
Multi-Scale 2D Tracking of Articulated Objects Using

Hierarchical Spring Systems

Nicole M. Artnera,c,, Adrian Ionb,c, Walter G. Kropatschc

aAIT Austrian Institute of Technology, Vienna, Austria
bInstitute for Numerical Simulation, University of Bonn, Germany

cPRIP, Vienna University of Technology, Austria

Abstract

This paper presents a flexible framework to build a target-specific, part-based

representation for arbitrary articulated or rigid objects. The aim is to suc-

cessfully track the target object in 2D, through multiple scales and occlusions.

This is realized by employing a hierarchical, iterative optimization process

on the proposed representation of structure and appearance. Therefore, each

rigid part of an object is described by a Hierarchical Spring System repre-

sented by an attributed graph pyramid. Hierarchical Spring Systems encode

the spatial relationships of the features (attributes of the graph pyramid)

describing the parts and enforce them by spring-like behavior during track-

ing. Articulation points connecting the parts of the object allow to transfer

position information from reliable to ambiguous parts. Tracking is done in

an iterative process by combining the hypotheses of simple trackers with the

hypotheses extracted from the Hierarchical Spring Systems.
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1. Introduction1

The task of monocular tracking of articulated objects is a challenging2

one. Complex articulations can significantly change the appearance of the3

object and distant parts can perform very different motions. These aspects4

affect popular trackers [1] that consider the appearance of simple shapes5

(e.g. rectangles), as certain poses might not be very compact and cover only6

a small portion of the bounding box, and trackers that assume a simple global7

motion model for the whole part.8

The most promising approaches of articulated tracking are quite complex9

and depend to a large extent on strong motion and subject specific priors.10

While they do deliver excellent results for the object class they have been de-11

signed for (e.g. humans), most of them do not generalize very well and would12

need extensive adaptation to work for other object classes. Recent examples13

of such well performing specialized methods are Lee and Elgammal [2], who14

introduce a model that ties together the human body configuration manifold15

and visual manifold in one representation, which is then used for tracking16

within a Bayesian framework, and Brubaker et al. [3] who present a physics-17

based model with a bio-mechanical characterization of lower-body dynamics,18

where tracking is accomplished with a form of sequential Monte Carlo infer-19

ence.20

In contrast, the presented approach requires only basic information on21

the structure of the target object and no motion prior, which makes it less22

object-class specific and more general. Objects are represented as features23

in arbitrary configurations. Tracking a whole object builds on simple, single24

hypothesis feature trackers, and deals with partial occlusion, scaling, and25
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limited non-rigid deformation. The output consists of the 2D positions and26

bounding box of the object parts in every frame of the video.27

At the heart of the method is a representation which describes the ap-28

pearance and kinematics of articulated objects. It consists of multiple object29

parts modeled by rectangular regions of interest and features extracted out30

of these regions. Kinematics are realized by connecting object parts through31

articulation points, which limit the movement of each part to a circle (see32

Fig. 3).33

Multiple feature trackers, called sub-trackers, are used for each part: one34

attempting to track the whole part and the rest considering small fixed-size35

windows centered around detected interest points (see Fig. 1).36

To deal with occlusion and avoid drifting of the sub-trackers we model37

the parts as a graph hierarchy with two levels: one top-level vertex for the38

sub-tracker tracking the whole part and multiple bottom-level vertices for39

the interest-point sub-trackers. The edges of the graph are weighted with40

the pairwise distances between the features, and act like springs pushing and41

pulling the vertices to reduce the deformation of the graph-structure of the42

parts, thus giving the name Hierarchical Spring System (HSS).43

The final position of each feature (top and bottom level) is obtained44

through a mediation between the corresponding tracker, pulling towards what45

it considers to be the target region, and the HSS trying to enforce the initial46

structure (reduce deformation). The weight of each of these two factors is47

dynamically adjusted depending on the similarity of the region at the cur-48

rent position with the known appearance of the part. Thus, during occlusion49

(by a different looking object) the HSS has more weight allowing for badly50
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tracked features to be placed at known relative positions, while at times of51

successful tracking the very confident sub-trackers are given more weight, al-52

lowing for a certain amount of non-rigid deformation. A global scaling factor53

is maintained and used to adjust the “relaxed” (no deformation) lengths of54

the springs, allowing to cope with global changes in scale.55

Articulated objects are modeled as multiple HSS corresponding to each56

part connected by vertices representing the articulation points. Articulation57

points have no corresponding sub-trackers and move solely under the “forces”58

of the adjacent parts. Thus movement of one adjacent part is transmitted to59

the other enforcing articulated motion.60

All computation (position of sub-trackers, scaling, and articulation) is61

done using local confidence measures to balance between trusting the sub-62

trackers i.e. the visual feedback, and the object structure i.e. the prior knowl-63

edge.64

1.1. Related work65

First introduced by Fischler et al. in 1973 [4], pictorial structures represent66

an object by its parts (e.g. head, torso, arms, legs) arranged in a deformable67

spatial configuration. This deformable configuration is represented by spring-68

like connections between pairs of parts. Object recognition or tracking can69

be done by minimizing the energy in this deformable configuration to find70

the most likely configuration of the object parts in an image. Felzenszwalb71

et al. employed this idea in [5] to do part-based object recognition for faces72

and articulated objects (humans). Their approach is a statistical framework73

minimizing the energy of the spring system learned from training examples74

using maximum likelihood estimation. Ramanan et al. apply in [6] the ideas75
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from [5] in tracking people.76

Besides Computer Vision, the proposed representation is also related to77

representations used in Computer Graphics called mass-spring systems [7].78

Mass-spring systems are a physically based technique that is used to effec-79

tively model deformable objects for animations in Computer Graphics (e.g.80

a flag moving in the wind). An object is modeled by a collection of point81

masses connected by springs in a lattice structure.82

Different from the mentioned approaches, we stress solutions that emerge83

from the underlying structure, as opposed to using structure to verify sam-84

pled hypothesis. The proposed representation not only connects parts in85

a deformable way like in [5], but introduces a bottom level consisting of86

“small” region descriptors described by a Spring System. In comparison to87

Pictorial structures the presented approach does not need training, because88

the spring-like behavior is modeled via a combination of structural and ap-89

pearance offsets (provided by the sub-trackers).90

Even though the bottom level of the proposed hierarchical Spring System91

is similar to a mass-spring system [7], there are significant differences. The92

presented Spring System is used to supply structural feedback for tracking93

algorithms, which is a totally different purpose and it does not consider any94

external forces (e.g. gravity). In the proposed approach a vertex does not95

have a mass, but the force of the spring is calculated by its confidence in the96

current frame.97

1.2. Contributions98

Our main contribution is the flexible framework for representing and99

tracking articulated objects of arbitrary complexity with each (rigid) part100
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of an object represented by a Hierarchical Spring System (HSS), connected101

to other parts by articulation points. Articulation points are used to trans-102

fer information between the HSS of the adjacent object parts. All decisions103

balance between “seeing” and “knowing” using maintained confidence mea-104

sures. We pose tracking as a hierarchical optimizations process on structure105

and appearance.106

A preliminary version of our approach has been presented in [8]. Possible107

applications are action recognition, human computer interfaces, motion based108

diagnosis and identification, etc.109

1.3. Overview110

This paper is organized as follows: Section 2 describes how to represent111

the appearance and structure of a rigid object in a HSS. It is explained how112

our approach combines the hypotheses of the sub-trackers and the HSS. In113

Section 3 the introduced concepts of Section 2 are used to model articulated114

objects consisting of several rigid object parts. Additionally, articulation115

points and the information transfer between the object parts are explained.116

Section 4 presents the algorithm of the tracking with the help of pseudo code.117

In Section 5 experiments qualitatively and quantitatively analyze the results118

of the presented approach. Section 6 gives a conclusion, and the Appendix119

introduces the employed region descriptor (Sigma Sets).120

2. Representation and tracking of a rigid object121

Background clutter, similar objects in the scene and occlusions are the122

main reasons for tracking failure, because they can be good matches to the123

model of the target object and thus distract the tracker.124
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If the appearance of an object is uniform (no texture, mainly one color),125

it is advisable to describe and track it by one feature (e.g region descriptor).126

Tracking whole rigid objects or parts can deliver robust positions even during127

motion blur due to the large image region considered. Nevertheless, in cases128

of partial occlusion or scaling such a description is not able to aid the tracker129

in overcoming the difficult distractions by providing useful information.130

On the other hand, if the target object is textured (e.g. face of a human),131

it is possible to extract several discriminative features out of the region cov-132

ering the object and track them successfully when there are no distractions.133

By additionally encoding the spatial relationships of the features in the rep-134

resentation of the object, it is possible to deal with occlusions and estimate135

scaling. Unfortunately, these “small” features are more sensitive to noise and136

fast motion of the object (big distances between frames, motion blur).137

As we cannot generally decide which representation is more suitable for an138

object and to get the best of both worlds, we describe and track objects using139

multiple features and sub-trackers, where the spatial relationships of the140

features are described and enforced by a Hierarchical Spring System (HSS).141

2.1. The sub-tracker142

The purpose of each sub-tracker is to attempt to track a fixed-size region143

independently of the other sub-trackers, based solely on the content of the144

image. At any frame, given as input an initial estimate of the position of a145

tracked region, the corresponding sub-tracker will return an offset to what it146

considers to be the correct position of the target region.147

7



(a) (b) (c)

Figure 1: Example representation for a part (a) Feature for the top level sub-tracker. (b)

Features for the bottom level sub-trackers. The white edges are the edges of G0. (c)

Corresponding graph pyramid P = {G0,G1} (not all bottom level vertices and edges are

shown).

2.2. The Hierarchical Spring System (HSS)148

We represent the HSS of an object as a graph pyramid with two levels149

P = {G0,G1}, where the top level G1(V1,E1) contains one single vertex150

V1 = {vp}, and the bottom level graph G0(V0,E0) multiple vertices con-151

nected by edges. There is an one-to-one mapping between the vertices in152

the graph pyramid and the features with their corresponding sub-trackers.153

Edges are weighted with the known distance in the image plane between the154

features corresponding to the incident vertices. The vertex in the top level is155

connected with all vertices in the base level to allow communication between156

the two levels. Figure 1 shows an example representation for an object and157

the corresponding regions for the sub-trackers. (Options for inserting the158

edges are discussed in Section 5.3.1).159

2.3. Tracking with sub-trackers and HSS160

For each frame the first hypotheses of the sub-trackers are refined using161

an iterative alternation and combination of the offsets from the sub-trackers162

and the offsets from the HSS.163
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2.3.1. Energies in the HSS164

The HSS encodes the spatial relationships of the features of the object165

considering their spatial distances and arrangement. Its task is to keep the166

structure of the features as similar as possible to the initial state in the first167

frame. This is realized by providing the tracker with structural offsets (see168

Sec. 2.3.4).169

To calculate a structural offset for a feature it is necessary to determine170

the extent of the spatial deformation in the HSS. The extent of the defor-171

mation in a vertex v at time i = 1 . . . n is represented and calculated by the172

energy ε in v:173

εi(v) =
∑

e∈Ei−1(v)

δi(ve) · (|e| − |e
1| · x)2, (1)

where Ei−1(v) are all edges e of the levels E0 and E1 at time i incident to174

vertex v. δi(ve) is the confidence (see Sec. 2.3.2) of the neighboring vertex175

ve at time i connected by e, which weights the influence of ve on εi(v). The176

motivation behind the weighting with δi(ve) is that occluded neighboring177

vertices should have a lower impact on εi(v) than reliably tracked neighbors.178

|e| and |e1| denote the deformed and initial edge lengths between v and ve,179

and x is the current scaling factor of the object. x is used to apply a global180

scaling to the initial edge lengths |e1| to be able to track an object changing181

its distance to the camera (see Sec. 2.3.3).182

2.3.2. The confidence of a vertex183

The confidence is used to dynamically weight influences of vertices in184

different calculations and situations e.g. calculation of εi(v) (see Sec. 2.3.1).185
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The confidence δi(v) of a vertex v at time i depends on its degree Iv186

(number of incident edges), its energy εi−1(v) and the dissimilarity Di−1(v)187

between its feature Si−1(v) at time i− 1 to its descriptor S1(v) in the initial188

iteration:189

δi(v) =
Ĩ(v) + ˜εi−1(v) + ˜Di−1(v)

3
(2)

Ĩ(v), ˜εi−1(v) and ˜Di−1(v) are normalized so that 0 ≤ δi(v) ≤ 1.190

Ĩ(v) =
E(v)

E
(3)

where E(v) are the edges incident to vertex v and E are all edges in the HSS.191

˜εi−1(v) =





1− εi−1(v)

εi−1
max

εi−1 ≤ si−1
ε

0 εi−1 > si−1
ε

(4)

where εi−1(v) is the energy in vertex v in iteration i−1 (see Equation 1), si−1
ε192

is the standard deviation of the energies in the local neighborhood (vertex193

v and its connected neighboring vertices), and εi−1
max is the maximum energy194

smaller or equal to si−1
ε . The standard deviation si−1

ε is considered to penalize195

outliers and to normalize with a suitable εi−1
max.196

˜Di−1(v) =





1− h(Si−1(v),S1(v))

hi−1
max

h(Si−1(v), S1(v)) ≤ si−1
D

0 h(Si−1(v), S1(v)) > si−1
D

(5)

where h(Si−1(v), S1(v)) is the distance between the feature Si−1(v) in the197

iteration i−1 and S1(v) in the initial iteration. si−1
D is the standard deviation198

in the local neighborhood (vertex v and its connected neighboring vertices)199

and hi−1
max is the highest distance value in the neighborhood of v, where hi−1

max ≤200
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si−1
D . As with εi−1(v) the idea behind considering the standard deviation is201

to successfully deal with outliers and employ a suitable normalization factor202

hi−1
max.203

2.3.3. Estimation of the scaling factor204

To make the representation invariant to scaling, a scaling factor x∗ is205

estimated once in each frame after the sub-trackers have provided their first206

hypotheses for the positions of the features.207

x∗(v) =
∑

e∈Ei−1(v)

|e|

|e1|
·

δi(ve)∑
ve∈N(v)

δi(ve)
(6)

where x∗(v) is the estimated scaling factor in the local neighborhood of vertex208

v. N(v) is the neighborhood of v (all vertices ve connected to v by e). δi(ve)209

is the confidence of the neighboring vertices in the current iteration. x∗(v)210

is determined by a weighted sum to boost the influence of the most reliable211

vertices and the associated edges.212

The scaling factor x∗(v) of each vertex is used to calculate a scaling factor213

for the rigid object (part of an articulated object):214

x∗(p) =
∑

v∈V0

x∗(v) ·
δf(v)

∑
v∈V0

δf(v)
(7)

where V0 are all vertices v of the bottom level of the HSS.215

2.3.4. Offsets of the HSS216

To compute the offsets of the HSS we employ graph relaxation, which217

models the spring-like behavior of the edges with the purpose to minimize218

the energies in the HSS, i.e. to bring all edges E to have the same length219

ratio as in the model (e.g. initial frame).220
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Figure 2: Graph relaxation examples. B is the initial state of the vertex and B′ the

deformed one. The arrows visualize the structural offset vectors O(B′).

A structural offset vector ~O(v) for vertex v is calculated so that it is221

pointing to a spatial position in which the εi(v) is minimized:222

~O(v) =
∑

e∈Ei−1(v)

δi(ve) · (|e| − |e
1| · x)2 · (−1) · ~d(e, v), (8)

where ~d(e, v) is the unitary vector pointing from a neighboring vertex ve223

toward v. Figure 2 shows the concept of producing structural offsets with224

graph relaxation.225

2.3.5. Combining the hypotheses226

For each feature (vertex) and in each iteration i the corresponding sub-227

tracker and HSS propose a “new” position with the knowledge of the position228

of the previous iteration i− 1 and their offsets.229

Both hypotheses are combined to determine the position cpos of each230

vertex as follows:231

cpos = δi(v) · tpos + (1− δi(v)) · spos, (9)

where δi(v) is the confidence of vertex v at time i, tpos is a vector representing232

the hypothesis of the sub-tracker and spos is the proposed position of v of the233

HSS.234

12



3. Assembling parts to form articulated objects235

Articulated objects are modeled as multiple object parts represented by236

Hierarchical Spring Systems (HSSs) and connected by vertices representing237

articulation points. To exchange information between the parts of the object,238

articulation points are connected to the corresponding HSSs. Articulation239

points have no corresponding sub-trackers and move solely under the “forces”240

of the adjacent parts.241

3.1. The confidence of a part242

The confidence of object parts δi(p) becomes meaningful when the target243

object is an articulated object consisting of several parts connected by artic-244

ulation points. It is computed out of the size I(p), the energy Ei−1(p), and245

the dissimilarity Di−1(p) of the feature Si−1(p) in comparison to S1(p) of the246

initial frame.247

δi(p) = Ĩ(p) + ˜Ei−1(p) + ˜Di−1(p) (10)

Ĩ(p), ˜Ei−1(p) and ˜Di−1(p) are normalized to satisfy 0 ≤ δi(p) ≤ 1.248

Ĩ(p) =
F (p)

F
(11)

where F (p) is the number of features of part p, F is the number of all features249

in the object.250

The sum of all local energies in object part is normalized by the number251

of features (vertices) in part p:252

˜Ei−1(p) =

∑
v∈p

Ei−1(v)

F (p)
. (12)
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˜Di−1(p) =





1− h(Si−1(p),S1(p))

hi−1
max

h(Si−1(p), S1(p)) ≤ si−1
D

0 h(Si−1(p), S1(p)) > si−1
D

(13)

where h(Si−1(p), S1(p)) is the distance between the feature Si−1(p) in the253

current iteration and S1(p) in the initial frame. si−1
D is the standard deviation254

of the distances for all parts in the target object and hi−1
max is the highest255

distance value, where hi−1
max ≤ si−1

D .256

3.2. Scaling of the whole object257

The estimation of the gobal scaling of the whole articulated object is258

based on the scaling factors of the object parts x∗(p) (see Sec. 2.3.3), which259

are combined by a weighted sum:260

x∗(O) =
∑

p∈O

x∗(p) ·
(δf (p))

∑
p∈O

(δf (p))
. (14)

3.3. Articulation points: agents of the information transfer261

An articulation point connects several rigid parts. It allows them to move262

independently from each other, while keeping the same distance to it. The263

movement of a point of a rigid part in the image plane is constrained to a264

circle centered at the articulation point. The radius is equal to the distance265

between the point of the rigid part and the articulation point. Figure 3266

illustrates this concept.267

If the articulation point moves it “pulls” the connected rigid part to keep268

the distance constrain, and vice versa. In this way position information is269

transfered from one rigid part to an adjacent one over the articulation point.270
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p1

p2

a

articulated motion local coordinate system

Figure 3: Left: distance constraints imposed by articulation points. Right: articulation

point a in the local coordinate system defined by an ordered pair of points p1, p2.

3.3.1. Modeling articulation points271

Planar articulated motion from frame f to frame f + δ can be decom-272

posed into: an independent rotation of the rigid parts around the articulation273

point, followed by a common translation of the parts (and the articulation274

point). Given two pairs of points corresponding to two rigid parts performing275

articulated motion, each at frame f and f + δ, the rotation (cos(θ), sin(θ))276

of each part, the common translation (Ox, Oy) as well as the position of the277

articulated point at frame f are obtained by solving the resulting system of278

eight equations with eight unknowns.279

During the initialization of the representation a local coordinate system of280

each pair of features of an object part is created (see Fig. 3). The coordinates281

of the articulation point in this coordinate systems are stored. Having the282

position of any two features is then enough to define the coordinate system283

and reconstruct the position of the articulation point in every frame.284

3.3.2. Tracking articulation points285

At any time during tracking, knowing the positions of two vertices of a286

part and the current scaling factor is sufficient to generate a hypothesis for the287

positions of all adjacent articulation points. These hypotheses are produced288
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with the local coordinate system defined by the two most confident features289

(see Sec. 2.3.2) – further on named reference vertices – of each part.290

The hypotheses of all parts connected to an articulation point are com-291

bined with a weighted sum to calculate the current position apos of the artic-292

ulation point a. The weight for each hypothesis depends on the confidence293

of the corresponding part (see Sec. 3.1).294

apos =
∑

p∈P(a)

yp·
δi(p)

∑
p∈P(a)

δi(p)
, (15)

where P(a) is the set of parts connected to the articulation point a. yp is the295

hypothesis determined with the local coordinate system (which considers the296

current scaling factor x) of part p. δi(p) is the confidence of part p. With297

this weighted sum, the influence of ambiguous parts on the position of the298

articulation point is low (e.g. if a part is occluded) and of reliably tracked299

parts high.300

3.4. Information transfer301

For each rigid part, the distance constraint to the articulation point is302

enforced by connecting all vertices from the bottom level and the vertex from303

the top level with the corresponding articulation point. The articulation304

point “transfers” position information from reliably to ambiguously tracked305

parts through its distance constraints (circles).306

The information transfer is realized with graph relaxation by calculating307

a structural offset vector. Therefore, Equ. 8 is adapted as follows:308

~O(v) = δi(v) · (|e| − |e1| · x)2 · (−1) · ~d(e, v), (16)
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where δi(v) is the confidence of vertex v, |e| is the length of edge e connecting309

v with a and |e1| represents the length of the same edge in the initial frame.310

~d(e, v) is the unitary vector pointing from a vertex v toward the articulation311

point a.312

4. Tracking as a hierarchical optimization process - the algorithm313

The algorithm to track articulated objects using HSSs is summarized in314

Algorithm 1.315

Tracking is done in a top to bottom or bottom to top process, depending316

on the confidence values (see Alg. 1, Line 8). In frames when the tracking317

is reliable, the springs connecting the top vertex with the bottom level are318

used to generate additional structural offsets for the vertices in the bottom319

level (top to bottom processing). During occlusions this flow of structural320

feedback is inversed s.t. structural offsets are determined for the top vertex321

(bottom to top processing). The decision for top to bottom or bottom to top322

processing is taken by a comparison of the confidence values of the top and323

bottom vertices. In cases of ambiguity bottom to top processing is preferred324

(confidence value of top vertex is smaller than confidence of bottom vertex).325

5. Experiments326

The following experiments show the application of the presented frame-327

work on concrete tracking tasks with different complexities and difficulties.328

5.1. The sub-trackers329

We use the Mean shift algorithm for the sub-trackers. It is a simple, single330

hypothesis tracker, which on its own is not able to track complex, articulated331
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Algorithm 1 Algorithm for tracking articulated objects.
1: processFrame

Ti threshold maximum number of iterations

2: i← 1 ⊲ iteration counter

3: while (i < Ti) do

4: for every rigid part do

5: calculate confidences δi(v) and δi(p)

6: estimate positions with sub-trackers top and bottom

7: if i > 1 then

8: decide between top to bottom or bottom to top processing

9: do structural iteration top and bottom

10: end if

11: mix hypotheses for positions depending on δi(v)

12: update energies in HSS

13: if i == 1 then

14: estimate scaling factor

15: end if

16: end for

17: for every rigid part do

18: update δi(v) and δi(p)

19: end for

20: calculate current position of articulation point

21: for every rigid part do

22: information transfer

23: update energies in HSS

24: end for

25: i← i+ 1

26: end while

27: end
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objects successfully.332

Mean shift efficiently searches for local extremal values in a probability333

distribution with a search window, and generates an offset vector pointing334

to the corresponding position. The value of the distribution at a certain335

point depends on the similarity between features extracted within a window336

centered at that point and features extracted in an initialization phase from337

the region to be tracked.338

5.2. The region descriptors339

Sigma Sets are used in the experiments as the region descriptors (features)340

describing the appearance of the corresponding regions of interests covering341

the target object. Appendix A gives a brief recall of Sigma Sets.342

The extraction of the features in every frame is very expensive with regard343

to computation time. In a frame with a resolution of 480 × 640 pixels the344

calculation of the features compensates between 60 to 70 seconds of the345

overall computing time of maximum 75 seconds per frame.346

5.3. Initializing the Hierarchical Spring Systems347

Features/Vertices. Before a HSS can be built, a target object needs to be348

defined and suitable features describing the object have to be selected. This349

can be done automatically by methods like in [9, 10, 11, 12] or semi-manually350

as for the experiments in this paper.351

The top level is described by one region descriptor S1(p), extracted out352

of a region of interest (ROI) covering the whole object part (Fig. 1(a)). The353

bottom level consists of several smaller region descriptors, which are from354

the same ROI (see Fig. 1(b)). A Harris corner detector is applied on the ROI355
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(a) (b) (c)

Figure 4: Building a HSS. Target object: head of jumping jack. (a) Selected features:

region descriptors (red boxes). (b) Inserted edges: triangulated graph. (c) Inserted edges:

fully connected graph.

to find promising positions for the smaller region descriptors S1(v). Around356

each corner point a small ROI is built to extract a Sigma Set (e.g. 9 × 9357

pixels).358

Edges. The edges can be inserted with a Delaunay triangulation (see Fig-359

ure 4(b)) or a fully connected graph can be built (see Figure 4(c)). For more360

details on inserting the edges refer to Section 5.3.1.361

Articulation points. They can be initialized manually (as in the following362

experiments) or automatically by observing the articulated motion of the363

target object [13, 14].364

5.3.1. Connectivity issues365

This section deals with the impact of the connectivity of the vertices in366

the HSS on the quality of the structural feedback i.e. on the structural offset367

vector.368

Given the features represented as vertices, there are different possibilities369

for adding the edges connecting them e.g.: a Delaunay triangulation or a370

fully connected graph (see Figure 4).371
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(a) (b) (c)

Figure 5: Ambiguity of structural offset vectors. (a) Vertex degree 1, all positions on circle

are minima. (b) Vertex degree 2, two minima. (c) Vertex degree 3, one unique minimum.

If a vertex v is of degree 1 – only connected to one neighbor – the struc-372

tural feedback determined by graph relaxation is ambiguous. The local en-373

ergy εi(v) in the current vertex v is minimized (εi(v) = 0.0) by moving v374

to any point on the circle centered on its neighbor with the radius equal to375

the “original” length |e1| of the edge connecting them. Therefore, there is376

no unique global minimum or structural offset vector for v. For a vertex v377

with degree 2, the ambiguity is reduced to two possible positions, both with378

εi(v) = 0.0. Above degree 2, there is only one position in the image, which379

minimizes εi(v). Figure 5 visualizes these three cases.380

In our experiments both a Delaunay triangulation and a fully connected381

graph are used as representation. Table 1 lists important facts of both rep-382

resentations.383

As Tab. 1 lists, a fully connected graph may produce superior results.384

When determining the structural offset vector (see Equation 8) each vertex385

gets structural input from every other vertex in the graph. Especially in386

cases of occlusion, this leads to a faster propagation of “correct” position387

information (see Figure 6 in Section 5). The only drawback we identified for388

the fully connected graph is the, in our experiments insignificant, increase in389

processing time when calculating the structural offset vector.390
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Representation Connectivity Quality of struc.

feedback

Propagation of in-

formation

Triangulation low, some vertices

have only degree 2

robust without

occlusion, can

be ambiguous in

cases of occlusion

slow for graphs

with many ver-

tices

Fully connected high, all vertices

of degree 3 or

higher

robust with and

without occlu-

sions

fast, independent

on the number of

vertices

Table 1: Comparison of facts of a triangulated and a fully connected graph.

5.4. Experimental setup391

The videos employed for the following experiments are self-produced392

(800×600 pixel), from the Motion of Body (MoBo) database [15] (486×640393

pixel) and from Amit et al. [16] (352× 288 pixel).394

The videos are selected considering the current status of the presented395

approach. Even though the proposed framework is able to successfully track396

objects through articulated motion and scaling, it can only deal with affine397

or perspective changes up to a certain degree. The reason for this lies in the398

current state of the HSS as it does not consider the 3D space when generating399

structural offset vectors. Therefore, videos with objects moving in the 3D400

space are not suitable for our experiments and will lead to significant errors401

in tracking.402

In all experiments presented in this section, the target object is initialized403

manually by selecting the parts of the object and defining the positions of404

the articulation points. Except of the video in experiment 1, the ground405

truth was determined by us and is a result of manually selecting the center406
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positions of the object parts.407

The results presented in this section (images and graphs) are best viewed408

in color.409

5.5. Experiment 1: Occlusion410

This experiment focuses on occlusions and compares the tracking results411

of Mean shift alone and our combined approach. The video used in this412

experiment is from the work of Amit et al. [16]. It shows the face of a woman413

being partially occluded several times.414

In Figure 6 one can see the results of tracking with Mean Shift alone, with415

a HSS with triangulated graphs and with a HSS using fully connected graphs.416

As already mentioned in Section 5.3.1, the fully connected graph is superior417

to the triangulated graph in challenging cases of occlusion, which occur in418

this video sequence. The face is occluded several times by a highly-textured419

object (magazine) moving in different directions and occluding different parts420

of the face. This leads to big confusions and errors in the tracking with Mean421

Shift alone (see Fig. 6 (top)).422

Figure 7 shows the quantitative result of this experiment. This results423

confirm the qualitative results. The ground truth is provided by [16]. When424

comparing the results of Figure 7 with the results in [16], one can see that425

the methods have a similar error rate. The approach of Amit et al. [16] has426

problems in frames 500 to 600, where as our approach performed better in427

this period .Both methods are challenged in frames 700 to 800, but this time428

the method of Amit et al. is slightly better.429
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Frame 1 Frame 222 Frame 539 Frame 849

Figure 6: Experiment 1: Tracking an occluded face with Mean Shift (top), with our

approach in a triangulation (middle) and our approach with a fully connected graph (bot-

tom). The images show the features of the bottom level connected by edges to illustrate

the deformations and the qualitative results.

5.6. Experiment 2: Articulated motion with self-occlusion430

This experiment uses a video of [15] of subject 04011 in view vr16 7. The431

challenges are self-occlusions and similar appearance in several object parts.432

(We do not show images of subject 04011 as it is not allowed by [15].)433

Figure 8 shows that the presented representation significantly improves434

the quality of the results of tracking with Mean Shift. The left lower arm is435

the most challenging object part to track, but our approach is able to recover436

well from wrong hypotheses.437
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Figure 7: Experiment 1: Deviation from ground truth. (full) using HSS with a fully

connected graph, (planar) using HSS with a triangulated graph, and (without) using only

tracking with Mean Shift.

5.7. Experiment 3: Articulated motion under scaling438

In experiment 3 the aim is to successfully track an articulated object439

consisting of 8 parts connected via 6 articulation points (jumping jack). The440

challenges are the scaling (approximately from 100 % to 130 % and to 80 %.)441

and the two types of motion: articulated and camera.442

In Figure 9 one can see three frames of the video. Figure 10 shows the443

deviation from the manually labeled ground truth of tracking with Mean Shift444

alone, of our approach with HSSs represented by planar triangulated graphs445

or fully connected graphs. As expected there is no remarkable difference in446

the results for planar and fully connected graph.447
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Figure 8: Experiment 2: Deviation from ground truth: (top) tracking with Mean Shift,

(bottom) tracking with our approach with fully connected graphs.

5.8. Experiment 4: Fast movements448

In this experiment the robustness and recovery potential of the HSS is449

tested. The employed video shows a woman waving a hand very fast, which450
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Frame 1 Frame 118 Frame 621

Figure 9: Experiment 3: Some frames of the video showing the scaling.
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Figure 10: Experiment 3: Deviation from ground truth. The position error in pixels is a

sum over the error of all object parts.

leads to heavy motion blur.451

Figure 11 shows some frames of the video sequence including qualitative452

results for tracking with Mean Shift alone and our approach with fully con-453

nected graphs. Frames 155 and 170 show the superior results of our approach454

in comparison to Mean Shift on its own. Figure 12 evaluates the results in455
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Frame 1 Frame 68 Frame 155 Frame 170

Figure 11: Experiment 4: Tracking an articulated object through motion blur. (top)

Tracking with Mean Shift and (bottom) our approach with HSS and fully connected

graphs.

concrete numbers.456

5.9. Experiment 5: Tracking a whole human457

In experiment 5 representations with 10 object parts and 9 articulations458

points are built and track walking humans in 04002 and 04006 in view vr7 7459

of [15]. Fig. 13 shows images of 04002 and 04006, where in (d) one can see460

that for some parts it is not possible to extract enough local features. In such461

cases also tracking is more difficult and depends mainly on the top level of462

the HSS. As expected tracking with our approach by combining Mean Shift463

and HSSs delivers the better result (see Fig. 14).464

5.10. Discussion and future work465

The presented experiments showed the application of the proposed frame-466

work in tracking objects of different complexity under “simple” motion, ar-467
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Figure 12: Experiment 4: Deviation from ground truth. (without) tracking the object

parts with Mean Shift, (full) our approach with fully connected graphs.

(a) (b) (c) (d)

Figure 13: Experiment 5: (a) frame of subject 04002 with the top level of the HSSs and

the articulation points, (b) subject 04002 and corresponding bottom level of HSSs, (c)

frame of subject 04006 and its top level with the articulation points, and (d) showing the

bottom level of the HSSs of 04006.
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Figure 14: Experiment 5: Deviation from ground truth. (top) video with subject 04002 in

view vr7 7, (bottom) subject 04006 in the same view. For both videos results with Mean

Shift (without) and with our approach (full) are shown. The position error in pixels is a

sum over the error of all object parts.
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ticulated motion, camera motion, scaling, occlusion, and motion blur.468

Even though tracking with Mean shift and Sigma Sets are employed as469

basic building blocks, both the tracker and the region descriptor are ex-470

changeable. The focus of our work lies in the hierarchical representation.471

The experiments in this section showed that a fully connected graph as472

representation for a HSS is equal or superior to a triangulated graph (es-473

pecially during occlusions). Therefore, we intend to exclusively employ this474

representation in future. The increase in processing time is insignificant, as475

most of the processing time (approximately 95 %) is spent in calculating476

region descriptors and building distributions.477

Besides its advantages during occlusion, the fully connected graph is also478

a good basis to start future research on updating the elements of the HSS.479

When an object moves in the 3D space (e.g. turning around) it happens480

that some regions of the object become invisible and new regions appear.481

Therefore, it is necessary to develop an update process for the elements of482

the HSS, which allows the removal of “old” vertices and the addition of “new”483

ones. This process requires changes in the graph representing the HSS and484

here a fully connected graph is easier to handle than a triangulation.485

Furthermore, we plan to extend our HSS to be able to handle 3D position486

information. One possibility to realize this, could be to stick with Mean Shift487

tracking in 2D, but optimize the Spring System in 3D coordinates.488

6. Conclusion489

This paper presented a flexible framework to represent and track artic-490

ulated objects consisting of several rigid parts connected with articulation491
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points. The parts of the object are described by a Hierarchical Spring Sys-492

tem which is represented by an AG pyramid. The attributes of the pyramid493

are region descriptors and the edges encode the spatial relationships between494

the vertices/attributes. This spatial structure is enforced during tracking by495

the spring-like behavior of the edges in the Hierarchical Spring Systems. The496

“springs” allow to determine structural offsets vectors, which are combined497

with the offset vectors provided by the employed Mean Shift tracker. Posi-498

tion information can be transfered between the parts over the corresponding499

articulation points depending on the confidence of the parts and their fea-500

tures.501

Appendix A: Sigma Set502

Hong et al. introduced the Sigma Set [17], a novel second order statistics503

based region descriptor. The sigma set descriptor is based on the covariance504

matrix descriptor, which was first introduced as a region descriptor by Tuzel505

et al. [18]. Covariance matrices are invariant to scaling and rotation up to a506

certain degree (depends on the feature selection) and allow the combination507

of multiple features in an elegant way. Furthermore, compared to other508

region descriptors, region covariance is low-dimensional and can be efficiently509

calculated using integral images. However, there are evident disadvantages510

enumerated by Hong et al., which led to the development of the Sigma Set511

(e.g. covariance matrices do not lie on the Euclidean space, which requires512

time-consuming operations through Rienmannian geometry).513

The covariance matrix descriptor [18] can be extracted out of a two di-514

mensional image I of size W ×H . F is a feature image of size W × H × d515
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extracted from I, encoding a feature vector of size d at each position F (x, y):516

F (x, y) = φ(I, x, y), (17)

where the function φ can be any mapping including e.g. intensity, color, gra-517

dients and so on. A rectangular region of interest R ⊂ F can be represented518

by the d× d covariance matrix519

C(R) =
1

n− 1

n∑

k=1

(zk − µ)(zk − µ)T , (18)

where {zk}k=1...n are the d-dimensional feature vectors of the points in R and520

µ is the mean over all points.521

The basic idea of Hong et al. [17] is to find a small set of points S which522

satisfies C(S) = C(R) so that S is equivalent to R in terms of 2nd order523

statistics. They employ the Cholesky decomposition to construct the Sigma524

Set descriptor S for a region R from the corresponding covariance matrix525

C(R). The space complexity of Sigma Set is (d2 + d)/2. For example for a526

color image I with a feature image F = W ×H × 3 the extracted Sigma Set527

S has 1× 6 dimensions.528

Hong et al. choose the modified Hausdorff distance (MHD) to evaluate529

the distance h between Sigma Sets [17]:530

h(SA, SB) =
1

2d

∑

a∈SA

min
b∈SB

(dE(a, b)) (19)

where SA and SB are two Sigma Sets and dE(•) can be any distance metric531

defined in Rd, such as the Euclidean distance (L2 Norm).532

As Sigma Set is derived from the covariance matrix uniquely, it inherits its533
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robustness and certain invariance against scale and rotation changes. This534

is essential in the presented approach to successfully associate regions in535

consecutive frames of a video.536

In our previous work on tracking with Spring Systems [8] we employed537

covariance matrix descriptors. The deciding fact to chose Sigma Set as region538

descriptor over covariance matrix is the more efficient distance evaluation.539

This evaluation is obligatory in every frame and critically influencing the540

running time.541
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