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a b s t r a c t

This paper presents a method to extract a part-based model of an observed scene from a video sequence.
Independent motion is a strong cue that two points belong to different ‘‘rigid’’ entities. Conversely, things
that move together throughout the whole video belong together and define a ‘‘rigid’’ object or part. Success-
fully tracked features indicate trajectories of salient points in the scene. A triangulated graph connects the
salient points and encodes their local neighborhood in the first frame. The length variation of the triangle
edges is used to label them as relevant (on an object) or separating (connecting different objects). A fol-
lowing grouping process uses the motion of the triangles marked as relevant as a cue to identify the
‘‘rigid’’ parts of the foreground or the background. The choice of the motion-based grouping criterion
depends on the type of motion: in the image plane or out of the image plane. The result is a hierarchical
description (graph pyramid) of the scene, where each vertex in the top level of the pyramid represents a
‘‘rigid’’ part of the foreground or the background, and encloses to the salient features used to describe it.
Promising experimental results show the potential of the approach.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Visual tracking of articulated objects and their rigid parts is an
important and still challenging task in computer vision (see for
example the surveys Yilmaz et al., 2006; Gavrila, 1999; Moeslund
et al., 2006; Aggarwal and Cai, 1999). Example applications are
the analysis of human motion for action recognition, motion based
diagnosis and identification, motion capture for 3D animation and
human computer interfaces.

To be able to detect and associate instances of the object of
interest in consecutive frames, tracking methods use a model of
the target (the object to be tracked). This model is at the minimum
a rectangle-shaped close-up of the object (called a template) or a
color histogram, but can be as sophisticated as an online-trained
classifier (Godec et al., 2010), or a hierarchical description of the
objects’ parts and their salient features (Artner et al., 2011).

Sources for the target model and the objects’ position in the ini-
tial frame are: user input, various segmentation and/or object rec-
ognition methods (e.g. Felzenszwalb and Huttenlocher, 2005), or
an initialization sequence (this work). In the latter case, the se-
quence is usually made specifically for this purpose, it emphasizes
all relevant properties of the target object and does not pose a too
ll rights reserved.
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high challenge to the visual aspect of the extraction of these prop-
erties (e.g. no unnecessary occlusion).

This paper presents a method to extract a model for the ‘‘rigid’’
parts of articulated objects using the motion information in an
‘‘initialization video’’. It follows the intuition that salient features
on the same ‘‘rigid’’ parts will move together:

1. The input of the framework consists of point correspondences
of salient features (e.g. corner points) over time (see Fig. 2).
These correspondences result in a set of trajectories, which give
information about the motion in a scene.

2. A triangulated graph is built based on the positions of the fea-
tures in the first frame. It encodes the spatial relationships
(edges) between the features (vertices) and its deformation
over time is the basis for all processes and decisions (see Fig. 3).

3. The motion in the triangulation is analyzed by determining the
motion of the triangles in or out of the image plane (see Section 3).

4. In a spatio-temporal filtering the features describing ‘‘rigid’’
parts of foreground and background are selected. The result is
a labeling of each triangle in the graph as relevant or separating
depending on the variation of the edge lengths (see Section 4.1
and Fig. 7).

5. All relevant triangles are the input for the hierarchical grouping
process, which is realized by building a graph pyramid, where
the base level is a graph encoding the adjacency of the triangles
(see Section 2). The grouping depends on the similarity of the
motion of the triangles over time (see Section 4.2 and Fig. 9).
oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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6. The output of this process is a hierarchical description of the
‘‘rigid’’ parts in the scene, where in the optimal case each vertex
in the top level of the pyramid represents one ‘‘rigid’’ part (see
Fig. 9).

Like the methods in (Yan et al., 2008; Costeira and Kanade,
1998), the presented approach requires features that haven been
tracked throughout the whole video sequence. We are interested
in obtaining a model that describes the parts using the most salient
features. The above requirement can be seen as a preprocessing
step, which filters out the non-salient features.

1.1. Related work

The work in this paper is related to the concept of video object
segmentation (VOS), where the task is to separate foreground from
background in an image sequence. Notice however the difference:
VOS methods try to group pixels as robustly as possible in a possi-
bly highly cluttered scene, whereas in our case the emphasis is on
extracting the relevant model properties (salient features and ‘‘ri-
gid’’ parts) from a less cluttered scene. VOS methods can be divided
into two categories (Celasun et al., 2001):

Two-frame motion/object segmentation: Altunbasak et al.
(1998) a combination of pixel-based and region-based segmenta-
tion methods. Their goal is to obtain the best possible segmenta-
tion results on a variety of image sequences. Castagno et al.
(1998) describe a system for interactive video segmentation.
An important key feature of the system is the distinction be-
tween two levels of segmentation: regions and object segmenta-
tion. Chen et al. (2006) propose an approach to segment highly
articulated objects by employing weak-prior random forests.
The random forests are used to derive the prior probabilities of
the object configuration for an input frame. Then these priors
are applied to guide the grouping of over-segmented regions.
The work of Alatan et al. (1998) presents the activities of the
COST 211ter group dedicated toward image and video sequence
analysis and segmentation. This work is an important technolog-
ical aspect for the success of emerging object-based MPEG-4 and
MPEG-7 multimedia applications.

Multi-frame spatio-temporal segmentation/tracking: Celasun
et al. (2001) present VOS based on 2D meshes. Tekalp et al.
(1998) describe 2D mesh-based modeling of video objects as a
compact representation of motion and shape for interactive video
manipulation, compression, and indexing. Li et al. (2001) propose
to use affine motion models to estimate the motion of homoge-
neous regions.

There are VOS methods explicitly dealing with the segmenta-
tion of articulated objects (e.g. Chen et al., 2006), but the result
of these approaches is still only a separation of foreground and
background.

Motion segmentation: In comparison to VOS, motion segmenta-
tion approaches work on the basis of trajectories of features and
not on the pixel level.

Lauer and Schnörr (2010) present an approach to automatically
segment multiple motions from tracked features points by spectral
embedding and clustering of linear subspaces. Nordberg and Zog-
rafos (2010) also work on motion segmentation and propose an ap-
proach using the geometry of 6 points in 2D images to infer motion
consistency with regard to rigid 3D motion. As in the work of Lauer
and Schnörr (2010), they are able to segment the motion of an arbi-
trary number of moving objects. Nevertheless, articulated objects
like humans are segmented as one object and not split into their
moving rigid parts.

Automatic articulated model extraction: The most similar works
to the presented approach lie in the field of automatic model
extraction.
Please cite this article in press as: Artner, N.M., et al. Hierarchical spatio-temp
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Yan et al. (2008) use factorization to analyze the trajectories
of tracked features and cluster them into subspaces correspond-
ing to parts. This method can cope with affine motion and can
extract both articulation axes and joints, but their parts have
to be fully rigid or defined by a linear combination of a subset
of the features. Walther and Würtz (2009, 2008) a method to
learn a 2D pictorial model of observed humans for pose estima-
tion. Their approach is based on the 2D trajectories of features,
which are grouped to limbs using spectral clustering. The ex-
tracted limbs are refined by employing multi-label image seg-
mentation methods. They also extract body kinematics by
finding joint connections between the segmented limbs. Drouin
et al. (2008) propose an approach which incrementally identifies
object parts in videos. The main contribution of their approach is
the Modeler, which allows to track several candidates for the
model of the foreground object in parallel. As the approach in
(Walther and Würtz, 2009) their work is limited to movements
in the 2D image plane. In comparison to our approach, this work
requires the initialization of the foreground object.

1.2. Contributions

Our approach goes beyond the related works by following:

� Analysis of trajectories of features and their behavior on a
higher abstraction level – in a triangulation. The related works
group pixels or features independently without considering
spatial proximity and relationships.
� A generic grouping framework, which allows the usage of differ-

ent grouping criteria depending on the motion of the objects in
the video. This flexibility allows to adjust and optimize the pre-
sented framework for any application.
� Build a graph pyramid based on the adjacency graph of the tri-

angulation, guided by the motion of features. There is only a
small number of works (e.g. Conte et al., 2005), where graph
pyramids are employed on spatio-temporal data and to the best
of our knowledge there is no work employing graph pyramids
to extract models based on the motion of features in a
triangulation.
� Besides providing a grouping of features into ‘‘rigid’’ parts like

the related work, the presented approach additionally supplies
a hierarchical description of the ‘‘rigid’’ parts, which can be used
as a model in coarse-to-fine tracking scenarios.

This paper extends the work in (Artner et al., 2009) for out of
plane motion and shows additional experimental results.

1.3. Overview

The paper is organized as follows: in Section 2 graph pyramids
which are employed for the grouping process are briefly recalled.
Section 3 explains how the motion of features in and out of the im-
age plane is described and analyzed. Section 4 presents the generic
framework, which allows to identify the ‘‘rigid’’ parts of articulated
objects. Section 5 shows experiments and in Section 6 conclusions
are given.
2. Recall: irregular graph pyramids

A region adjacency graph (RAG), encodes the adjacency of re-
gions in a partition. A vertex is associated to each region, vertices
of neighboring regions are connected by an edge. Classical RAGs
do not contain any self-loops or parallel edges. An extended region
adjacency graph (eRAG) is a RAG that contains the so-called pseudo
edges, which are self-loops and parallel edges used to encode
oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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(a)

(b) (c)

Fig. 1. Example graph pyramid for a triangulation. (a) Triangulation. (b) Associated
adjacency graph, a vertex for each triangle, edges are added for triangles sharing a
side. (c) Graph pyramid: contracted edges are marked with an arrow.

Fig. 2. Input of framework: trajectories of independently tracked features.

Fig. 3. Triangulated graph is built in first frame (dark box) and deformed over time
(bright box).
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neighborhood relations to a cell completely enclosed by one or
more other cells (Kropatsch, 1995). The dual graph of an eRAG G
is called boundary graph and is denoted by G (G is said to be the pri-
mal graph of G). The edges of G represent the boundaries of the
regions encoded by G, and the vertices of G represent points where
boundary segments meet. G and G are planar graphs. There is a
one-to-one correspondence between the edges of G and the edges
of G, which also induces a one-to-one correspondence between the
vertices of G and the 2D cells (denoted by faces1) of G. The dual of G
is again G. The following operations are equivalent: edge contraction
in G with edge removal in G, and edge removal in G with edge
contraction in G.

A (dual) irregular graph pyramid (Kropatsch, 1995; Kropatsch
et al., 2005) is a stack of successively reduced planar graphs

P ¼ G0;G0

� �
; . . . ; Gn;Gn

� �n o
. Each level Gk;Gk

� �
; 0 < k 6 n is

obtained by first contracting edges in Gk�1 (removal in Gk�1), if
their end vertices have the same label (regions should be merged),
and then removing edges in Gk�1 (contraction in Gk�1) to simplify
the structure. The contracted and removed edges are said to be
contracted or removed in Gk�1;Gk�1

� �
. In each Gk�1 and Gk�1, con-

tracted edges form trees called contraction kernels. One vertex of
each contraction kernel is called a surviving vertex and is consid-
ered to have been ‘‘survived’’ to Gk;Gk

� �
. The vertices of a contrac-

tion kernel in level k � 1 form the reduction window W(v) of the
respective surviving vertex v in level k. The receptive field F(v) of
v is the (connected) set of vertices from level 0 that have been
‘‘merged‘‘ to v over levels 0, . . . ,k.

For the sake of simplicity, the rest of the paper will only use the
adjacency graph G, but for correctly encoding the topology, both G
and G have to be maintained. Fig. 1 shows an example triangula-
tion and pyramid.
3. Analysis of motion

The grouping of the triangles in the scene into ‘‘rigid’’ parts re-
lies on the intuitive idea that features which move together belong
to the same ‘‘rigid’’ part. This section explains how motion is de-
scribed and analyzed in the presented framework. The description
and analysis of motion is based on the trajectories of the indepen-
dently tracked features (see Fig. 2). It is used later to filter the input
for the hierarchical grouping process (see Section 4.1) and for the
grouping itself (see Section 4.2).
1 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).
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The presented framework is generic with respect to the type of
the motion representation and therefore to the criterion in the
hierarchical grouping process.

In comparison to the related work, the presented framework
analyzes the motion of features in a higher abstraction level – a tri-
angulation. The vertices V of the triangulated graph G represent the
tracked features (e.g. corner points with their positions). A Dela-
unay triangulation (Tuceryan and Chorzempa, 1991) is used in
the first frame to insert the edges E, connect the features and rep-
resent their spatial relationships (see Fig. 3).

The advantage of analyzing the motion on triangles is the
reduction of the ambiguity of motion in the 2D image plane (see
Fig. 4 and Section 3.1) and the availability of necessary information
for determining the affine transformation matrices for motion out
of the image plane (see Section 3.2).

3.1. Motion in the image plane

If the movement of the objects in the scene is limited to the im-
age plane, the motion of triangles can be described using their
‘‘translation invariant’’ orientation variation over time.

Definition 1. The orientation variation Oe of an edge e over time t =
2, . . . ,n, where n is the number of frames, is a 1D signal that encodes
at each frame t the accumulated orientation change relative to the
orientation at frame 1. More formally, for edge e and frame t,

OeðtÞ ¼ Oeðt � 1Þ þ hðtÞ;

where h(t) is the relative change in orientation (signed angle) of the
edge e between frames t and t � 1.

We assume that the rotation of an edge between two consecu-
tive frames is less than 180� and therefore we do not deal with the
problem of ‘‘circularity’’ (+180� = �180�).

If any of the two end points of an edge is fixed as the reference
point and the other end point is turned around the reference point
once this will give a value of 360� degrees and turning twice in the
oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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Fig. 4. Advantage of analyzing the motion of features in a triangulation in
comparison to single trajectories/positions. (a) Trajectories of points on the same
‘‘rigid’’ part can differ a lot. (b) The orientation change of triangles on a ‘‘rigid’’ part
are very similar.
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same direction will give 720�, not 0�. The direction of rotation is en-
coded by the sign: counter clockwise (CCW) is positive, and clock-
wise (CW) is negative. Fig. 5 shows an example for the orientation
variation of an edge: if turning 45� CCW, then again 45� CCW, and
afterwards 90� CW, the computed variations will be 0�,
45� = 0� + 45�, 90� = 45� + 45�, 0� = 90��90� (see Fig. 6).

Definition 2. The orientation variation Or of a triangle r is the 1D
signal obtained by taking the average of the 1D signals of the three
edges of the triangle:

OrðtÞ ¼
1
3

X
i

Oei
ðtÞ;

where ei, i = 0,1,2 are the edges of the triangle.
Definition 3. The similarity XO between two in-plane orientation
variation signals O1, O2 is calculated as follows:
Fig. 5. Orientation variation o

(a)

Fig. 6. Determining the similarity between two transformation matrices by applying the
matrices (a) T1 and (b) T2 are compared with the help of polar coordinates: radii (R1,R2)
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XOðO1;O2Þ ¼ max
t¼2;...;n

fjO1ðtÞ � O2ðtÞjg;

where O1(t) and O2(t) are the 1D signals corresponding to two trian-
gles or two groups of triangles.

For an explanation of the 1D signal of a group of triangles refer
to Section 4.2.

3.2. Motion out of the image plane

For objects moving out of the image plane the vertices of the tri-
angles in the image are feature points corresponding to points pro-
jected from the 3D world to the image. The motion of the triangles
is described using 2D affine transformation matrices.

An affine transformation can be described with the help of
homogeneous coordinates by a matrix M = 3 � 3:

P0 ¼ M � P; ð1Þ

where P = 3 � 1, P0 = 3 � 1 are the homogeneous coordinates of the
point(s) before and after applying the transformation. M can be
written as:

M ¼
A B

0 0 1

� �
; ð2Þ

where A describes the linear transformation (rotation, scaling or
shear) and B is the translation (shift).

An affine transformation matrix M is uniquely determined by
the correspondences of three non-collinear 2D points. The entries
in the transformation matrix can be calculated by solving the
resulting 6 linear equations (Klein, 1939).

As in the planar case (Section 3.1), we factor out the translation
of the triangles when describing their motion, and focus on rota-
tion as it provides a strong cue for (non-)rigid motion.

Hence, the presented approach uses the coordinates given by
the three vectors ~e1 ¼ v1 � v2; ~e2 ¼ v2 � v3 and ~e3 ¼ v3 � v1

determined at two time instances, where {v1,v2,v3} are the three
vertices of a triangle r.
f an edge as a 1D signal.

(b)

m on a polygon inscribed in an unit circle (black polygon). Results of transformation
and angles (A1,A2).

oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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Definition 4. The (affine) transformation Tr of a triangle r over time
t = 2, . . . ,n is the signal that encodes for each frame t the (affine)
transformation matrix that maps the vectors ~e1; ~e2; ~e3f g of a
triangle from the first frame to frame t:

PðtÞ ¼ TrðtÞ � Pð1Þ; ð3Þ

where P(1) and P(t) are 3 � 3 matrices having as rows ~e1; ~e2; ~e3f g in
homogeneous coordinates at time 1 and t.

The affine transformation matrix Tr(t), which has the form in Eq.
(2), is determined by solving a linear system of equations (Klein,
1939).

To determine a criterion for the hierarchical grouping process, a
similarity measure for the transformation signals is needed. As
there is no similarity measure to compare transformation matrices
directly, we propose to apply the transformation matrices and
compare the results (see Fig. 6).

The idea is to transform the points pi, i = 1, . . . ,k lying on an unit
circle, which is centered at the origin (0,0), by the matrices T1 and
T2 of two triangles and measure the similarity of the transforma-
tion matrices in the resulting positions p1

i ¼ T1 � pi and p2
i ¼ T2 � pi.

Measuring the similarity by calculating the Euclidean distances
between the two sets p1

i and p2
i has two disadvantages: (1) the

Euclidean distance does not characterize well (linearly) in-plane
rotation and (2) the observed effects of rotation in and out of the
Fig. 7. Spatio-temporal filtering decides which triangles are input into the grouping
process (dark box) based on the deformation of the graph over time (bright box).

Fig. 8. Spatio-temporal filtering of triangles. Triangles on ‘‘rigid’’ parts are white and t

Fig. 9. Grouping process. Input: filtered triangles and their motion over time (bright box).
where each top vertex represents one ‘‘rigid’’ part of the scene (dark box).
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image plane on a triangle are defined on a different domain: rota-
tion in the image plane maps linearly to angles, rotation out of the
image plane is (non-linearly) observed as scaling.

Therefore, we propose to analyze the similarity using polar
coordinates, which are better suited to describe in and out of plane
rotation respectively by their radii and angles. Fig. 5 illustrates the
concept by approximating the unit circle with a k = 5 sided regular
polygon, where this approximation is also used for the experi-
ments in Section 5.

Definition 5. The similarity XT of two transformation signals T1, T2 is
calculated by:

XTðT1; T2Þ ¼ max
t¼2;...;n

fw � dAðT1ðtÞ; T2ðtÞÞ þ ð1�wÞ � dRðT1ðtÞ; T2ðtÞÞg;

where T1, T2 are the transformation matrices of two triangles or
groups of triangles and dA, dR are the mean differences of the two sets
p1

i ; p2
i regarding the angles and radii calculated for each frame t.
4. The generic grouping framework

In this section the proposed generic framework is presented,
where the aim is to identify the ‘‘rigid’’ parts in a scene (e.g. decom-
posing a human into head, torso, and limbs).

The input of the framework is the spatio-temporal information
about the tracked features, which includes the position of each
feature over time (see Fig. 2), the motion of the triangles, and the
resulting deformation of the triangulated graph (see Fig. 3).

First a spatio-temporal filtering selects the input for the hierar-
chical grouping process (see Fig. 7). Then each group of triangles
belonging to a rigid part is generalized into a single vertex at the
top level of an irregular graph pyramid (see Fig. 9).

4.1. Spatio-temporal filtering

The aim of the spatio-temporal filtering is to select relevant tri-
angles for the input of the hierarchical grouping process. A triangle
is relevant for the grouping process if the length of its edges
riangles connecting ‘‘rigid’’ parts are gray (see Section 4.1 for details on labeling).

The dark triangles rotate while the bright triangles stay still. Output: graph pyramid

oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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remains nearly stable over time, which indicates its affiliation to a
‘‘rigid’’ part.

The edge length of every edge e = (v1,v2) 2 E at time t is the
Euclidean distance between the positions of the two vertices
e(t) = kv1(t) � v2(t)k. Triangles which do not belong to a ‘‘rigid’’ part
are outliers and mostly only stand out for a short period of time.
Therefore, we propose to consider the extrema of an edge for the
spatio-temporal filtering.

Definition 6. The maximum variation of edge length is the differ-
ence between the minimum and the maximum length of the edge
in the video, more formally

lðeÞ ¼ max
06t1<n

feðt1Þg � min
06t2<n

feðt2Þg:

A triangle is labeled as relevant if the edge length variations of
all three edges e1,e2,e3 are beneath a certain value i.e.
l(ei) 6 �r,1 6 i 6 3. Otherwise, the triangle is labeled as separating.

The value �r should be chosen s.t. triangles with a high deforma-
tion over time, which connect different ‘‘rigid’’ parts, are labeled as
separating and triangles with points on the same ‘‘rigid’’ part will
have edge length variations smaller than �r.

The result of the spatio-temporal filtering is a triangulation, where
each triangle is labeled relevant or separating (see Figs. 7 and 8).

4.2. Hierarchical grouping process

The task of this process is to group the relevant triangles which
survived the spatio-temporal filtering into groups of triangles, each
describing one ‘‘rigid’’ part (see Fig. 9).

The grouping process is realized by building a irregular graph
pyramid on the dual graph of the already existing triangulation.
There are three reasons for the usage of an irregular graph pyra-
mid: (1) using a hierarchy reduces the complexity of the grouping
(global decisions become local ones), (2) the produced description
can be used for a coarse-to-fine tracking approach and (3) in com-
parison to a regular graph pyramid the irregular one has the advan-
tage that it is adaptive (shift and rotation invariant).

Algorithm 1: BuildPyr(T): Group triangles into ‘‘rigid’’ parts

Input: relevant triangles T (see Section 4.1)
1: G0 = (V0,E0)

/⁄V0 = T, and (v,w) 2 E0, the corresponding triangles share
an edge⁄/

2: k = 0
3: repeat
4: /⁄select edges to contract⁄/

K = ;
"v 2 Gk do K  K [ arg minðv;wÞ2Gk

fXðv ;wÞg
5: /⁄filter edges based on internal/external difference⁄/

"(v,w) 2 K, ifX(v,w) > I0(v,w) then
K Kn{(v,w)}

6: if K – ; then break K into trees of radius 1
7: if K – ; then Gk+1 contract edges K in Gk and simplify
8: k k + 1
9: until K = ;
Output: Graph pyramid P = {G0, . . . ,Gk�1}.
Algorithm 1 creates a graph pyramid in which each vertex v of
the top level identifies a detected ‘‘rigid’’ part, with its average mo-
tion description (orientation variation or transformation matrix
over time) stored in S(v). The receptive fields of these vertices iden-
tify the triangles that the respective part consists of.

Note that the pyramid is not built on the triangulated graph, but
on its dual. In the base level G0, one vertex is associated to each
Please cite this article in press as: Artner, N.M., et al. Hierarchical spatio-temp
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relevant triangle. Two vertices are connected by an edge if the
respective triangles share a common edge. Edges to be contracted
are selected from the edges proposed by the Minimum Spanning
Tree algorithm by Boruvka (Nesetril et al., 2001) (Line 4).

The external difference X(v,w) between two vertices (triangles) v
and w depends on the representation for the motion of the trian-
gles (see Section 3) and is computed using one of the two formulas:

Xðv ;wÞ ¼ XOðSðvÞ; SðwÞÞ;
Xðv ;wÞ ¼ XTðSðvÞ; SðwÞÞ;

ð4Þ

where S(v) and S(w) are the signals associated to v respectively w.
For the vertices v 2 G0 of the base level, depending on the type of
motion in the video, S(v) is either the orientation variation signal
Or or the transformation signal Tt of the corresponding triangle r.
For a vertex in a higher level it is computed as:

SðvÞ ¼
P

u2WðvÞjFðuÞj � SðuÞP
w2WðwÞjFðwÞj

; ð5Þ

where jF(v)j is the size of F(v) and can be propagated up in the pyr-
amid. Note that in the case of transformation matrices the compu-
tation is done element-wise (scalar multiplication, element-wise
addition, division as scalar multiplication).

The internal difference of a vertex at level k > 0 is:

IðvÞ ¼maxðmaxfIðuÞg;maxfXðwi;wjÞgÞ; ð6Þ

where u 2W(v) and wi, wj 2W(v) s.t. wi, wj are connected by an
edge. For the vertices in the base level I(v) = 0. The value I0(v,w) is
defined as:

I0ðv ;wÞ ¼min IðvÞ þ b
jFðvÞj ; IðwÞ þ

b
jFðwÞj

� �
; ð7Þ

where b is a parameter of the method that allows regions to start
forming in the base level where I(v) = 0 for all vertices. The selected
smallest edges (Line 4 of Algorithm 1) are accepted for contraction
up to a weight of b. When going higher in the pyramid the size of
the receptive fields increases and the contribution of b to the condi-
tion in Line 5 of Algorithm 1 rapidly decreases. As a result b sets an
upper bound on the internal difference (deformation) of the pro-
duced parts.

Line 6 of Algorithm 1 keeps the contraction operations local
(optimal for parallel processing) and avoids contracting the whole
graph in a single level. It does this by excluding edges from K to ob-
tain trees of radius 1 for the current contraction. The excluded
edges will be selected again in the next level. In (Kropatsch et al.,
2007) three methods, MIES, MIS, and D3P (used in our experi-
ments) for breaking large contraction kernels are described, and
it is also shown that their difference in the context of segmentation
is minimal.

Note that the described grouping method is similar to the image
segmentation method in (Haxhimusa and Kropatsch, 2004), which
also builds a graph pyramid and uses concepts of internal/external
contrast. Important differences are (presented approach vs. Haxh-
imusa and Kropatsch, 2004):

1. Edge weights are recomputed at every level to reflect the differ-
ences between the updated ‘models’ for the whole regions vs.
always selecting a subset of the weights from the level below,
which reflects the difference between vertices that are neigh-
bors in the base level (contrast along the boundary).

2. The features are signals of orientation variation/transformation
vs. color values.

3. The method starts from a (possibly disconnected) graph vs.
from a neighborhood graph using 4 connectivity.
oral extraction of models for moving rigid parts. Pattern Recognition Lett.
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The difference at 1 has the effect that a long chain of regions
that differs by a constant small difference, will not be merged to
create a single region (e.g. a smooth gradient over the whole im-
age). This is very important when grouping movements with lo-
cally constant difference like for example the skin covered body.

5. Experiments

The experiments in this section are divided by the type of mo-
tion in the input videos: motion in (see Section 5.2) and out of the
2D image plane (see Section 5.3).

5.1. Parameters of the framework

In the following the parameters of the presented framework are
recalled:

�r This threshold decides if a triangle is labeled relevant or separat-
ing. It should be set considering the noise in the sequence, the
tracking errors, and the local deformations in the parts (e.g.
skin, cloth, material of man-made object).

b Sets an upper bound for the internal difference in the grouping
process in the graph pyramid, which decides if edges are con-
tracted (triangles are grouped together). This parameter is
important in the lower levels of the pyramid (especially in the
first level) and its influence decreases in higher levels (see Eq.
(7)).

w Weights the influence of the differences in radii dR and angles dA

on the similarity of the transformation matrices. It is only rele-
vant for out of the plane motion.

5.2. Motion in the image plane

The videos human 1 (640 times 480, 860 frames) and human 2
(640 times 480, 1178 frames) are self-produced and show humans
undergoing articulated motion in the image plane. In each video
the Kanade–Lucas–Tomasi tracker (Birchfeld, 2008) is used to track
corner points to supply the necessary motion information for the
hierarchical grouping process.
Table 1
Parameters and results for sequences human 1 and 2 (see Section 5.2). ‘‘Ground truth’’
is the correct number of parts in the scene and ‘‘result’’ lists the outcome of the
presented approach, where the numbers in brackets are (outliers/all triangles).

Sequence �r b Ground truth Result

Human 1 20 50� 7 7(0/180)
Human 2 15 40� 7 7(2/305)

Fig. 10. Triangulation with labeling. White: relevan

Please cite this article in press as: Artner, N.M., et al. Hierarchical spatio-temp
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Both video sequences, human 1 and 2, show a person undergo-
ing articulated motion in the image plane. Table 1 lists the param-
eters used with the two videos and the results. In Fig. 10 the results
of the spatio-temporal filtering are visualized. Fig. 11 shows the
grouping result, where each color in the triangulation represents
one ‘‘rigid’’ part. Figs. 12 and 13 present the grouping results in
separate images.

The result for experiment human 1 is ideal, meaning that each
‘‘rigid’’ part and the background are one vertex in the top level of
the graph pyramid. For experiment human 2 the right lower arm
is represented by two top vertices. Additionally, one ‘‘rigid’’ part
of the hair and one of the left upper arm with the background
are produced. The reasons for this are: (1) the relative orientation
change (angle) between two ‘‘rigid’’ parts is smaller than the local
differences due to locally non-rigid deformation (e.g. skin) or the
imprecisions of the tracker and (2) the labeling into relevant and
separating has to allow certain variation (see Section 4.1). The torso
is connected with the base of the chin in both sequences because
during tracking the features at the base of the chin slide when
the head is tilted and remain in the same position in the image,
creating a relevant triangle.
5.3. Motion out of the image plane

The input data, videos and trajectories, for this experiments are
from the benchmark used by Yan et al. (2008). All videos show
articulated objects undergoing movements out of the 2D image
plane (toy truck: 720 � 480, 31 frames; two cranes: 360 � 240,
61 frames; dancing: 720 � 480, 40 frames). Besides the different
type of motion, these videos are significantly shorter than the
self-produced sequences in Section 5.2. Therefore, there is less mo-
tion information and the presented approach is more prone to out-
liers. Table 2 summarizes the parameters used for the experiments.

Fig. 14 shows the relevant triangles, which are the input for the
grouping process. Fig. 15 is an overview of the grouping results for
all three videos, where the identified ‘‘rigid’’ parts are labeled with
different colors.

The experiment toy truck successfully results in two ‘‘rigid’’ parts
as in (Yan et al., 2008). Fig. 15(a) shows the labeled triangulation
including the outliers (red triangles) and Fig. 16 the two main parts
of the truck represented by their triangulation.

The presented approach correctly decomposes experiment two
cranes in three main parts, where the crane on the left is one ‘‘rigid’’
part as it does not undergo articulated motion and the crane on the
right is separated in two parts as its arm (boom) with the bucket
moves separately (see Fig. 15(b) and Fig. 17).

Fig. 15(c) and (d), Figs. 18 and 19 present two results for exper-
iment human dancing. Our approach is not able to decompose the
left arm into two parts as the articulated movement is not distinc-
t. Gray: separating. (a) Human 1. (b) Human 2.
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Fig. 11. Grouping result of human 1 (a) and human 2 (b). Each color represent one ‘‘rigid’’ part. The red triangles in (b) are outliers. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Grouping result of human 1, where each image shows one identified part.

Fig. 13. Grouping result of human 2, where each image shows one identified part.
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Table 2
Parameters and results with videos out of the image plane (see Section 5.3). w is the
weight of Eq. (5). ‘‘Ground truth’’ is the correct number of parts in the scene and
‘‘result’’ lists the outcome of the presented approach, where the numbers in brackets
are (outliers/all triangles).

Sequence �r b w Ground truth Result

Toy truck 20 1.3 1.0 2 2 (9/147)
Two cranes 20 0.4 0.9 3 3 (11/134)
Human dancing 1 20 0.4 0.6 6 (4) 4 (25/366)
Human dancing 2 20 0.5 1.0 6 (4) 5 (14/366)

Fig. 14. Input for out of the plane experiments (triangles labeled

Fig. 15. Grouping results of experiments toy truck (a), two cranes (b), and human dancing
colored red. (For interpretation of the references to colour in this figure legend, the read

Fig. 16. The two main parts of the
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tive enough. Yan et al. (2008) are able to separate the object in six
parts. The best result with our approach is shown in Fig. 18 human
dancing 1, where the object is separated in four parts Fig. 15(c)).
Fig. 19 shows a result with five parts human dancing 2, but we pre-
fer the first result considering the symmetry of the human body.

5.4. Discussion

The presented method extracts a model for the ‘‘rigid’’ parts of a
scene in an unsupervised manner. It uses no prior knowledge (no
relevant). (a) Toy truck. (b) Two cranes. (c) Human dancing.

1 (c) and human dancing 2 (d). Each part is labeled with a color and all outliers are
er is referred to the web version of this article.)

grouping process of toy truck.
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Fig. 17. Grouping of two cranes into three parts.

Fig. 18. Grouping of human dancing 1 in four parts.

Fig. 19. Grouping of human dancing 2 in five parts.
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training, no knowledge about the scene and its objects), it can deal
with motion in and out of the 2D image plane and it can be applied
to videos with any arbitrary articulated or rigid object (i.e. human,
finger, animal, basket ball. . .).

The spatio-temporal filtering (Section 4.1) will correctly identify
the triangles belonging to ‘‘rigid’’ parts, if the movement of the
parts relative to each other (distance variation) is larger than the
local distance variation between neighboring features of the same
part.

The quality of the results depends on the quality of the input
data, the trajectories of the features. If the trajectories are reliable
and at least three features exist for each ‘‘rigid’’ part, the proposed
framework is capable of decomposing the object. Only parts under-
going significant articulated movement different from the other
parts in the object can be identified (e.g. if an arm never bends it will
not be decomposed in two parts, but one part). The hierarchical
grouping process is able to identify the ‘‘rigid’’ parts if the difference
in the movement of triangles belonging to different parts is larger
than the local differences due to locally non-rigid deformation
(e.g. skin) or to imprecisions of the computed feature positions.
6. Conclusion

This paper presented a graph-based approach to extract a model
of the ‘‘rigid’’ parts of articulated objects. The input consists of a vi-
deo and the trajectories of corresponding salient features. A
triangulated graph is used to represent the features and their spatial
relationships over time. First a spatio-temporal filtering is per-
formed which labels the triangles in the graph as relevant or separat-
ing. The relevant triangles are given as input to a hierarchical
Please cite this article in press as: Artner, N.M., et al. Hierarchical spatio-temp
(2011), doi:10.1016/j.patrec.2011.05.005
grouping process which identifies the ‘‘rigid’’ parts in the scene con-
sidering the motion of the triangles. Depending on the motion, a
suitable representation is the orientation variation of the triangles
or their transformation matrices. The hierarchical grouping is real-
ized by building a graph pyramid, where the grouping criterion de-
cides which triangles are grouped together and the vertices in the
top level represent ‘‘rigid’’ parts. Promising experimental results
show the potential of the approach.
Acknowledgments

This work was partially supported by the Austrian Science Fund
under Grants P18716-N13 and S9103-N13. Adrian Ion was sup-
ported in part by the European Commission, under project
MCEXT-025481.
References

Aggarwal, J.K., Cai, Q., 1999. Human motion analysis: A review. CVIU 73 (3), 428–
440.

Alatan, A.A., Onural, L., Wollborn, M., Mech, R., Tuncel, E., Sikora, T., 1998. Image
sequence analysis for emerging interactive multimedia services. Circuits
Systems Video Technol. 8 (7), 802–813.

Altunbasak, Y., Eren, P.E., Tekalp, A.M., 1998. Region-based parametric motion
segmentation using color information. Graphical Models Image Process. 60 (1),
13–23.

Artner, N.M., Ion, A., Kropatsch, W.G., 2009. Rigid part decomposition in a graph
pyramid. In: Eduardo Bayro-Corrochano, J.O.E. (Ed.), The 14th Iberoamerican
Congress on Pattern Recognition, LNCS, vol. 5856. Springer, pp. 758–765.

Artner, N.M., Ion, A., Kropatsch, W.G., 2011. Multi-scale 2d tracking of articulated
objects using hierarchical spring systems. Pattern Recognition 44 (4), 800–810.

Birchfeld, S., 2008. Klt: An implementation of the kanade-lucas-tomasi feature
tracker. http://www.ces.clemson.edu/stb/klt/ (04.08).
oral extraction of models for moving rigid parts. Pattern Recognition Lett.

http://www.ces.clemson.edu/stb/klt/
http://dx.doi.org/10.1016/j.patrec.2011.05.005


N.M. Artner et al. / Pattern Recognition Letters xxx (2011) xxx–xxx 11
Castagno, R., Ebrahimi, T., Kunt, M., 1998. Video segmentation based on multiple
features for interactive multimedia applications. Circuits Systems Video
Technol. 8 (5), 562–571. doi:10.1109/76.718503.

Celasun, I., Tekalp, A.M., Gokcetekin, M.H., Harmanci, D.M., 2001. 2-d mesh-based
video object segmentation and tracking with occlusion resolution. Signal
Process. Image Comm. 16 (10), 949–962.

Chen, H.-T., Liu, T.-L., Fuh, C.-S., 2006. Segmenting highly articulated video objects
with weak-prior random forests. In: ECCV. Springer, Graz, Austria, pp. 373–385.

Conte, D., Foggia, P., Jolion, J.-M., Vento, M., 2005. Graph-Based Representations in
Pattern Recognition. Springer, Berlin/ Heidelberg (Chapter: A Graph-Based,
Multi-Resolution Algorithm for Tracking), pp. 193–202.

Costeira, J.P., Kanade, T., 1998. A multibody factorization method for independently
moving objects. Internat. J. Comput. Vision 29 (3), 159–179.

Drouin, S., Hébert, P., Parizeau, M., 2008. Incremental discovery of object parts in
video sequences. Comput. Vision Image Understanding 110, 60–74.

Felzenszwalb, P., Huttenlocher, D., 2005. Pictorial structures for object recognition.
IJCV 61 (1), 55–79.

Gavrila, D.M., 1999. The visual analysis of human movement: A survey. CVIU 73 (1),
82–980.

Godec, M., Leistner, C., Saffari, A., Bischof, H., 2010. On-line random naive bayes for
tracking. In: ICPR, IEEE, pp. 3545–3548.

Haxhimusa, Y., Kropatsch, W.G., 2004. Segmentation graph hierarchies. In: Fred,
A.L.N., Caelli, T., Duin, R.P.W., Campilho, A.C., de Ridder, D. (Eds.), SSPR/SPR,
Lecture Notes in Computer Science, vol. 3138. Springer, pp. 343–351.

Klein, E., 1939. Elementary Mathematics from an Advanced Standpoint: Geometry.
MacMillan, New York.

Kropatsch, W.G., 1995. Building irregular pyramids by dual graph contraction.
Vision, Image Signal Process. 142 (6), 366–374.

Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z., Langs, G., 2005. Vision pyramids that do
not grow too high. PRL 26 (3), 319–337.
Please cite this article in press as: Artner, N.M., et al. Hierarchical spatio-temp
(2011), doi:10.1016/j.patrec.2011.05.005
Kropatsch, W.G., Haxhimusa, Y., Ion, A., 2007. Applied Graph Theory in Computer
Vision and Pattern Recognition. Studies in Computational Intelligence, vol. 52.
Springer (Chapter: Multiresolution Image Segmentations in Graph Pyramids),
pp. 3–42.

Lauer, F., Schnör, C., 2010. Spectral clustering of linear subspaces for motion
segmentation. In: ICCV, IEEE, pp. 678–685.

Li, H., Lin, W., Tye, B., Ong, E., Ko, C., 2001. Object segmentation with affine motion
similarity measure. Multimedia Expo, 841–844.

Moeslund, T.B., Hilton, A., Krger, V., 2006. A survey of advances in vision-based
human motion capture and analysis. CVIU 104 (2–3), 90–126.

Nesetril, J., Milková, E., Nesetrilová, H., 2001. Otakar boruvka on minimum spanning
tree problem translation of both the 1926 papers, comments, history. Discrete
Math. 233 (1–3), 3–36.

Nordberg, K., Zografos, V., 2010. Multibody motion segmentation using the
geometry of 6 points in 2d images. In: ICPR. IEEE, Istanbul, pp. 1783–1787.

Tekalp, A., Van Beek, P., Toklu, C., Gunsel, B., 1998. Two-dimensional mesh-based
visual-object representation for interactive synthetic/natural digital video. Proc.
IEEE 86 (6), 1029–1051.

Tuceryan, M., Chorzempa, T., 1991. Relative sensitivity of a family of closest-point
graphs in computer vision applications. Pattern Recognition 24 (5), 361–373.

Walther, T., Würtz, R.P., 2008. Learning to look at humans – what are the parts of a
moving body? In: Articulated Motion and Deformable Objects, pp. 22–31.

Walther, T., Würtz, R.P., 2009. Unsupervised learning of human body parts from
video footage. In: 2nd Workshop on Non-Rigid Shape Analysis and Deformable
Image Alignment, pp. 336–343.

Yan, J., Pollefeys, M., 2008. A factorization-based approach for articulated nonrigid
shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern
Anal. Machine Intell. 30 (5), 865–877.

Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: A survey. ACM Comput. Surv.
38 (4).
oral extraction of models for moving rigid parts. Pattern Recognition Lett.

http://dx.doi.org/10.1109/76.718503
http://dx.doi.org/10.1016/j.patrec.2011.05.005

	Hierarchical spatio-temporal extraction of models for moving rigid parts
	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Overview

	2 Recall: irregular graph pyramids
	3 Analysis of motion
	3.1 Motion in the image plane
	3.2 Motion out of the image plane

	4 The generic grouping framework
	4.1 Spatio-temporal filtering
	4.2 Hierarchical grouping process

	5 Experiments
	5.1 Parameters of the framework
	5.2 Motion in the image plane
	5.3 Motion out of the image plane
	5.4 Discussion

	6 Conclusion
	Acknowledgments
	References


