box b, 0 otherwise.
On top of the definition of κ(p, b), we define a term
κ(p)X counting the number of bounding boxes acti-
vated within a specific configuration X that enclose
point p:

κX (p) =
n∑
i=1

κ(p, bi) · xi (9)

The weight ωX (p) can be thus defined as:

ωX (p) =



n∑
i=1

κ(p, bi) · xi, κX (p) > 1

−
n∑
i=1

κ(p, bi) · xi · δ(bi), κX (p) = 1

n∑
i=1

κ(p, bi,ε) · xi, κX (p) = 0

(10)
The three conditions included in (10) are relative

to three different cues being simultaneously enforced
by the proposed cost term. In the first condition (case
i), κX (p) > 1), point p introduces a penalty due
to the fact that it being enclosed by more than one
bounding box (multiple assignment). The penalty is
proportional to the number of bounding boxes en-
closing p. As for the second condition (case ii),
κX (p) = 1), the cost is being penalized by the ob-
jectness measure associated to the unique bounding
box that encloses p, as we aim at retaining hypothe-
ses characterized by high objectness. Finally, as for
the third condition (case iii), κX (p) = 0), if a point is
not enclosed by any bounding box, it adds a penalty
to all active hypotheses for which it falls in their
proximity. This final cue is computed by means of an
expanded bounding box bε as done in (2), and tends
to penalize a bounding box if it has points lying in
its surroundings that are not explained by any other
active hypotheses, this being usually a sign of a not
good enclosure of the object.

To find a minimum for the cost function F we
deploy Simulated Annealing[7], a typical meta-
heuristic algorithm used for finding approximated so-
lutions of non-linear pseudo-boolean programming
problems.

5. Experimental evaluation

In order to assess the performance of the 3D ob-
jectness measure as well as of the proposed segmen-
tation approach presented in Section 4, we have per-
formed an evaluation regarding segmentation accu-
racy on the publicly available Willow ICRA Chal-

lenge dataset 2 containing 434 object instances ly-
ing on a table. The dataset contains pixelwise an-
notated ground-truth segmentation and allows us to
evaluate over- and under-segmentation. It contains
typical household objects such as cereal boxes, food
cans, detergent bottles, books, etc. (see Figure 4-(d)).
Figure 1 show some scenes from the dataset.

We compare the performance of our method with
the segmentation method based on [6]; a simple but
highly efficient two step strategy: (i) multi-plane seg-
mentation of the scene and (ii) connected compo-
nent clustering of points above any detected plane.
To efficiently compute planar regions in a scene, it
uses a connected components strategy where neigh-
boring pixels are considered to be in the same com-
ponent (planar region in this case) if the dot product
of their normals and the Euclidean distance between
the points are within a certain range. The planar re-
gions found are further analyzed in order to merge re-
gions that share the same planar model and were not
detected during the first stage due to the constrained
4 neighborhood search. The second step performs
similarly to the first step, and groups points (without
taking into consideration the points belonging to the
detected planes) in the same component if their Eu-
clidean distance is smaller than τ . The resulting com-
ponents form the segmentation hypotheses. Such a
segmentation strategy assumes that the objects will
lie on a planar surface and that points belonging to
different objects lie farther than τ . Hereinafter, we
will refer to this method as MPS.

Additionally, we carried out an experiment to
evaluate solely the objectness measure. To do so, we
computed, on the same dataset, the Precision and Re-
call values for the bounding box with highest object-
ness score. In this case, we are interested in assessing
how often the bounding box with highest score com-
pletely contains a ground truth object without includ-
ing other objects or part of the background.

5.1. Results and discussion

Figure 4-(a) and -(b) compare respectively Preci-
sion and Recall results yielded by MPS and the pro-
posed method for the task of scene segmentation.
Each point in the scatter plot represents one scene
in the dataset. The Precision and Recall values are
computed for each scene by averaging the respective

2The whole dataset with annotated segmentation labels can
be downloaded from http://svn.pointclouds.org/
data/ICRA_willow_challenge_segmentation_
gt/
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Figure 4: Evaluation on the Willow ICRA Challenge dataset (Precision vs Recall per scene) (a) segmentation
results with MPS and (b) results with the proposed pipeline. (c) Precision and recall values for the bounding
box with highest objectness score. (d) 10 of the 35 objects in the dataset.

values relative to each ground-truth object present in
the scene. A low Precision value indicates that the
object was undersegmented, while a low Recall in-
dicates that the object was oversegmented. Observe
how MPS presents undersegmentation on 4 scenes
were objects are touching each other as well as over-
segmentation on several other scenes caused by self-
occlusions or missing data. Overall, the proposed
approach outperforms MPS, with an average Preci-
sion/Recall of 99.9% versus 99.1%.

Figure 4-(c) shows the Precision and Recall results
obtained by considering only the bounding box with
highest objectness score. We can observe how just
a single bounding box with high objectness resulted
in an undersegmentation of a scene. On the other
hand, the best bounding box is relatively often pre-
senting oversegmentation, yielding Recall values be-
low 0.9. The scatter points with very low Recall val-
ues (< 10%) appear when the best bounding box en-
closes only background (in some scenes, the hand of
the person setting up the dataset is visible and within
the VoI but annotated as background).

By analyzing Figure 4-(b) and -(c) simultaneously

we can note that even on situations where the bound-
ing boxes with higher objectness were causing over-
segmentation (Recall values below 0.9), the segmen-
tation method in Section 4 was ultimately select-
ing other bounding boxes providing a more pleasant
and consistent configuration. The same applying for
the undersegmentation case, indicates that simulta-
neously analyzing nearby bounding boxes allows to
overcome some errors caused by individual local de-
cisions.

6. Conclusion and future work

In the context of this paper, we have presented sev-
eral cues derived from a 3D point cloud to evaluate
how likely it is for a closed region in 3D space to
enclose completely a single object. The cues have
been combined in a preliminar objectness measure
formulation that has shown great potential during the
experiments. We have also presented a framework
for scene segmentation based on the objectness mea-
sure as well as other physical constraints being able
to find a plausible segmentation of table-top scenar-
ios even under challenging situations where objects
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Figure 5: Some qualitative results with the presented method. Observe on the most right image in the figure
a failure case where the cylinder is splitted into two bounding boxes. These scenes belong to the Object
Segmentation Database http://www.acin.tuwien.ac.at/?id=289.

are touching each other.
Based on the encouraging results obtained in this

initial work as well as the observed limitations of the
methods, there exist several directions that ought to
be explored in the future. As already pointed out in
Section 3.5, a more grounded approach for the com-
bination of cues needs to be investigated as well as
additional cues that might help solving even more
challenging scenes. Another direction of research
aims at reducing the computational complexity of the
method in order to be able to explore the additional
degrees of freedom that were ignored in the scope
of this work (especially, we would like to allow ob-
jects to be on top of each other removing the table-
top constraint). In this direction, we would like to
explore bottom-up strategies to infer promising sub-
spaces where the objectness measure will be evalu-
ated. This strategy would allow to replace the current
exhaustive enumeration resulting in a much lower
complexity even when removing some or all of the
constraints currently used.
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