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Abstract

This paper presents a method to decompose binary shapesimtected parts, based on their struc-
ture, as captured by the eccentricity transform. This dgoasition is then used in a graph pyramid
framework for mapping a polar-like coordinate system to a-nigid shape. Initial experimental
results are presented.

1 Introduction

The usual output of shape matching methods is a shape stynitalue (see e.qg. [1, 3, 4, 12, 17, 14,
6]). Some also give correspondences of the used shapesignasually border points/parts (see e.g.
[12, 1, 17]), but finding all point correspondences basederobtained information is in most of the
cases not straightforward.

This paper presents a concept for using structure to mapraioabe system to an articulated shape,
with the purpose of addressing the corresponding (or a rjosiat in the same or other instances of
the articulated shape. It is mainly motivated by observetitke: 'one might change his shirt/t-shirt,
changing his aspect, or alter his pose a little, but the wasth is still located in the same place’.

If thinking of finding the correspondences of all points af 8hape, the task is similar to the non-rigid
registration problem widely used in the medical image pssogg community [2]. Differences to our
approach include the usage of gray scale information, topetenthe deformation vs. the usage of a
binary shape and, the registration of a whole image (in mast€ in the medical community) vs. the
registration of a (in this paper) connected 2D shape.

The method in [3] uses a triangulation of the binary shaperasedel, and the produced triangulation
correspondence could probably also be used to find corréspgpoints. An a priory known model
would still be needed for the shape class.

In this paper, we propose to use the Euclidean eccentriaiisform [5] as a basis for a 2D polar like
coordinate system. To support the mapping of the coordsnatmethod for decomposing a shape into
connected parts is first introduced. Section 2 recalls tlvergdcity transform and graph pyramids
and their properties relevant for this paper. Sections 34adéscribe the proposed methods, with the
experiments given in Section 5. Section 6 concludes therpape
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2 Recall

In this section basic definitions and properties of the ettty transform and graph pyramids are
given.

2.1. Recall ECC

The following definitions and properties follow [5]. Let tehapeS be a closed set iR? anddS be its
bordef. A (geodesic) pathr is the continuous mapping from the intery@l1] to S. LetII(p;, p2) be
the set of all paths between two poigts, p2 € S within the setS. The geodesic distanegpy, p2)
between two pointp;, pa € S is defined as the length(w) of the shortest pathr € II(p1, p2)
betweenp, andp.:

d(py. p2) = min{A(r(pr, pa))|r € IT} whereA(x / (8t 1)

wherer(t) is a parametrization of the path fromy = 7(0) to p2 = 7(1)

The eccentricity transform & can be defined asp € S
ECC(S,p) = max{d(p,q)|q € S} (2)

i.e. to each poinp it assigns the length of the shortest geodesics to the plairiteest away from it.
In [11] it is shown that this transformation is quasi-inwari to articulated motion and robust against
salt and pepper noise (which creates holes in the shape).

This paper considers the class of 4-connected discretesSagefined by points on a square g#d.
Paths need to be contained in the areRdilefined by the union of the support squares for the pixels
of S. The distance between any two pixels whose connecting sggmeontained irS is computed
using the/,-norm

Computation:

In [5] efficient approximation and computation algorithme aresented. The shape bounded single
source distance transform7'(S, p), computes the geodesic distance of all points of a sisapehe
point p, and is the main tool used for computidg"C'(S). DT(S,p) can be efficiently computed
using discrete circles [5] or fast marching [16].

Terminology:
An eccentric pointof a shapeS is a pointe € S that is farthest away i from at least one other
pointp € Si.e.dp € Ss.t. ECC(S,p) = d(p, e).

ThecenterC' C S of a shapeS is the set of pointg € C with the smallest eccentricity i.ec €

C << ECC(S,c)=min{ECC(S,p),Vp € S}. If the shapeS is a simply connected shape, the
centerC' is a single point. Otherwise it can be a disconnected sethitrary size (e.g. folS made
out of the points on a circle, all points are eccentric ang tdemake up the center).

The smallest eccentricity is called trediusof the shape, and the highest one is calleddideneter

2This definition can be generalized to any dimension, cootistand discrete objects.
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Figure 1. Two shapes and their eccentricity transform.

Properties:
The variation of geodesic distances is bounded under &atenl deformation to the width of the
joints’ [12]. The eccentricity transform uses geodesistdnces and is bounded in the same way.

The transform is very robust with respect to noise, and tlsitioms of eccentric points and the center
are stable [11]. They change only if all supporting pixelsdaertain eccentric point are removed or
if the diameter changes i.e. the shape is modified arounddimespwith the highest eccentricity.

See Figure 1 for examples of shapes and their eccentriaitgtorm.

2.2. Irregular Graph Pyramids

A graph pyramidP [7] is a stack of successively reduced graghs= {G,...,G}. Each level
Gy = (Vi, Ex), 1 < k < h, is obtained byontractingandremovingedges in the levelr;,_; below.
Successive levels reduce the size of the data by a reduettborf > 1. Edges and vertices of the
graphsG, can be weighted.

Thereduction windowelates a cell at the reduced level with a set of cells in thelldirectly below.
The contents of a lower resolution (in a higher level) ce# abmputed by means ofraduction
function the input of which are the descriptions of the cells in théution window. Higher level
descriptions should be related to the original input datlhéenbase of the pyramid. This is done by
thereceptive fieldf a given cell € G.. The receptive field of aggregates all cells in the base level
of whichwv is an ancestor.

Each level represents a partition of the base level into eorau subgraphs i.eonnected subsets of
pixels if the pyramid is build in the context of an image. The coustion of an irregular pyramid
is iteratively local [13]. On the base level (level 0) of aregular pyramid the cells represent single
pixels and the neighborhood of the cells is defined by theB4¢bhnectivity of the pixels. A cell
on level k + 1 (parent) is a union of neighboring cells in lekd€thildren). This union is controlled
by so called contraction kernels (CK) [9], a spanning fowesich relates two successive levels of a
pyramid. Every parent computes its values independentbtadr cells on the same level. Thus local
independent (and parallel) processes propagate infasmap and down and laterally in the pyramid.

In [10], methods for optimally building irregular pyramidse presented. Methods like MIS and



MIES ensure logarithmic height by choosing efficient coctien kernels i.e. contraction kernels
achieving high reduction factors.

3 Shape Decomposition based on ECC isoheight Lines

Thelevel setof a differentiable functiory : R” — R corresponding to a real valueis the set of
points{p € R" : f(p) = h} [19]. If n = 2 the level set is a set of plane curves.

A height levebf the eccentricity transform af is the level set:
HL(e) = {q € S|[ECC(S,q) = ¢}, 3)

with e € min{ ECC(S, p)}, max{ ECC(S, p)}] an eccentricity valueH L(e) can be a single closed
curve or a set of disconnected open curves. The connecteplarwnts off/ L(e) are calledsoheight
lines HS C HL(e), HS connected.

Given a shap&, adecomposition of into simply connected regions the se{R;,..., R,} s.t.
URk=S,k=1,....,n; R, R; =0,Vi,j € {1,...,n}; andR; is a simply connected region.

HD(S) = {Ry,...,R,} is aa decomposition of based on the connectivity of the ECC isoheight
linesif HD is a decomposition into simply connected regions (as defabede), and/ R; andVe €
min{ ECC(S,p)}, max{ ECC(S,p)}| = R;() HL(e) is a connected region, amgd the number of
regions, isminimal. H D(S) exists for any connected shage

Given a discrete shapeand its eccentricity transforlBC'C(S), HD(S) can be computed by:

1. in agraph theoretical framework: Algorithm 1 creates a graph pyramid s.t. the top levgl
is an oriented region adjacency graph describing the tgyot the decompositiot! D(S).
Edges ofGG}, are oriented from regions with lower eccentricity to regamith higher eccentric-
ity. Each vertex contains the length of the longest isohiesggment in its receptive field.

2. sequential approach: ‘follow’ the isoheight lines from the minimum eccentricity the max-
imum eccentricity. Whenever an isoheight line gets diseated, or merged, new regions are
started for the formed isoheight line part(s). (This applos more intuitive, but needs build-
ing the adjacency graph for the decomposition 'over’ it. didiion, it is lacking the fast access
advantages when searching for the pixel with a known coatdih

Figure 3 shows example decompositions based on the cowiteofiisoheight lines.

If the shapeS is simply connected, the obtained region adjacency grayhléivel of the pyramid) is
atree (Theorem 7.9 in [8]), with the root being the vertex sdceceptive field contains the (unique)
center pixel. Also, the edges oriented toward each vertektha ones oriented away are nicely
grouped together.

Note that such a decomposition can be done in the same wathtertransforms also (e.g. the single
source shape bounded distance transform). We use the gcitgmtansform because its center is a
stable [11] and there is no need to give a starting point.



Algorithm 1 H D - Decomposition ofS based on the connectivity of ECC isoheight lines
Input: Discrete shapé.
1: iECC = |ECC(S)]| I*compute ECC, round = at least 8 connected isoheight tihes
2: Gy « oriented neighborhood graph oFC'C /[*ensure proper connectivity of isoheight lines
while keeping~, planar, orient from small to high eccentricity
3 k<0
4: for all v € Vi, dov.maxlength «— 1,v.ecc — [ECC(v), ECC(v)], I*init max length of isoheight
lines and eccentricity interval for each vertéx
5. repeat

6: A« {e=(v;,v;) € Eg|v;.ecc = v;.ecc} [*merge isoheight segment pévts

7. A — AlU{e = (v;,v;)|deqv;),deqv;) < 2 and close@;)=closedv;)} /*same region,
closed(v)=true <= receptive field of v contains only closed isoheight lihes

8. if |[A] > 0then

9: K « contraction kernels as subset4f*use MIS or MIES [10] to optimally breaK into

valid contraction kernelg

10: Gr11 < contractGy, K) I*contract edges i< and simplify/

11: for all v € Vj 1 do computev.mazlength, v.ecc from Gy [*use reduction window

12: k—k+1

13:  endif

14: until |A| =0

15: h «— k

Output: Graph Pyramid~,, ..., Gj.

Motivated by the need to match partially occluded shapessizipe matching related research has
recently moved toward shape decomposition and part majdleig. [14]). A study of the decom-
position of shapes based on ECC isoheight lines in the cbofeshape matching is planned, but is
outside the scope of this paper.

4 TheNon-rigid Coordinate System

A system ofcurvilinear coordinate$18] is a coordinate system composed of intersecting sesfal
the intersections are all at right angles, then the cumédircoordinates are said to formarhogonal
coordinate systerfe.g. two-dimensional Cartesian coordinates and polardioates). If not, they
form askew coordinate system

Based on the above, to define a planar system of curvilineadotates, two classes of curves need to
be defined - one for each coordinate. For any ppidt S there exists exactly one curve of each class
passing through it. Also, any defined coordinates identif curve of each class, and the intersection
of the two curves gives a unique point.

The proposed coordinate system is intuitively similar te polar coordinate system, with thadial
coordinater being a linear mapping from the eccentricity value andahgular coordinate) being
mapped to the isoheight lines of the eccentricity transfoased on the structure of the shape. The
first approach presented in this paper forms a skew cooelgystem (see Section 4.1.). The second
approach has disconnected 'angular’ coordinate curves,ittdoes not correspond to the definition
of curvilinear coordinates. Note thais not really an angle, just denoted intuitively so.



Figure 2. Mapping of pointsfrom neighboring isoheight lines

r(p) = ECC(S,p) — min{ ECC(S,p)} (4)

Figure 3 shows the isoheight lines of the eccentricity tiams i.e. ofr(p).

4.1. Settingtheangular coordinate

As mentioned above, the angular coordinatenot really an angle - it has been intuitively named like
this. This section focuses on simply connected shapes aigtioperties. For non simply connected
shapes, the result of the decomposition is much more confgéneral graph with cycles, etc.) and
more complex algorithms are required.

Figure 2 shows three adjacent isoheight segmefit#( ) of different regions.A has eccentricity
e, andB, G havee + k. If £ — 0 thend — 0, and maximum smoothness®fs achieved when each
point of B has the samé as his projection oM. This assumption puts the valugédor A and B
into relation. An approximation can be made by projectingehdpoints of3 onto A, to find theird
values, and interpolating along (see Figure 2 for the notation):

(6, — 61) [P dl

0 =@, 42 Vs T
1 =0 [cadl

(5)

The obtained relation can be used to controll the smoothsfesalong region boundaries.

In the following, two algorithms for assignirtjare presented.

Center to Periphery

The root vertex of7 = G}, from Section 3, contains only closed isoheight lines antiésanly such
vertex. The angle interval associated to vertices witharldsoheight lines is 360 degrees. The other
vertices have an associated 'input interval’ and O or mouggat intervals’ (edge orientation iy).
Smoothness along region boundaries is assumed as abovetemvdls ofé inside each region are
kept constant.

Algorithm 2 shows the algorithm for assigning thentervals to each vertex. These can then be
down projected in the pyramid. The Algorithm should be ahligth the top level of the pyramid in
Algorithm 1 as the parameté¥, the root vertex of the tre€@ asv, and[0, 360] as[¢;, ).



Algorithm 2 CtoP - Assign real valued intervals fa, for all vertices ofGG
Input: GraphG(V, E) as produced by Algorithm 1, vertex interval [0, , 65].

1: U.91 — 91,’1}.92 — 92
. A «— isoheight segment af with highest eccentricity
. [*for all edges oriented away fromt/
: for all e = (v,v,) € Edo

B «— isoheight segment af, with lowest eccentricity

161, 65] < projectB to A and compute fronf¢,, 6] as in Equation 5 and Figure 2

call CtoP (G, v, 07, 65])
end for
Output: GraphG, with 6 intervals|v.6,, v.6,] computed for each region

OO R OD

This approach works only with real valuégdas two isoheight segments of the same region can contain
a different number of pixels and still get the same intergsigned.

For the origin off, a path connecting the center (minimum eccentricity) withoant having the
maximum eccentricity can be used. This path is calledzéite path Note that the zero path does
not necessarely have to be a part of the diamether, as theetfiandoes not always pass through
the center. The zero path is used in the inner most regiorn (@wex of G,) to set the0 for the
theta of each isoheight line. Outside this region, the propagatibd and linear interpolation, as
described above, are applied. The point with maximum ecdcégtcan be given, or automatically
chosen using any of the existing shape orientation mettrsssfor example [20], even though an
orientation method taking into consideration the desirefhanation freedom would be optimal.

Periphery to Center
An ordering of the pixels in each isoheight line can be useabgign integer values 6éfto each pixel.

During the process of decomposing the shape into regioes3setion 3), each vertex is assigned the
highest number of pixels in an isoheight segment includet$ireceptive field.

Algorithm 3 starts from the leaves of the RAG of the decompasiof S and propagates the allocated

Algorithm 3 PtoC' - Assign integer intervals faot for all vertices ofGG
Input: GraphG(V, E) as produced by Algorithm 1.

1: for all v € V,deg(v) = 1 dov.widthf = v.mazwidth,

2: repeat

3. for all v, € V, with v,.0 computedv(v, v,) € F do

4 vwidthd = max{v.mazwidth,_,,, e vo-widthd} [*compute maximum number of val-

ues required fop for the subtree rooted at*/

end for

until all v.widthé are computed

. having the interval widthy.0; — v.0; = v.widthf for all v € V, computev.f; (the interval
beginning) starting with the root, like in Algorithm 2

Output: GraphG, with 6 intervals|v.6,, v.6,] computed for each region

Noa




decomposition zero path radial coordinate 0 (CtoP) 0 (PtoC)
Figure 3. Decomposition, zero path, and isolines for the two shapesin Figure 1.

values to the center. A ’zero’ value has to still be decided$ee section above). The valuetofor
each pixel can be computed by doing an additional parsing fiwe root to all vertices, and then,
down the pyramid to all pixels.

5 Experiments

An implementation for Algorithms 1, 2, and 3 has been madgute 3 shows for two poses of a hand
from the Kimia99 database [15] their segmentation into@ktgorithm 1). It also shows the used
zero path, the isoheight lines of the radial coordimatéerived from the eccentricity transform, and
isoheight lines of the two mappings féicomputed with Algorithms 2 and 3.

In the case of Algorithm 2, the jagged isoheight lineg afe due to the smoothness/roughness of the
shape boundary i.e. curvature of the shape boundary at thpoaris of isoheight lines, and partly due
to the simple implementation (point projection by closesinpsearch, integral along line estimation
by sum of line segment lengths, etc.).

In the case of Algorithm 3, the jagged isoheight lineg afe due to the smoothness/roughness of the
shape boundary. Around the region boundaries, it is duegtavlly integer values fdt are set (in this
case is not smooth over the region boundaries). Corresponddme®geen connected subparts of
the shapes have to be found in order to find correspondentssdrethe integef values.

In both cases improvements can be made by a more globalaleoisihed interval allocated for each
region and each isoheight line.

Quantitative error measurements for the mapping from orse po the other are planned.



6 Conclusion and Outlook

This paper presents a concept for mapping a polar-like ¢oatel system to a non-rigid binary shape.
Initial experimental results are presented. More globalisiens can be used to obtain smoother
angular isoheight lines, and additional correspondenedsden part structures can help to solve
failed correspondences. Further quantitative evaluatmhextension to non simply connected shapes
is planned.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching @rjdct recognition using shape
contexts.IEEE Transactions Pattern Analysis Machine Intelligeriz®(4):509-522, 2002.

[2] W. R. Crum, T. Hartkens, and D. L. Hill. Non-rigid imagegistration: theory and practic&he
British Journal of Radiology77 Spec No 2, 2004.

[3] Pedro F. Felzenszwalb. Representation and detectidefofmable shapes. VPR (1) pages
102-108. IEEE Computer Society, 2003.

[4] Pedro F. Felzenszwalb and Joshua D. Schwartz. Hiemathiatching of deformable shapes.
In CVPR IEEE Computer Society, 2007.

[5] Adrian lon, Walter G. Kropatsch, and Eric Andres. Euelish eccentricity transform by discrete
arc paving. InL4th IAPR International Conference on Discrete GeometrZfamputer Imagery
(DGCI), Lecture Notes in Computer Science, Lyon, France, April@2@&pringer.

[6] Adrian lon, Gabriel Peyré, Yl Haxhimusa, Samuel Raitiwalter G. Kropatsch, and Laurent
Cohen. Shape matching using the geodesic eccentricitgftian - a study. IriThe 31st Work-
shop of the Austrian Association for Pattern RecognitioAGM/AAPR) pages 97-104, Schloss
Krumbach, Austria, May 2007. OCG.

[7] Jean-Michel Jolion and Azriel Rosenfeldd Pyramid Framework for Early VisionKluwer,
1994.

[8] Reinhard Klette and Azriel Rosenfel®igital Geometry Morgan Kaufmann, 2004.

[9] Walter G. Kropatsch. Building irregular pyramids by dgaaph contractionlEE-Proc. Vision,
Image and Signal Processint42(6):366—374, December 1995.

[10] Walter G. Kropatsch, YIl Haxhimusa, Zygmunt Pizlo, aBdorg Langs. Vision pyramids that
do not grow too highPattern Recognition Letter26(3):319-337, 2005.

[11] Walter G. Kropatsch, Adrian lon, YIl Haxhimusa, and Thas Flanitzer. The eccentricity trans-
form (of a digital shape). 113th IAPR International Conference on Discrete Geometry fo
Computer Imagery (DGCJLecture Notes in Computer Science, pages 437-448, HunQary
tober 2006. Springer.

[12] Haibin Ling and David W. Jacobs. Shape classificatiangithe inner-distancd EEE Transac-
tions Pattern Analysis Machine Intelligen@9(2):286—299, 2007.

[13] Peter Meer. Stochastic image pyramidSsomputer Vision, Graphics, and Image Processing
45(3):269-294, March 1989. Also as UM CS TR-1871, June, 1987



[14] Ozge C. Ozcanli and Benjamin B. Kimia. Generic objecbgnition via shock patch fragments.
In BMVC’07, pages 1030-1039. Warwick Print, 2007.

[15] Thomas B. Sebastian, Philip N. Klein, and Benjamin Bnkd. Recognition of shapes by editing
their shock graphslEEE Transactions Pattern Analysis Machine Intelliger2@(5):550-571,
2004.

[16] James A. SethiarLevel Set Methods and Fast Marching Metho@ambridge University Press,
2nd edition, 1999.

[17] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. W. Kerc Shock graphs and shape match-
ing. International Journal of Computer Visio80:1-24, 1999.

[18] Eric W. Weisstein. “curvilinear coordinates.” from mhavorld—a wolfram web resource.
http://mathworld.wolfram.com/CurvilinearCoordinatessnl.

[19] Eric W. Weisstein. “level set” from mathworld-a wadin web resource.
http://mathworld.wolfram.com/LevelSet.html.

[20] Jovisa D. Zunic, Paul L. Rosin, and Lazar Kopanja. Ondhentability of shapes.|IEEE
Transactions on Image Processjrigp(11):3478—-3487, 2006.



