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Abstract. Distance Transform (DT) as a fundamental operation in pat-
tern recognition computes how far inside a shape a point is located.
In this paper, at first a novel method is proposed to compute the DT
in a graph. By using the edge classification and a total order [1], the
spanning forest of the foreground is created where distances are prop-
agated through it. Second, in contrast to common linear DT methods,
by exploiting the hierarchical structure of the irregular pyramid, the
geodesic DT (GDT) is calculated with parallel logarithmic complexity.
Third, we introduce the DT in the nD generalized map (n-Gmap) lead-
ing to a more precise and smoother DT. Forth, in the n-Gmap we define
n different distances and the relation between these distances. Finally,
we sketch how the newly introduced concepts can be used to simulate
gas propagation in 2D sections of plant leaves.

Keywords: nD distance transform · Generalized maps · Irregular
pyramids · Parallel processing · Logarithmic complexity · Geodesic
distance transform (GDT)

1 Introduction

The distance transform [5] computes for every pixel/voxel of an image/object
how far it is from the closest obstacle, boundary, or background. While any valid
metric may be involved in the computation of distance transforms, in topological
data structures like graph, combinatorial maps [12], or generalized maps (n-
Gmap) [7] often the shortest path between the obstacle/boundary and a given
point is used. In this study, we first investigate the distance transform (DT) in
graphs and then extend it to generalized map. We define different distances for
every dimension (1D, 2D,..., nD) in the n-Gmap. This would be useful in many
applications. In particular, in study of gas exchange through airspace of a leaf,
computing the distances from stomata is very crucial to understand the different
diffusion processes needed for photosynthesis.
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Computing the DT and propagating the distances is an iterated local oper-
ation [8,15]. While local processes (e.g., convolution and mathematical mor-
phology) are important in early vision, they are not suitable for higher level
vision, such as symbolic manipulation and feature extraction where both local
and global information is needed [9]. Therefore we exploit the advantage of the
hierarchical structure of the pyramid [10] that encodes both local and global
information similar to the human visual system [14].

In the pyramid there are two directions of processes: bottom-up and top-
down. In the bottom-up (fine to coarse) process the information of the input
data (e.g. intensity, color, texture) is transformed into global information. In the
top-down (coarse to fine) process the global information such as the shape and
the size of objects are refined into the base level of the pyramid. Therefore, the
main idea of using hierarchical structure in computing the DT is to investigate
the connectivity of a connected component in the local and general view within
the pyramid. We will show that the connectivity can be checked in parallel
logarithmic complexity instead of the linear raster scan commonly utilized in
the state-of-the-art algorithms [8].

1.1 Notations and Definitions

An image P can be represented using a 4-adjacent neighborhood graph G =
(V,E) where V corresponds to pixels of P and E relates neighboring pixels.
8-Adjacency could be used only if the image is well-formed [11], which is not
satisfied in general cases. The gray-value of a pixel g(p) becomes an attribute
of the corresponding vertex v, g(v) = g(p) and the contrast(e) = |g(u) − g(v)|
becomes an attribute of an edge e(u, v) where u, v ∈ V . In the neighborhood
graph of the binary image, the edges have only two values: zero and one. We call
them accordingly: zero-edge and one-edge [1]. Furthermore we denote the set
of all zero-edges as E0 and the set of all one-edges as E1. In this way, the edges
of the graph are partitioned into E = E0 ∪ E1.

Irregular Pyramid. [10] is a stack of successively reduced smaller graphs
where each graph is built from the graph below by selecting a specific subset of
vertices and edges. In each level of the pyramid, the vertices and edges disap-
pearing in level above are called non-surviving and those appearing in the upper
level surviving ones.

Definition 1 (Contraction Kernel (CK)). A CK is a tree consisting of a
surviving vertex as its root and some non-surviving neighbors with the constraint
that every non-survivor can be part of only one CK.

Two basic operations are used to construct the pyramid: edge contraction and
edge removal. In the edge contraction, an edge e = (v, w) is contracted while
its two endpoints, v and w, are identified and the edge is removed. The edges that
were incident to the joined vertices will be incident to the resulting vertex after
the operation. An arrow over an edge is commonly used to indicate the direction
of contraction, i.e., from non-survivor to survivor (cf. Fig. 2). Contracting an
edge has the enormous advantage of preserving the connectivity of the graph.
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During the edge removal, an edge is removed without changing the number of
vertices or affecting the incidence relationships of other edges. Constraints are
needed to make sure that edge removal does not disconnect the graph [6].

2 Distance Transform in a Graph

In a graph G = (V,E) distances can be measured by the shortest length of paths.
In this case the elements are the vertices V and neighbors N (v) = {(v, w) ∈ E}
are related by edges. The distance between two vertices is the shortest path
connecting the two vertices.

To compute the DT in a graph G(V,E) with background B ⊂ V and fore-
ground F ⊂ V vertices, the shortest distances of foreground vertices from the
background should be computed. In this case the seed vertices b ∈ B are initial-
ized by DT (b) = 0. The foreground vertices f ∈ F are initialized by DT (f) = ∞.
Each one-edge e = (b, f) ∈ E1, b ∈ B, f ∈ F has two endpoints where b ∈ B
is a seed vertex with DT (b) = 0. The other vertex f ∈ F belongs to the fore-
ground and we initialize its distance by DT (f) = 1. The one-edges E1 are frozen
because they have no role in propagating the distances in the graph. Distances
are propagated only through the E0 edges of the foreground.

Using the total order on the foreground F proposed in [1,3], a spanning
forest contains only edges E0 spanning the foreground. The spanning forest is
created in a single step with parallel constant complexity. Moreover, to propagate
the distances we use the breath-first search (BFS) [4].

Proposition 1. The parallel complexity of propagating DT is O(δ(T )) where
δ(T ) is the longest path in the spanning forest of the foreground.

Proof. The complexity of propagating distances in a tree is O(|E|). Each con-
nected component of the foreground is covered by a spanning tree which is
processed independently [3]. Therefore, the longest path in the forest indicates
the parallel complexity. ��
The propagation of the distances to the remaining vertices v of the foreground
F follows:

D(v) = min{D(v),D(vj) + 1| vj ∈ N (v)} v ∈ F (1)

where the foreground neighbors N (v) are defined by:

N (v) = {v ∈ F} ∪ {w ∈ F |e0 = (v, w) ∈ E0} (2)

The distances are propagated until there is no vertex v ∈ F with DT (v) = ∞
(see Fig. 1). Algorithm 1 shows the steps of computing the DT in a graph.
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Fig. 1. Computing the DT in a graph

Algorithm 1. Computing the DT in the Neighborhood Graph
1: Input: Neighborhood Graph: G = (V,E) =(B ∪ F,E0 ∪ E1)
2: Initialization: DT (b) = 0 ∀b ∈ B, DT (f) = ∞, ∀f ∈ F
3: DT (f) = 1 ∀(f, b) ∈ E1, f ∈ F, b ∈ B
4: While ∃f ∈ F with DT (f) = ∞ do
5: Propagate the distances by (1)
6: end

2.1 Geodesic Distance Transform

Geodesic DT (GDT) computes distances within the connected component of
interest in a labeled image (or labeled neighborhood graph). The objects of
interest are considered as the foreground objects and the remaining objects with
different labels are considered as the background. A subset of points in the
foreground are the seeds, s ∈ S, S ⊂ F , initialized by zero, DT (s) = 0. The aim
is to compute the minimum distance of every point of the foreground to these
seeds. The disjoint foreground objects keep the infinite distance if there is no
seed in the connected component.

To compute the GDT we employ the irregular graph pyramid with loga-
rithmic complexity. Each vertex receives a unique index and a total order is
defined over the indices [1,3] that results in an efficient selection of contraction
kernels (CKs). The CKs are only selected from E0 edges which propagate the
distances. The propagating distances are a set of power-of-two numbers. In Fig. 2
edges of CKs are shown by an arrow pointing towards the surviving vertex. The
propagating distance i is shown by i over an edge. By default all edges prop-
agate distances by 1. Each surviving edge propagates the distance equal to 2i

into its adjacent unlabeled vertex. Next, to speed up the propagation of the
distances with a power of two, the independent edges of a CK are identified
by employing a logarithmic encoding. This logarithmic encoding indicates the
priority of contractions through the construction of the pyramid. In Fig. 2a the
numbers 1, 2, 3 and 1′, 2′, 3′ indicate the primary priorities that are different for
each adjacent edge. The bottom-up construction of the pyramid (Fig. 2(a) to
(d)) terminates when there is no edge remaining for the contraction. In top of
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the pyramid all surviving vertices have their distance values. At this stage the
distances are propagated from top to down where the vertices with DT (v) = ∞
receive their distance from their adjacent vertices and adding the distance of an
edge (Fig. 2(d) to (g)).

In order to correctly compute the GDT, each surviving vertex counts the
number of contractions from its receptive field while this is not needed in com-
puting the DT.

Fig. 2. Logarithmic GDT by irregular pyramid

Proposition 2. Geodesic distance between two points in the higher dimension
is always shorter or equal than in the lower dimension.

Proof. Assume there is a distance between two points in the lower dimension
that is shorter than distance between the same points in higher dimension. Since,
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every point in lower dimension is included in higher dimension, the shorter dis-
tance in lower dimension exists in the higher dimension as well which is in
contradiction with the assumption. ��

3 Distance Transforms in n-Gmaps

An n-dimensional generalized map (n-Gmap) is a combinatorial data struc-
ture allowing to describe an n-dimensional orientable or non-orientable quasi-
manifold with or without boundaries [12]. An n-Gmap is defined by a finite set
of darts D on which act n+1 involutions1 αi, satisfying composition constraints
of the following definition [7]:

Definition 2 (n-Gmap). An n-dimensional generalized map, or n-Gmap, with
0 ≤ n is an (n + 2)-tuple G = (D, α0, ..., αn) where:

1. D is a finite set of darts,
2. ∀i ∈ {0, ..., n}: αi is an involution on D
3. ∀i ∈ {0, ..., n − 2}, ∀j ∈ {i + 2, ..., n}: αi◦αj is an involution.

Let (D, α0, ..., αn) be an n-Gmap and let us consider its darts d ∈ D to be of a
unit length. Similar to graphs, we first initialize the distance transform at any
nonempty subset of seed darts S ⊆ D as follows: δ(s) := 0 ∀s ∈ S and δ(s̄) := ∞
∀s̄ ∈ D \ S. Scenarios for the initialization (seeding) may include:

– single dart: S = {d0},
– single i-cell: S = {all darts of the i-cell} (e.g., an edge), or
– any multi-combinations of the above, e.g., all edges (1-cells) connecting ver-

tices of different labels resulting from segmentation or connected component
labeling.

Similar to graphs, the distances are propagated from the seeds in the breath-first
search. The difference to graphs, however, is that the propagation is more general
and is driven along (some or all) involutions αi rather than being restricted to
the edges of the graph.

Figure 3b shows an example of a 2-Gmap – a 6×6 matrix of vertices (0-cells) of
four labels A, B, C, and D where A and B have both two connected components.
Edges (d, α0(d), α2(d), α2(α0(d)) connecting different labels2 are initialized to 0
and distances are propagated following α0, α1, and α2 involutions. Figure 3a
illustrates the arrangement of darts around an implicit vertex (X).

The propagation of distances in Fig. 3b is performed equally in all dimen-
sions, i.e., involving all involutions αi. Excluding a fixed αj , the propagation is
constrained to manifolds of dimensions j. This makes the computation of the
geodesic distance transforms on n-Gmaps viable.

1 Self-inverse permutations.
2 red separators in Fig. 3(b).
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Fig. 3. DT in a Gmap (Color figure online)

We illustrate the effect by a simple 2D example (see Fig. 3c) where we ini-
tialize a single dart by zero and propagate distances only by pairs of involutions:

1. 〈α0, α1〉 denotes the propagation3 of the orbit (α∗
0, α

∗
1)

∗(d0) and identifies the
(dual) 2-cell between A,B,C,D. α2 does not propagate the distance.

2. 〈α0, α2〉 denotes the propagation of (α∗
0, α

∗
2)

∗(d0) and identifies the 1-cell con-
sisting of the four darts between A and D. In this case α1 does not propagate
the distance.

3. 〈α1, α2〉 denotes the propagation of (α∗
1, α

∗
2)

∗(d0) and identifies the 0-cell (a
point), the eight darts surrounding A. In this case α0 does not propagate the
distance.

Depending on the initialization and the choice of involutions, distances can
thus be propagated along the boundaries of any i-cells, i > 0. For 3-Gmaps,
in addition to 3-cells (volume elements), propagation of distances along their
(2D) bounding surfaces or along (1D) curves bounding these surfaces becomes
possible. Based on Proposition.2 the GDT in the higher dimension is shorter or
equal than in lower dimension (Fig. 3d).

4 Results

As an example of the calculation of distance transforms on 2-Gmaps we refer
to Fig. 4. The three black, zero-labeled pixels of the 4 × 5 image (Fig. 4a) are
3 Blue distance values belong to the 2-cell, black distances to two types of cells

(Fig. 3c).
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used to seed the distance transform. Figure 4b represents the result of a graph-
based distance transform where pixels correspond to vertices of the graph and its
edges model the 4-connectivity of the image. The result of the 2-Gmap distance
transform is displayed in Fig. 4c. Each pixel corresponds to eight darts which
we choose to display by triangles colored by the minimum distance from the
seeds. The axes-parallel and the diagonal lines between the triangles of one pixel
correspond to α0 and α1, respectively. The axes-parallel pixel-separating lines
correspond to α2. The 3 seeds of Fig. 4a are represented by total of 24 black,
zero-labeled triangles in Fig. 4c. It can be observed that in the 2-Gmaps the
distances are propagated in a smoother and a more detailed way.

(a) mask with 3 seeds (b) DT (c) DT in Gmap

Fig. 4. Comparison of a graph-based (b) and Gmap-based (c) distance transforms of
a binary image (a). Best viewed in color and magnified.

To exploit the advantage of the proposed method in a real application, several
geodesic distance transforms (GDTs) are computed through a labeled 2D cross
slice of a leaf scan (Fig. 5). The input image (Fig. 5a) has six different labels illus-
trating different regions inside the leaf. In this figure, the stomas act as gates
to control the amount of CO2 that is entering the leaf. The CO2 propagates
through the airspace to reach the cells and by combining with water and heat
the photosynthesis takes place. To model various aspects of the photosynthesis,
GDTs may aid in several ways. First, since we are interested in simulations of gas
exchange in the leaf [13], we compute the GDT from the stomata through the
airspace (Fig. 5b). This is intended to approximate how long it takes to reach
the necessary CO2 concentration. Second, bottlenecks of the airspace suppos-
edly slow down the diffusion processes. We therefore compute the widths of the
bottlenecks by the GDT inside the airspace seeded at ist boundary (Fig. 5c).
Finally, the GDT from the stomata along the boundary of airspace is calcu-
lated (Fig. 5d). This is motivated by the observation that a longer boundary
accommodates more cells to perform photosynthesis.
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(a) Labeled cross-section of a plant leaf. (b) GDT in air seeded at stomas.

(c) GDT in air seeded at its boundary. (d) GDT in air boundary seeded at stomas.

Fig. 5. Computing GDT in a leaf.

It should be noted that the parallel logarithmic complexity of computing the
GDT in the proposed method makes it useful for processing the big data. In our
data-set each dimension of the 3D input image (leaf) is more than 2000 pixels.
Therefore, fast computation of the DT with low complexity is required as shown
in [2,3].

5 Conclusions

The paper presents a new algorithm to propagate distances in a graph which is
based on a spanning forest of the foreground. The spanning forest is produced in
parallel constant complexity and it reduces the linear search space to the length
of the longest path in the spanning forest. By preserving the connectivity of
connected components (CCs) and the topological information between CCs the
proposed algorithm performs the connected component labeling (CCL) and the
distance transform (DT) simultaneously. Using the hierarchical structure of the
irregular pyramid the new method computes the geodesic distance transform
(GDT) with parallel logarithmic complexity that makes it useful for processing
of the big data.
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We additionally introduce distance transforms for the generalized combina-
torial maps (n-Gmaps). We show how they naturally result in a smoother and
a higher resolution distance fields. More importantly, however, we show how
geodesic distance transforms can efficiently be performed just by omitting rel-
evant involutions from the distance propagation. Finally, we demonstrate how
computing GDTs in n-Gmaps may support modelling of the gas exchange in
plant leaves.
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