
 
 

 

  
Abstract—Vehicle occupants that are out-of-position can be 

deadly injured by the deployment of the air bag in a crash 
situation. In recent years many different sensors and systems 
have been proposed to detect the type of occupant and the 
position of the occupant's head. This paper presents a method 
for classification and occupant's head detection based on 
passive stereo vision. The proposed system uses depth surface 
analysis and scene statistics together with support vector 
machines for classification and selection of head candidates. 
Evaluation of the method shows 99% correct for classification 
and 98% correct for head detection, using large sets of image 
data, and image sequences recorded in a driving vehicle. 

I. INTRODUCTION 
IR bag deployment may cause deadly accidents or 
severe injuries for certain types of occupants or if the 

occupant is close to the air bag compartment door. 
Endangered types of occupants include infants in rear 
facing infant seats, children and small adults. Moreover any 
occupant can be killed by air bag deployment if he/she is in 
an endangered position. The National Highway Traffic 
Safety Administration (NHTSA) specifies different classes 
for the occupancy, and out-of-position zones for the human 
occupants, on which the air bag deployment has to be 
controlled, see [11] and [13] for a more detailed 
description. 
 Detection of the type and position of the vehicle's 
occupant has been subject to intensive research for the past 
few years, for example see [2], [3], [6]-[8] and [10]. In 
order to fulfill future safety requirements, systems are 
proposed that (1) determine the occupant type, for a fixed 
set of classes, including adult, child, child seat, empty, and 
(2) determines the occupant position within the scene. 
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Reference [2], [3] and [6] use stereo vision for 
classification; [4] and [8] use stereo vision for head 
detection. Recent studies [10] and [11] include 
determination of the occupant's posture. Algorithms used in 
previous studies are applied either directly to the intensity 
image or the range map. Features include range data, edges, 
motion [7] and eigenimages [6]. Reference [4], [7] and [8] 
use support vector machines for occupant classification.  

This paper presents a method for classification and real-
time head detection that copes with varying illumination, 
moving shadows and changing contrast, based on a simple 
stereo camera system. Previously presented methods do not 
show evaluation results for more complex illumination 
conditions, such as occur in a driving vehicle. Their 
robustness is expected to degrade, if additional illumination 
sources fall out, or if the scene is flooded with direct 
sunlight. The method presented in this paper only depends 
on artificial illumination sources, if no natural light is 
available. It deals with the variety of occupants and the 
complexity of the illumination condition, using scene 
statistics. Its robustness is evaluated for large sets of image 
data recorded in a driving vehicle.  

The paper consists of four sections. Section II discusses 
the method for occupancy classification and head detection. 
Section III discusses the evaluation results and section IV 
gives the conclusions. 

II. METHOD 
The proposed method consists of two parts: occupancy 

classification and head detection. Occupancy classification 
provides the class of the occupant: adult, child, child seat 
(including rear facing infant seat or RFIS) and empty. Head 
detection provides the position of the occupant's head 
within the vehicle.  

A. System Setup 
The method is designed for a stereo camera system that 

is mounted in the central upper console on the frontal 
passenger's side. The camera system has a baseline of a few 
centimeters and wide angle lenses so that the system 
observes the entire space at the vehicle's passenger side. 
The camera system is mounted so that the occupant is 
unlikely to be occluded by obstacles such as an opened 
newspaper. Fig. 1 gives an example of images recorded in 
the vehicle, for different types of occupancy and different 
illumination conditions. The system includes a passive 
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infrared illumination source, for dark outdoor 
environments.  

The camera system provides two intensity images at 30 
frames per second. A fast stereo matching algorithm, as 
discussed in [5] provides the disparity image between the 
left and right intensity images. Each pixel of the disparity 
image consists of a value for the distance between 
corresponding points of the left and right intensity image. 
The pixel is undefined if no correspondence is found. The 
range map is estimated from the disparity image, using the 
calibration parameters.  

 
 
 
 
 
 
 
 
 
 
 
 

B. Classification 
The occupancy type is classified with support vector 

machines (SVM), as they are discussed in [12]. The 
classification is evaluated for the classes: adult, child, child 
seat and empty. The class adult includes human adult 
occupants of different heights, ranging from 60 to 80 inch. 
The class child includes human occupants ranging from 40 
to 60 inch height and dummies for children of three and six 
years old. The class child seat includes different models 
and configuration of child seats and infant seats for which 
the air bag should not deploy, such as the RFIS, occupied 
and not occupied. The class empty includes all 
configurations in which the seat is not occupied.  

The input of the classifier consists of features of the 
entire image. In order to obtain maximal robustness, 
features are used from the left intensity image and from the 
disparity image. The accuracy of the classifier and training 
and evaluation complexity is evaluated for different types 
of features at different vector lengths. High dimensional 
feature vectors have a high accuracy, since they contain 
much information. Training and evaluation time can be 
extensive, and the system can be overfitted easily. Small 
feature vectors are evaluated fast and they are not 
endangered to be overfitted, since the training data is large 
with respect to the number of parameters of the system. 
The generalizing property of the classifier is presented by 
the number of support vectors. The classifier generalizes 
well, if it has a low number of support vectors. 

1) Feature extraction: Since the feature that optimally 
presents the information is not known, different feature 
extraction techniques are evaluated. The image is divided 
in quadratic regions, ranging from 6x4 to 32x24 window 
positions, so that each region provides one value of the 

feature vector. Feature extraction techniques include 
downsampling, texture estimation, gradient estimation and 
motion. Downsampling is done by nearest neighbor 
approximation and median estimation. Texture is estimated 
from the local image variance. Motion is estimated by 
frame differencing. Extraction of disparity features is more 
complex, since the disparity image shows undefined 
regions. Disparity features are extracted with nearest 
neighbor downsampling, downsampling after a flood-fill 
operation, downsampling using the median value and 
motion estimation. 

2) Classifier settings: A support vector classifier is 
designed with a linear and radial basis kernel. The 
classification system uses a one-to-one voting strategy. For 
the set of K=4 classes, N=K(K-1)/2=6 classifiers are 
evaluated, and the winner is voted from the results of each 
one-to-one classifier. Results for the one-to-one classifiers 
are compared to that of a single perceptron. 

C. Head Detection 
 The method for head detection is designed for occupants 
of the class adult. A method for the class child can be 
designed similarly. The method consists of three steps, 
including generation, selection and tracking of head 
candidates. The generation step aims to provide at least one 
candidate for the position of the head. It uses two methods, 
of which one is based on the depth surface, and the other is 
based on grouping of edge features in depth slices. The 
selection step aims to reduce the set of head candidates, so 
that only the true head candidate is left. It uses scene 
statistics for large sets of image data. Tracking aims to 
reduce the number of misses, by assuming that the true 
head position changes continuously between succeeding 
frames. 

D. Generation of Head Candidates 
Generation of head candidates aims to provide at least 

one candidate at the true head position. It uses two 
methods, depending on the quality of the disparity image. 
For disparity images with few undefined regions, head 
candidates are generated using local maxima in the range 
map. If the range map is estimated correctly, the head 
forms a local maximum since it is nearer to the camera than 
surrounding objects. For disparity images with many 
undefined regions, a method is proposed that uses grouping 
of edge features with 3D information, as discussed in [1].  

1) Surface-based generation of head candidates consists 
of three steps: estimation of the range map, determination 
of the local maxima and analysis of the surrounding region. 
The range map consists of 25x23 depth values for different 
image positions. If the disparity is undefined within the 
region, the range value is approximated from neighboring 
values or it is set to the background for regions at the rim 
of the image. In order to speed up, local maxima are 
estimated with a 5x5 window. For each local maximum, the 
support region is estimated as the region within a cylinder 
of 20cm radius, centered at the local maximum, and 20cm 
depth, with respect to the local maximum. If the area of the 

Fig. 1. Example images of different classes: a) adult, b) child. The panels 
show the left intensity image; the right intensity image looks very similar. 
The panels show different illumination conditions: indoor (a) and outdoor 
(b). 

a) b) 



 
 

 

region exceeds 150cm2, its center of mass is denoted as 
head candidate. Fig. 2 shows an example of surface based 
generation of head candidates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Edge-based generation of head candidates is 

introduced for cases in which the head does not form a 
local maximum in the range map. This may happen if the 
range map is not properly estimated or if the head is far 
from the camera. The range map is not properly estimated 
if the disparity image is insufficiently defined in the head 
region, due to the lack of texture and to bad illumination 
conditions. The head is far from the camera for unusual 
sitting or laying postures if the backrest is reclined. For 
such positions, the disparity in the head region is small and 
the local maximum may not be resolved. Edge-based 
generation of head candidates copes with these situations 
by regarding edge features rather than the local maximum. 
Edge features are extracted from the intensity image, using 
a LOG-filter, and they are grouped in 3D space. The 
feature density is estimated for cuboids of 40x40x20cm in 
width, height and depth, and regions with a high feature 
density are approximated with ellipsoids. Objects are 
formed by connecting ellipsoids, so that the uppermost 
ellipsoid of each object provides one head candidate. Fig. 3 
shows an example of edge and disparity features. Fig. 3f) 
indicates the center positions of the connected ellipsoids.  

E. Selection of Head Candidates 
Selection of head candidates aims to provide the true 

head candidate from a set of candidates, by rejection of 

false candidates. Selection criteria are estimated using 
scene statistics for a set of 4000 representative images. The 
dataset is discussed in section III.C. For each image, a set 
of candidates is generated using the surface-based 
generation method and the true head candidate is selected 
manually. Based on scene statistics of the true head 
candidate, false candidates are rejected. Selection criteria 
are based on the absolute position of the head in 3D space, 
the relative position between candidates and the surface 
geometry. 

 1) The 3D head position is estimated for all true head 
candidates of the data set. The probability function is 
derived from the histogram of the support region of the true 
head candidates, using bins spread over the 3D space. In 
order to speed up the evaluation, bins are positioned 
equally over the image coordinates, for 25x23 image 
positions and for 18 depth steps, ranging from 35cm to 
120cm. The histogram is smoothed and manually adjusted 
to exclude positions of false candidates that origin from the 
B-console, the leg region and the sun visor. A probability 
value is derived for each of the 25x23x18 bins, so that 22% 
have a value larger than 0. All candidates with zero 
probability are rejected. Remaining candidates include the 
occupant's head, parts of the body, the head rest and other 
objects within the compartment.  

2) Selection based on relative position is applied for the 
remaining candidates, which typically include the head and 
the head rest. In order to eliminate the candidate of the 
head rest, the center of mass of the candidates on the right 
side of the image is estimated. A selection plane is 
designed, so that candidates right and behind from the 
center of mass are eliminated. 

3) The surface geometry is used to select the remaining 
candidates. Statistical knowledge is obtained about the 
surface geometry of the true head candidate. False 
candidates with dissimilar surface geometry are rejected. 
The surface geometry includes values for area, shape and 
curvature. The area is estimated by summation of the area 
for each element of the support region. The shape is 
estimated by singular value decomposition for data 
represented in the plane of the image. The curvature is 
estimated with a second order polynomial approximation of 
the depth as function of the image coordinates. Since most 
false candidates show similar statistics, candidates are 
rejected only if one of the parameters is out of range. 

F. Tracking 
Tracking is introduced in order to reduce the number of 

misses. The true head candidate is missed, if none of the 
head candidates shows the true head position, or no 
candidate is left at all. Typically, misses occur if the head is 
invisible due to bad illumination conditions or it is 
occluded by objects, arms, legs etc. A 3D point tracker as 
discussed in [9] is designed to cope with temporal 
invisibility and occlusions. Head candidates are tracked by 
using the correspondence between the candidates of 
succeeding frames, while counting the observation history 

    
Fig. 2.  Surface-based generation of head candidates. a): Range map of 
25x23 values; a bright color indicates a position near to the camera. Two 
support regions are indicated with black polygons. b): Left intensity 
image of the same cycle. The image regions of the polygons are indicated 
with white boxes, scaled to 20x20cm. 

a) b) 

 

Fig. 3. Edge-based generation of head candidates. Upper row, from left to 
right: a) Left intensity image; b) Disparity image; c) Superposition of 
disparity image and edge image. The disparity image is brighter for 
positions near to the camera. Undefined regions are indicated with black. 
Lower row: d), e) as a), b); f) feature groups are indicated with connected 
dots. 

a) c) 
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for each of the candidates. If a candidate disappears, 
additional candidates are predicted at the previous position. 
The duration of the prediction depends on the number of 
previous observations, which is limited to Nmax. 
Correspondences are searched within 20cm, i.e. the head 
moves with maximally 6m/s, for a frame rate of 30fps. 
Motion models are not included, since most changes are 
caused by inaccurate positioning rather than by the head 
movement itself.  

III.  RESULTS 

A. System Setup 
 Results are obtained with three different camera systems, 
of which two are mounted in a vehicle, and one is mounted 
in the office. None of the camera systems provided color 
information. Table 1 gives an overview. The illumination 
conditions are specified as indoor, if the infrared 
illumination source is dominant or outdoor if (direct) 
sunlight is dominant (see fig. 1). The illumination condition 
in the office was simulated by changing the exposure 
control, so that images range from entirely dark to entirely 
bright. For all camera setups and all sitting postures and 
seat configurations, the occupant was at least partly visible, 
and the head was within the field of view. Occlusions were 
mainly at the body of the occupant. The head was occluded 
if hands were put between the head and the camera, or for 
unusual sitting postures, such as for frontal sitting 
occupants that grasp something from the back bench. Left 
and right intensity images were captured at 30fps, at a 
resolution of 320x240 pixels. The disparity image was 
provided at the same frame rate, so that maximally 
250x230 pixels at center of the image are defined.  

B. Classification 
The classifier was trained and evaluated with two 

different strategies. The first strategy evaluates the 
classification accuracy using the leave-one-out technique, 
so that the system is repeatedly trained on a randomly 
chosen set of samples and it is evaluated for the remainder. 
The second strategy evaluates the robustness of the system 
by leaving out specific groups of training data. This 
strategy helps to understand the sensitivity for certain types 
of training data and it gives insight in the generalization of 
the classifier.  

Image data was recorded with the camera system 
mounted in Vehicle I, as shown in Table I. Image data 
includes recordings of 34 adult occupants; 49 children and 
2 child dummies; 9 child seat types and an empty seat in 
various configurations. For all classes, the illumination 
condition was indoor (76%) and outdoor (24%). Human 
occupants were recorded continuously, while the vehicle 
was driving, or the occupant moved in forward and 
backward direction. Recordings of adults showed risen 
arms, out-of-positions and an opened newspaper. 
Recordings of children showed standing and laying 
postures. They include objects such as cuddly toys. Static 
occupancies, such as dummies or child seats and empty 

were recorded in discrete steps, while the seat position or 
sitting configuration was (automatically) changed. 
Continuous recordings were sampled to one feature vector 
per ten frames. Discrete recordings were sampled to one 
feature vector per frame. Totally, 3228 samples were 
extracted, of which 46% of the class adult, 20% of the class 
child, 24% of the class child seat and 10% of the class 
empty. 

  1) Leave-one-out. The system is repeatedly trained on 
50% or 99% of the data, and evaluated for the remainder, 
so that statistically each sample is evaluated at least once.  
Classification results were obtained with the support vector 
machine, with a linear kernel. One-to-one classification 
with a perceptron showed similar or slightly worse results, 
depending on the training strategy. Table II shows results 
for different features. Best performance are obtained with 
downsampling, using median gray and disparity values for 
16x12 window positions and for all frames of the sample 
interval. Shorter feature vectors resulted in an increase of 
the error rate and an increase in the number of support 
vectors. Longer feature vectors showed a similar error rate 
and an increased number of support vectors. Table III 
shows the confusion matrix for a combined vector, using 
downsampling to 16x12 median disparity values and 12x9 
median intensity values. The average result for this 
combination is 99.1% correct. 
 2) Robustness. The robustness was evaluated for 
variation of illumination, variation of individuals and 
variation of positions and occlusions. Specific groups of 
data were left out of training, so that eventually the system 
breaks down due to the lack of training data. Results were 
obtained with a reduced set of training data, for which the 
system starts to degrade. Further reduction led to a full 

TABLE II 
FEATURE EXTRACTION 

 
Intensity Image 

%Correct 
(# Support Vectors) 

Disparity Image 
%Correct 

(# Support Vectors) 
Downsampling 
    Nearest Neighbor 
    Flood-fill 
    Median 

 
95.1 (359) 

- 
95.8 (331) 

 
94.0 (400) 
96.8 (319) 
97.0 (317) 

Texture 95.4 (342) - 
Gradient 95.5 (342) - 
Motion 66.0 (734) 82.3 (985) 

Results for 3228 samples with different feature extraction techniques, for a 
vector length of 192. Downsampling after flood-fill is applied to the 
disparity image only. Texture and gradient are only applied to the intensity 
image only. The percentage correct indicates the average results for all 
classes, the number of support vectors include support vectors for all 
classifiers.  

TABLE I 
CAMERA SYSTEMS & MOUNTING 

Mounting Sensors Baseline 
(mm) 

Focal Length 
(mm) 

Vehicle I CMOS, low contrast 27 3.0 
Vehicle II CMOS, high contrast 35 2.2 
Office CCD 54 2.6 

The field of view depends on the focal length and the chip size. Side 
regions were removed in case of large lens distortions. The effective field 
of view is largest for the camera system used in Vehicle II. 



 
 

 

degradation of the system. Totally, 77 recordings were 
specified with different individuals, illumination conditions 
and child seat models. The system was slightly degraded, if 
one of the five recordings of class adult with outdoor 
illumination was left out. The system was largely degraded 
if one of the recordings of class child seat and empty with 
outdoor illumination was left out. Results were not 
degraded if one of the recordings with indoor illumination 
was left out, for any class. Table IV shows results if all 
individuals of the height group were left out of training. 
Results degrade for the group of tallest adults and children 
only.  

 

 

 
C. Head Detection 
Head detection is evaluated for different sets of data, 

recorded with the camera system mounted in Vehicle II and 
in the office. The image data of Vehicle II consists of still 
images with a large variety between occupants, position 
and sitting postures, and sequences. In order to evaluate 
bad illumination conditions, image data is recorded in the 
office so that illumination is simulated by changing the 
exposure control. Office recordings are used to compare 
results for the generation of head candidates. The selection 
of head candidates is evaluated for the discrete image data 
used for training and for continuous recordings in a driving 
vehicle. Tracking is evaluated for continuous recordings 

only.  
 1) Generation of head candidates depends on the 

illumination condition and the occupant's posture. The 
dependence on the illumination condition is evaluated for 
data recorded in the office. The dependence on the 
occupant's posture is evaluated for data recorded in Vehicle 
II. Table V shows the results for 1156 images recorded in 
the office, for which the head was visible for a human 
observer. Images for which the human observer could not 
indicate the head position because of bad illumination were 
left out. The method Edge-based I uses cuboids of 
40x40x20cm, as discussed above; the method Edge-based 
II uses cuboids of 10x10x5cm, so that smaller and partly 
visible objects are included. The edge based methods 
perform better for bad illumination conditions. For data 
recorded in Vehicle II, edge-based generation of head 
candidates performs better for unusual sitting postures and 
bad illumination conditions. For the majority of images the 
performance is similar, and the surface-based method is 
used on from here, because it is faster. Misses occur if the 
head is far from the camera, or if the head region is badly 
illuminated.  

2) Selection of head candidates is evaluated using data 
recorded in Vehicle II. The data consist of 4000 still images 
of 21 adult occupants, in different sitting postures, seat 
configurations and illumination conditions: 200 images 
show a dummy occupant in various positions; 200 images 
show human occupants, reading a newspaper; 400 images 
show human occupants with a bad illumination condition 
or in an unusual sitting posture; 400 images show human 
occupants with risen arms, opening the sun visor; 400 
images show occupants leaning backward, with legs on the 
dashboard; 2400 images show human occupants in normal 
sitting posture, with out-of-positions.  

 

 

TABLE VI 
SELECTION OF HEAD CANDIDATES 

Method Unique 
Detection (%) 

Ambiguous Detection (%) 
(Number of Candidates)  

Missed 
(%) 

Generation 0 94  (8.8) 6 
Selection I 40 52  (2.4) 8 
Selection II 73 17  (2.3) 10 
Selection III 76 13  (2.2) 11 

Results for 4000 still images. The head is uniquely detected if a single 
candidate is found that coincide with the true head position. It is 
ambiguously detected if one of the candidates provides the true head 
position and it is missed, if none of the candidates provide the true head 
position, or if no candidate is found at all. 

TABLE VII 
TRACKING 

Method Unique 
Detection (%) 

Ambiguous 
Detection (%) 

Missed  
(%) 

Selection  96.7 0.2 3.1 
Tracking I 93.7 3.6 2.7 
Tracking II 96.6 1.4 2.0 
Tracking III 97.8 0.6 1.6 

Results for 12 sequences of 30s. See Table VI for a description of the 
columns. The selection method coincides with Selection II of Table VI, 
now evaluated for the continuous recordings. 

TABLE V 
GENERATION OF HEAD CANDIDATES 

Method 
True Head 
Candidate 
(%Images) 

Number of 
Candidates 
(Average) 

Distance to 
Ground Truth 

(pixels) 
Surface-based 64.1 11.5 33 
Edge-based I 83.6 1.9 17 
Edge-based II 93.8 4.6 16 

Results for 1156 images with simulated illumination conditions, in which 
the head was visible for a human observer. 

TABLE III 
CLASSIFICATION RESULTS 

 Adult Child Child 
Seat Empty # 

Samples 
Adult  99.2 0.0 0.7 0.1 1503 
Child 0.2 99.6 0.0 0.2 650 
Child Seat 1.4 0.0 98.6 0.0 764 
Empty 0.7 0.3 0.0 99.0 311 

Confusion matrix for 3228 samples, using a combined feature vector of 
16x12 median disparity values and 12x9 median intensity values. The 
rows indicate the percentage of samples that are classified and the total 
number of samples for each class. The columns indicate the output of the 
classifier. The total number of support vectors is 407. 

TABLE IV 
ROBUSTNESS OF HEIGHT GROUPS 

Child Group 
(height) 

%Correct 
(#Individuals) 

Adult Group 
(height) 

%Correct 
(# Individuals) 

40-44 inch   100%    (2) 60-64 inch 97 %  (11) 
45-49 inch    100%    (5) 65-69 inch 96 %    (8) 
50-54 inch 99%  (18) 70-74 inch 97 %  (13) 
55-59 inch 84%  (19) >74 inch 81 %    (2) 

Results for different height groups of class adult and class child. Each 
result indicate the percentage correct for the samples of each group, if the 
entire group is left out of training. Occupants of child group 55-59 inch 
are confused with adults, if left out of training. 



 
 

 

Table VI shows results for different selection steps. The 
detection result is either 'unique', 'ambiguous' or 'missed'. 
Generation results are obtained with the surface-based 
method. Selection I includes selection of the 3D head 
position only; Selection II includes additional selection of 
the relative position and Selection III includes selection of 
the surface geometry also. The generation method yields no 
unique detections. Misses are found due to bad illumination 
and unusual postures, as discussed above. The number of 
candidates is strongly reduced after Selection I, and on 
from Selection II, the head is uniquely detected for the 
majority of images. Results for Selection II for continuous 
recordings are shown in Table VII. 

3) Tracking is evaluated for 12 sequences of 30 seconds 
with adult occupants in a driving vehicle, using the camera 
system mounted in Vehicle II. The illumination condition 
was outdoor; no additional infrared illumination source is 
used. Images show a moving background, direct sunlight 
and moving shadow patterns. The occupant was stationary, 
or moved towards out-of-position. Table VII shows results 
after Selection II, as discussed above, and for different 
values for the maximal observation history Nmax: 1 frame 
(33ms) for Tracking I, 10 frames (0.33s) for Tracking II 
and 100 frames (3.3s) for Tracking III. Selection without 
tracking shows less misses as for data shown in Table VI, 
since image data does not include unusual sitting postures. 
The percentage of misses is reduced with a factor 2, on 
from a typical duration of the occlusion or illumination 
condition of one second. Fig. 4 shows examples of head 
detection in a driving vehicle. 

IV. CONCLUSIONS 
Occupancy detection from stereo images is sensitive for 

variations between occupants, seat configurations and for 
different illumination conditions. A method for occupancy 
classification and head detection is proposed that performs 
well for large sets of image data, with many occupants, 
unusual sitting postures and bad illumination conditions. 
The method makes intensively use of statistical information 
about the observed scene and the occupants. Occupants and 
sitting postures are varied and bad illumination conditions 
are recorded and simulated. Evaluation shows 99% correct 
classification and 98% correct head detections for data 
recorded in a driving vehicle, without additional 
illumination sources.  
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Fig. 4.  Examples of head detection in a driving vehicle, including direct 
sunlight and moving shadow patterns. The elliptical contour is estimated 
from the 3D-head position, using radii of 12cm and 9cm. 
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