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Abstract. Connected Component Labeling (CCL) is a fundamental task
in pattern recognition and image processing algorithms. It groups the pix-
els into regions, such that adjacent pixels have the same label while pixels
belonging to distinct regions have different labels. The common linear-
time raster scan CCL techniques have a complexity of O(image−size) in
a 2D binary image. To speed up the procedure of the CCL, the paper pro-
poses a new irregular graph pyramid. To construct this pyramid, we use
a new formalism [1] that introduces an order of the pixels in the base grid
to detect the redundant edges through the hierarchical structure. These
redundant edges, unlike the usual methods of constructing the irregular
pyramid, are removed before contracting the edges. This not only sim-
plifies the construction processes but may decrease memory consumption
by approximately half. To perform the CCL task efficiently the proposed
parallel algorithm reduces the complexity to O(log(n)) where the n is the
diameter of the largest connected component in the image. In addition,
using an efficient combinatorial structure the topological properties of the
connected components including adjacency of CCs, multi-boundaries and
inclusions are preserved. Finally, the mathematical proofs provide fully
parallel implementations and lead to efficient results in comparison with
the state-of-the-art.

Keywords: Connected Component Labeling · Irregular graph
pyramid · Parallel processing · Combinatorial map · Pattern
recognition

1 Introduction

Connected Component Labeling (CCL) is used in analysing binary images as a
basic task [16]. Given as input a binary image, its values distinguish between
background (zero) or foreground (one) regions. After this, a region is connected
if all pairs of pixels are connected by a chain of neighbors. They may be multiple
regions with value zero and multiple regions with value one. CCL assigns a
unique label to each different region. In general, the CCL algorithms divide into
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two main categories [11] based on label-propagation [10] or label-equivalence-
resolving [12]. All of these approaches are linear and a pixel usually is visited
in the raster-scan search. In other words, such algorithms may differ from one-
scan or two-scan searching through the entire image, but all of them are in the
order of image size, O(MN) in a M × N -sized (2D) binary image. Recently,
the algorithm proposed in [3] uses a pyramid structure for the CCL. However,
because of the linear propagation of the labels, it is linear as well.

In contrast, In this study, the proposed Parallel Pyramidal Connected Com-
ponent (//ACC1) method reduces the complexity impressively to the logarithmic
order of the diameter of the largest connected component in the image. To this
aim, we employ a new formalism in [1] to recognize the redundant edges in
the pyramid. Removing these redundant edges before contracting the edges, not
only is performed in parallel but may decrease memory consumption by half in
comparison with efficient pyramids [17].

To construct the irregular pyramid, the Remove then Contract (RtC) algo-
rithm is proposed. The proposed algorithm speeds up the labeling task which
makes it more efficient to be used in various application areas of machine learning
and artificial intelligence such as document analysis and object recognition [15].

1.1 Motivations and Notations

Irregular pyramids are a stack of successively reduced graphs where each
graph is constructed from the graph below by selecting a specific subset of ver-
tices and edges. For generation of irregular pyramids, two basic operations on
graphs are needed: edge contraction and edge removal. The former contracts an
edge e = (v, w), identifies v and w and removes the edge. All edges that were
incident to the joined vertices will be incident to the resulting vertex after the
operation. The latter removes an edge from the graph, without changing the
number of vertices or affecting the incidence relationships of other edges. Note
that in this study for preserving topology the self-loops are not contractable. In
each level of the pyramid, the vertices and edges disappearing in level above are
called non-surviving and those appearing in the upper level surviving ones.

Definition 1 (Contraction Kernel (CK). A contraction kernel is a spanning
tree of the connected component with the surviving vertex as its root.

Each contraction kernel is a tree including one surviving vertex and the
remaining non-surviving vertices of the CC.

A plane graph is a graph embedded in the plane such that its edges intersect
only at their endpoints [18]. In plane graph there are connected spaces between
edges and vertices and every such connected area of the plane is called a face.
The degree of the face is the number of edges bounding the face. In addition a
face bounded by a cycle is called an empty face. In a non-empty face traversing
the boundary would require to visit vertices or edges twice.

1 It is pronounced pac where the // and A stand for parallel and pyramidal.
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There are different structures to build the irregular pyramid such as sim-
ple graphs [7], dual multi-graphs [13] and combinatorial maps (CM) [6]. The
simple graph cannot distinguish some topological configurations (inclusions and
multiple adjacency) [14]. The problem with dual graphs is that they cannot
unambiguously represent a region enclosed in another one on a local level [7].
Therefore, in this paper the CM is used which not only resolves the mentioned
problems but also can be extended to higher dimensions (nD).

A combinatorial pyramid is a hierarchy of successively reduced combina-
torial maps [6]. A combinatorial map (CM) is similar to a graph but explicitly
stores the orientation of edges around each vertex. To this aim, a permutation,
σ, is defined encoding consecutive edges around a same vertex while turning
counterclockwise. The clockwise orientation is denoted by σ−1. In the CM each
edge divides into two half-edges. Each half-edge is called a dart and the α is an
involution providing a one-to-one mapping between consecutive darts forming
the same edge such that α(α(d)) = d.

Figure 1 left, shows a set of 8 adjacent darts with their σ relations in a face of
degree 4. In the middle, it shows the encoding of the darts. For instance, consider
e = (1, 2) where α(1) = 2, α(2) = 1, σ(1) = 5. In this paper, we assign an odd
number to the left-side dart of a horizontal edge while assigning an even number
to its right-side dart. Similarly, we assign an odd number to the up-side dart of
a vertical edge while assigning an even number to its down-side dart. The dodd
indicates an odd dart and the deven indicates an even dart (Fig. 1 right).

Fig. 1. Combinatorial map [1]

2 The RtC Algorithm for Pyramid Construction

In the original irregular pyramids [7] selected edges are first contracted. Edge
contraction has the main advantage to preserve the connectivity. But it has a
side effect to produce multiple edges and self-loops. Some of these edges are
necessary to properly describe topological relations like inclusions and multiple
connections between the same vertices. However, many of them are not necessary
and hence called redundant. Redundant edges are removed through the simplifi-
cation procedure after the contractions. However, in the proposed Remove then
Contract (RtC) algorithm, the redundant edges are removed before the contrac-
tions and in a parallel way. To this aim, the RtC introduces a new formalism to
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define the redundant edges (Sect. 2.3). Since the RtC is used for the CCL task,
the input is a binary image where the 4-connectivity between pixels is assumed
because the 8-connectivity would not create a plane graph.

2.1 Edge Classification

Consider the neighborhood graph G(V,E) of a binary image P where the ver-
tices V correspond to the pixels P and the edges E connect two vertices if the
corresponding pixels are 4-neighbors. Let the gray-value of vertex g(v) = g(p)
where p ∈ P is a pixel in image corresponding to vertex v. Let contrast(e) be
an attribute of an edge e(u, v) where u, v ∈ V and contrast(e) = |g(u) − g(v)|.
Since we are working with binary images, the pixels (and corresponding vertices
can) have only two gray values 0 and 1. Similarly the edge contrast can have
only two possible values 0 and 1. The edges in the neighborhood graph can be
classified into the following two categories:

Definition 2 (Zero-edge) An edge is a zero-edge iff the contrast between its
two endpoints is zero. The zero-edge is denoted by e0.

Definition 3 (One-edge) An edge is a one-edge iff the contrast between its
two endpoints is one. The one-edge is denoted by e1.

The set of edges classified as zero-edge is denoted as E0 and the set of edges
classified as one-edge is denoted as E1. The edge set E = E0 ∪ E1.

A connected component consists of E0 and E1 connects different CCs
together. Thus, the proposed algorithm for doing the labeling task, only con-
siders E0 as the candidates of the selection of the CK. Figure 2 shows a binary
image with its corresponding neighborhood graph. Edges E0 are black while E1

are red.

2.2 Selecting the Contraction Kernel

The way a CK is selected has a main role in detecting the redundant edges in
the neighborhood graph. To this purpose, a total order defined over the indices
of vertices. Consider the binary image has M rows and N columns such that
(1, 1) is the coordinate of the pixel at the upper-left corner and (M,N) at the
lower-right corner. An index Idx(., .) of each vertex is defined:

Idx : [1,M ] × [1, N ] �→ [1,M · N ] ⊂ N (1)
Idx(r, c) = (c − 1) · M + r (2)

where r and c are the row and column of the pixel(v), respectively. Since the
set of integers is totally ordered each vertex has a unique index. The impor-
tant property of such totally ordered set is that every subset has exactly one
minimum and one maximum member (integer number). This property provides
a unique orientation between non-surviving and surviving vertices. Consider a
non-surviving vertex v. In order to find the surviving vertex, vs, an incident
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e0 must be found in its neighborhood. Such a neighborhood N (v) is defined as
follows [1]:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (3)

if such neighborhood exists (|N (v)| > 1) the surviving vertex is:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (4)

Definition 4 (Orientation of a e0). A e0 = (v, w) ∈ E0 is oriented from v
to w if w has the largest index among the neighbors, Idx(w) = max{Idx(u)|u ∈
N (v)}. All edges to the other neighbors remain non-oriented.

Based on the definition above, a chain of oriented edges connects each non-
surviving vertex to its corresponding survivor vertex. In Fig. 2 the oriented edges
are represented by an arrow over each e0. The surviving vertices (4, 12, 15), are
presented by a green circle around each one.

In this paper, vertices surrounded by only e1 ∈ E1 are isolated vertices.
The isolated vertices will not be contracted through the construction process
and they survive until the top of the pyramid. In the Fig. 2 the isolated vertices
are 10 and 16 indicated by a blue circle.

Fig. 2. The neighborhood graph of a 4 by 4 binary image.

2.3 Redundant Edges

In [1], redundant edges are investigated in details. To construct the irregular
pyramid based on the RtC algorithm, first, the redundant edges are defined.

Definition 5 (Redundant-Edge (RE)). In an empty face, the non-oriented
edge incident to the vertex with lowest Idx is redundant iff:

– The empty face is bounded by only non-oriented edges with the same contrast
value.
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– The empty face is bounded by non-oriented edges with the same contrast value
and oriented edges.

Proposition 1. The upper bound of the maximum number of redundant edges
(REs) is equal to half of the edges of the grid at base level.

Proof. Can be found in [1]. ��
Since edges classify into E0 and E1, the Redundant Edges (REs) are partitioned
into Redundant Zero-Edges (RE0) and Redundant One-Edges (RE1) as well:

RE = RE0

·∪ RE1 (5)

Removing RE and contracting the selected CKs at the base level, result in build-
ing the first level of the pyramid. To build the upper levels, the CKs are selected
and then are contracted until there is no edge remaining for contraction. At this
point, the pyramid reaches to its top level and the RtC algorithm is terminated.

In Fig. 3, different levels of the pyramid are shown. At the base level, the
RE0 is shown by a black dashed-line and the RE1 are shown by red dashed-lines.
Furthermore, the Region Adjacency Graph (RAG) of the middle and top level are
illustrated. The RAG at top of the pyramid represents the connections between
four different connected components. Using the combinatorial map structure,
the inclusion relation is preserved as it is represented by the loop a around the
vertex 10. Additionally, the structure preserves the multiple boundaries as it
is shown by two different edges between vertices 4 and 15 with different paths
of vertices (4-3-2-1-5-9-13-14-15 and 4-8-12-11-15) from the base level.

Fig. 3. Binary irregular pyramid. (Color figure online)
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2.4 Parallel Pyramidal Connected Component (//ACC)

The goal of connected component labeling is to assign a unique label to the ver-
tices of a CC at the base level. Given a binary image as an input, first the corre-
sponding pyramid is built by the RtC. At the top of the constructed pyramid, the
RAG presents connected components (CCs) and the connectivity relations. Each
CC is represented by one surviving vertex. The range of vertices between 1 to
M.N is kept. For each vertex a label as a new attribute is initialized. A surviving
vertex at the top uses its index Idx as its unique label. To propagate down, each
non-surviving vertex below the top level checks its parent and fills the label with
the label of the parent. By reaching to the base level all the vertices receive their
labels and the labeling task is finished. Since the CCL task is performed using
the pyramid structure and in parallel, we call it Parallel Pyramidal Connected
Component (//ACC).

3 Parallel Complexity

In this section the parallel complexity of the proposed //ACC algorithm is inves-
tigated. Whenever we talk about complexity, it is always assumed parallel com-
plexity. The size of the binary input image is M ×N . Therefore, the indices of the
vertices and the neighborhood relations of the edges are known. Note that such
indexing is available before constructing the pyramid and in off-line processes.
The edge classification and selection of the CKs are both performed locally over
a vertex and its neighborhoods and therefore in parallel.

To remove the redundant edges (RE), a dependency between edges is con-
sidered. We define such dependency relation to detect a set of redundant edges
where by simultaneously removing, the combinatorial structure is not harmed.
Therefore, first a set of dependent darts is defined as follows:

Definition 6 (Dependent Darts). All darts of a σ-orbit sharing an endpoint
are dependent darts.

Afterwards, by using the corresponding edge of each dart, e = (d, α(d)), the set
of dependent darts leads to the set of dependent edges. As a consequence, two
edges not sharing an endpoint are independent. In this way, the only case of the
dependency between RE occurs when the RE share an endpoint.

In the grid at the base level the RE may be horizontally or vertically con-
nected and therefore are not independent. However, consider a horizontal edge
in an odd row of the grid. This edge is independent to all other horizontal edges
of other odd rows. Similarly, a vertical edge in an odd column is independent to
all other vertical edges of other odd columns. Such independency occurs between
edges in even rows and even columns as well. Figure 4.a , represents the set of
independent edges at the base. Thus, all the edges in grid are classified into four
independent set of edges.

As a result, removing all edge belong to each independent set (1, 2, 3 or 4),
occurs simultaneously. This means, all the RE are removed in only four steps
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where each step has the complexity O(1). Therefore removing the redundant
edges is performed in parallel.

The disjoint sub-trees of a CK do not share any edges and therefore their
contractions are performed in parallel. The challenging task is how to contract
edges inside a tree of a CK in parallel? To this aim, we introduce two methods,
one only for the base and the other for the remaining levels of the pyramid.

Contractions at the Base Level: Note that the diameter of a CK is the length
of the largest path in the CK.

Proposition 2. The complexity of contracting a CK has a logarithmic bound
as follow:

log2(δ(CK)) ≤ complexity of contracting a CK ≤ log3(δ(CK)) (6)

where the δ(CK) is the diameter of the CK of the largest connected component
in the image.

Proof. Based on (4), the maximum diameter of an oriented sub-tree graph corre-
sponding to a M × N image is equal to M + N − 1. We consider a line sequence
of edges with its length equal to this diameter. Next, the numbers from 0 to
M + N − 2 are assigned to the vertices of the line sequence. By choosing the
survivor vertices at 3n+1 (n ∈ {0, 1, 2, [(M +N −2)/3]}), adjacent non-survivors
(3n and 3n + 2) are contracted to this survivor (Fig. 4.b). Since each survivor
belongs to a CK with the diameter at most 2, a line sequence consists of 3k
vertices where k ∈ {1, 2, 3, ...}, needs only log3(3k) steps to select the survivors.
The worst case occurs when the length of the line sequence is 4 and therefore,
two steps (log2(4)) are required for selecting the survivors. ��

Fig. 4. Independent edge sets [1], and contractions at the base

Contractions at Upper Levels: Based on (4), all remaining non-oriented E0

are vertical edges at the base level (Fig. 5.b). The E0 of two different CCs are
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disjointed and therefore they are independent. The E0 of a CC may have at the
worst case the N − 1 vertical non-oriented edges in the neighborhood graph of
the M by N binary image (CC1 in Fig. 5.b). These non-oriented edges receives
their orientations at the next level (L = 1) through the procedure of selecting
the CKs and create a line of oriented edges. Such the line sequence of oriented
E0 are contracted in O(log2(N − 1)) as visually is encoded in Fig. 5.c.

Fig. 5. Priorities of contractions at level 1

4 Comparisons and Results

Simulations use MATLAB software and execute over CPU with AMD Ryzen
7 2700X, 3.7 GHz. The YACCLAB [9] benchmark was used for evaluating the
proposed algorithm. The algorithm is executed over 89 random, 128 MRI and
128 finger-print images from this benchmark. Table 1 shows the results.

Table 1. Results over images of different categories from (YACCLAB[9]).

Database type Random images MRI images Finger-print images

Size of the image 128 × 128 256 × 256 300 × 300

Redundant edges (average) 27.66% 46.49% 46.05%

Redundant edges (worst case) 23.18% 44.42% 42.50%

Number of connected components 2192 691 543

Execution time (ms) (in average) 0.098 1.643 2.317

Execution time (ms) (worst case) 0.127 2.973 3.518

The average percentage of the redundant edges (RE) over each category is
represented. For example in the finger-print images, about 45% of the edges
are redundant while they are all removed in parallel. Moreover, the number of
connected components and the average time in each category are shown. The
category of Random Images consist of only small objects. It means the diameter
of a CK of the largest connected component of these small objects is negligible
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in compare to the diameter of the image. Therefore the complexity is near to
the O(1). Essentially, the worst case occurs when the size of an object is as large
as the whole image. In such the case, the complexity is equal to the logarithmic
of the diameter of the image.

The inclusion relationship (hole) is one of the important topological infor-
mation between connected components. The implementation of the proposed
labeling //ACC, not only performs the labeling task, but also provides the num-
ber of inclusions between connected components. Furthermore, the simulations
represent the adjacency and multi-adjacency of CCs. Such valuable topological
information are missing in usual CCL algorithms. Figure 6 shows the CCL over
a binary mitochondria image. The corresponding graph of the base level and
categories of the edges are illustrated. The image consists of 9 connected com-
ponent where the inclusion number is 7. In addition, the number of different
edges for the mitochondria image are compared. The experimental results show
approximately half of the edges in this image are RE.

Fig. 6. A binary mitochondria image from [9]. Number of CCs is 9. The number of
inclusions (holes) is 7. The RE are almost half of the edges.

Figure 7 shows the execution time of the //ACC algorithm over different
image-sizes and compares it with the state-of-the-art methods from [5]. Although
for small images the efficient algorithms in [5] are executed in higher speeds the
//ACC with its logarithmic complexity reaches to the faster labeling results for
big data, i.e., images larger than one million pixels.

Removing the RE not only speeds up the execution, but also decreases the
memory consumption. The comparison is done with the originally proposed
canonical represented [17] that also is used in [2,4,8]. In canonical representa-
tion, the minimum storage required to store the structure is equal to the number
of darts i.e. twice the number of edges. By using the proposed RtC method, we
eliminate the edges that are structurally redundant and consequently reduce the
storage space of darts. Since the upper bound of the maximum number of RE is
equal to half of the edges, the memory consumption of the proposed algorithm
may decrease approximately by half.
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Fig. 7. Illustration of the execution time (ms) over different image-sizes

5 Conclusions

The paper presented a new approach to construct the irregular graph pyramids
such that the connected component labeling can be performed in parallel and
therefore faster. Unlike the usual construction of the irregular pyramids, in this
paper, the redundant edges were removed in parallel before the contractions
while they used to be removed after contractions and in a sequential order. The
experimental results show that nearly half of the edges are removed as redundant
edges that decreases the memory consumption to half of the combinatorial map
of the base level of the pyramid. The logarithmic complexity of the algorithm
speeds up the execution and suits it particularly for large images. In addition, the
proposed method provides additional topological information such as inclusion
and multi-boundaries. Moreover, what we proved it seems to be true for gen-
eral graphs. Finally, using the combinatorial structure the proposed connected
component labeling method can be extended to higher dimensions (nD) and to
multi-label segmented images.
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Université d’Auvergne, ISBN 2-87663-040-0 (1995)

15. Qin, H., El Yacoubi, M.A.: End-to-end generative adversarial network for palm-
vein recognition. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, W.-S., Cheriet, F.,
Suen, C.Y. (eds.) ICPRAI 2020. LNCS, vol. 12068, pp. 714–724. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59830-3 62

16. Shapiro, L.G.: Connected component labeling and adjacency graph construction.
Mach. Intell. Pattern Recogn. 19, 1–30 (1996)

17. Torres, F., Kropatsch, W.G.: Canonical encoding of the combinatorial pyramid. In:
Proceedings of the 19th Computer Vision Winter Workshop, pp. 118–125 (2014)

18. Trudeau, R.: Introduction to Graph Theory. Dover Books on Mathematics (1993)

https://doi.org/10.1007/978-3-030-73973-7_35
https://doi.org/10.1007/978-3-030-73973-7_35
https://doi.org/10.1007/s00138-016-0795-1
https://doi.org/10.1007/978-3-642-25330-0_40
https://doi.org/10.1007/978-3-030-59830-3_62

