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Abstract. The distance transform (DT) serves as a crucial operation in numerous
image processing and pattern recognition methods, finding broad applications in
areas such as skeletonization, map-matching robot self-localization, biomedical
imaging, and analysis of binary images. The concept of DT computation can also
be extended to non-grid structures and graphs for the calculation of the short-
est paths within a graph. This paper introduces two distinct algorithms: the first
calculates the DT within a connected plane graph, while the second is designed
to compute the DT in a binary image. Both algorithms demonstrate parallel log-
arithmic complexity of O(log(n)), with n representing the maximum diameter
of the largest region in either the connected plane graph or the binary image. To
attain this level of complexity, we make the assumption that a sufficient number
of independent processing elements are available to facilitate massively paral-
lel processing. Both methods utilize the hierarchical irregular pyramid structure,
thereby retaining topological information across regions. These algorithms oper-
ate entirely on a local level, making them conducive to parallel implementations.
The GPU implementation of these algorithms showcases high performance, with
memory bandwidth posing the only significant constraint. The logarithmic com-
plexity of the algorithms boosts execution speed, making them particularly suited
to handling large images.

Keywords: Distance transform · Connected plane graph · Parallel logarithmic
complexity · Irregular graph pyramids · Parallel processing

1 Introduction

The concept of distance transform (DT) [34], a cornerstone technique in pattern recog-
nition and geometric computations, has a pivotal role in an array of methods. Its util-
ity spans a wide spectrum of applications, including but not limited to skeletonization
[31], robotic self-localization through map matching [36], image registration [19], tem-
plate matching [26,33], line detection in manuscripts [21], and weather forecasting and
analysis [9]. Employed primarily on binary images composed of background and fore-
ground regions, the DT produces a new gray-scale image. In this transformed image,
the intensity of each foreground pixel reflects the minimum distance to the background.
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The application of distance transform extends beyond binary images and into the
realm of connected plane graphs, enhancing its utility further [27]. A connected plane
graph consists of vertices and edges, analogous to the pixels and adjacency relationships
in an image. By applying distance transform on such a graph, each vertex obtains a value
that signifies the shortest distance to a set of predefined background vertices.

This transformation on connected plane graphs finds immense value in network
analysis [28] and routing applications [20]. It serves as a crucial step in path-finding
algorithms, where identifying the shortest paths between nodes [18] can result in opti-
mized routing [14,15]. This is particularly useful in applications such as transport logis-
tics, telecommunications routing [12], and even in social network analysis. Thus, dis-
tance transform not only offers valuable insights into image analysis but also aids in
optimizing network structures and enhancing routing efficiency [11].

In the computation of the Distance Transform (DT), conventional algorithms
applied to binary images [13,32,34] or connected plane graphs [18,22] typically prop-
agate distances in a linear-time complexity, denoted as O(N). Here, N represents the
quantity of pixels in a 2D binary image or the count of vertices in a connected plane
graph.

Differently, this paper introduces an innovative approach that propagates distances
exponentially, thereby computing the DT with a parallel time complexity of O(log(n)).
In this instance, n signifies the diameter of the most extensive connected component
found within the binary image or the connected plane graph. In the pursuit of achieving
parallel logarithmic complexity, it is imperative to note a key assumption we make. We
presume that a sufficient number of independent processing units are readily accessible.
This assumption is crucial to the successful execution of our proposed method, as it is
heavily reliant on simultaneous processing capabilities.

Our proposed method builds upon the concepts presented in a recent publication
[7], which leverages the hierarchical structure found in the irregular graph pyramid
[4,8,24]. The methodology outlined in [7] focuses on computing the distance transform
on a grid structure. Conversely, our paper introduces a novel approach for calculating
the distance transform in a general, non-grid connected plane graph, an approach that
also effectively solves the shortest path problem.

In this study, we propose two algorithms that exhibit parallel logarithmic complex-
ity. In Sect. 3, we elaborate on the first method for computing the DT in a connected
plane graph. Subsequently, Sect. 4 presents the second method for computing the DT
in a binary image. Prior to that, in Sect. 2, we provide a recap of the background and
definitions. Lastly, in Sect. 5, we evaluate and compare the results obtained from both
methods.

2 Background and Definitions

The image pyramid is a stack of images, each presented at a progressively reduced reso-
lution [8]. It is a methodology prevalent in various domains, including image processing
[10] and pattern recognition [34]. This approach effectively encapsulates both local and
global information across the different levels. The procedure starts with high-resolution
data at the base level and progressively transmutes the local details into more abstract,
global information as one ascends the pyramid [29].
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Pyramids are essentially of two categories: regular and irregular [8]. In regular
pyramids, the resolution decreases in a consistent pattern from one image to the next.
However, the resolution reduction in irregular pyramids does not follow a fixed rate. A
notable drawback of regular pyramids is their lack of shift invariance - even a minor
deviation in the initial image can potentially induce significant alterations in the subse-
quent pyramid [8]. Irregular pyramids offer a solution to this issue, being data-driven
hierarchical structures that inherently bypass the shift variance problem.

A digital image can be visualized as a neighborhood graph. Consider G = (V,E)
as the neighborhood graph representing image P . Here, V correlates to P , and E links
neighboring pixels. The 4-neighborhood representation is typically favored to avoid
intersection of edges between diagonal neighbors within 2× 2 pixels, thus maintaining
the graph’s planarity, which would be compromised in an 8-connected graph.

Irregular graph pyramids [24] are a sequence of consecutively reduced graphs, each
iteratively constructed from the graph below it through the selection of specific ver-
tices and edges subsets. The pyramid’s construction utilizes two fundamental oper-
ations: edge contraction and edge removal. In the case of edge contraction, an edge
e = (v, w) undergoes contraction, with the endpoints v and w merging and the edge
itself being eliminated. Post-operation, the edges originally connected to the combined
vertices become incident to the resulting singular vertex. Conversely, edge removal sim-
ply entails the removal of an edge without modifying the count of vertices or interfering
with the incidence relationships of remaining edges. Throughout the pyramid, the ver-
tices and edges that do not persist to the next level are termed non-surviving, while
those that do make it to the subsequent level are classified as surviving.

A plane graph [37], is a graph embedded in a two-dimensional plane where its
edges exclusively intersect at their endpoints. In the plane graph there are connected
spaces between edges and vertices and every such connected area of the plane is called
a face. A face’s degree is quantified by the number of edges that enclose it. Further
categorization introduces the notion of an empty face, specifically referring to a face that
is demarcated by a cycle. For non-empty faces, traversal of the boundary necessitates
multiple visits to certain vertices or edges [23]. Empty faces that encompass only a
single edge are distinguished as empty self-loops. Considering an empty face of degree
2, it would encompass a pair of edges with identical endpoints. These parallel edges are
called as multiple edges.

Definition 1 (Contraction Kernel (CK)). A CK is a tree consisting of a surviving
vertex as its root and some non-surviving neighbors with the constraint that every non-
survivor can be part of only one CK [5].

An edge of a CK is denoted by the directed edge and points towards the survivor.
A Maximal Independent Vertex Set (MIVS) [29] represents a collection of inde-

pendent vertices within a connected plane graph. Here, independence implies that no
two vertices within the set are neighbors [29]. The MIVS method employs an itera-
tive stochastic process based on a uniformly distributed random variable [0, 1] assigned
to each vertex [8]. Vertices corresponding to a local maximum of this random vari-
able are surviving vertices, whereas their neighboring vertices are non-survivors. There
may be some isolated vertices left, which will be connected to the local maximum in
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subsequent iterations for the construction of the independent set. The survival proba-
bility of a vertex is correlated to the size of its neighborhood [30], which influences
the height of the pyramid and the number of iterations required to construct the pyra-
mid [8]. A challenge with the MIVS approach is that the average degree of vertices
tends to increase throughout the pyramid [25]. This leads to a reduction in the number
of surviving vertices, subsequently decreasing the decimation ratio along the pyramid
[16], which inadvertently increases the pyramid’s height. To address this drawback, the
Maximum Independent Edge Set (MIES) was introduced.

The MIES [16] applies the MIVS method to an edge-graph derived from the orig-
inal graph G. This edge-graph comprises a vertex for each edge in G, with vertices in
the edge graph being connected if their corresponding edges in G are incident to the
same vertex. Consequently, the MIES introduces a maximal matching [17] on the ini-
tial graph vertices. A matching on a graph refers to a subset of its edges wherein no two
edges share a common vertex. Such a matching is deemed maximal if it is impossible
to add any additional edge without breaching the matching condition [16]. Maximum
matching, on the other hand, represents the matching scenario that encompasses the
largest possible number of edges for a given graph [16].

3 DT in a Connected Plane Graph

In a planar graph G = (V,E), where V and E represent the vertices and edges respec-
tively, distances are determined by the shortest path length [35]. Each vertex v ∈ V
has a set of neighbors denoted by N (v) = {v} ∪ {w ∈ V |e = (v, w) ∈ E} linked
via edges. Partition the vertices V = B ∪ F with B ∩ F = ∅ into background and
foreground vertices in the graph.

In the process of computing the distance transform (DT) on the graph, vertices in the
set b ∈ B act as seed vertices, with their respective distances initialized to zero, denoted
as DT (b) = 0. The foreground f ∈ F have their distances initialized to infinity, or
DT (f) = ∞. The calculation of the distance transform utilizes an irregular graph
pyramid structure [3,7]. Within this hierarchical structure, information is propagated in
two primary directions: (1) bottom-up and (2) top-down. The bottom-up construction
involves computing the DT for a subset of vertices, referred to as surviving vertices,
progressively up the pyramid until its apex is reached. Conversely, the top-down process
computes the DT for the remaining vertices, proceeding downwards until the DT for all
vertices has been calculated at the base level.

3.1 Bottom-Up Construction in the Irregular Pyramid

The irregular pyramid is constructed from the original graph,G, which forms the base of
the pyramid, through a bottom-up procedure. This process comprises four iterative steps
at each level of the pyramid: (1) propagation of distances, (2) selection of Contraction
Kernels (CKs), (3) contraction of the selected CKs, and, (4) simplification.

Distance Propagation. At each level of the pyramid, vertices with previously com-
puted Distance Transform (DT) propagate their distances to their adjacent vertices. This
propagation is described by the following relation:
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D(v) = min{D(v),D(vj) + 1 + dc| vj ∈ N (v)} v ∈ F (1)

Here, dc is the shortest length of the cumulative lengths of the subpaths with the same
end vertices resulting from several steps of contractions.

Selection of Contraction Kernels and Contraction Process. The selection of Con-
traction Kernels (CKs) is a crucial step in the construction of the pyramid. To ensure
a fully parallel construction of the pyramid with logarithmic height, it is necessary for
the selected CKs to be independent of each other [6]. To achieve this, we employ the
Maximum Independent Edge Set (MIES) method [25], where the chosen CKs share no
common vertices. Once the CKs are selected, they are contracted, resulting in a smaller,
reduced graph at the subsequent higher level of the pyramid. The reduction function [8]
computes the lengths of the newly contracted edges and the shortest distance of the
surviving vertices.

Simplification. The contraction of selected independent Contraction Kernels (CKs)
yields a smaller graph, which might contain parallel edges or empty self-loops. Having
no topological information [5] these superfluous edges are referred to as redundant
edges [2,5]. To simplify the resulting graph, these redundant edges are removed. Only
the shortest of a set of multiple edges is kept.

The pyramid’s construction concludes when all surviving vertices have received
their corresponding DT. This graph represents the apex of the pyramid. Figure 1 pro-
vides an example of computing the DT via the bottom-up procedure. The pyramid’s
base level (Fig. 1a) is the original connected plane graph, which comprises a single
filled vertex as the background and the remaining unfilled vertices as the foreground.
During the initialization step, the background vertex and its adjacent vertices receive
their DT. The edges incident to the background are colored in red, while the remain-
ing foreground edges are shown in dark blue. The selected CKs are indicated by black
arrows at various pyramid levels (Fig. 1b, d, f). Post-contraction, the resulting graph
(Fig. 1c, e) contains redundant edges. For instance, in Fig. 1c, an empty self-loop is rep-
resented by “s”. The edges labeled b, c, e, g, l, n, and o are redundant parallel edges.
The cumulative sum of previous contractions, dc, as denoted in Eq. (1), is illustrated by
i , where i = 1, 2 beside vertices and their corresponding incident edges.

3.2 Top-Down Propagation

The computation of the Distance Transform (DT) for the remaining vertices with
unknown distances involves two main steps, executed level by level from the apex to
the base of the pyramid: (1) distance propagation, and (2) correction.

Distance Propagation. In the top-down procedure, the hierarchical structure of the
pyramid is reconstructed from the apex down to the base level. This reconstruction
involves the re-insertion of edges to re-establish connectivity and expand the graph. To
compute the DT, each vertex with a previously computed DT propagates its distance to
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Fig. 1. Bottom-up construction in the pyramid.
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its corresponding vertex at the lower level. Following this, one step of DT propagation
(as described in Eq. (1)) is conducted, leading to the propagation of distances to the
newly inserted vertices. This process continues until the pyramid reaches the base level,
at which point all vertices possess their respective DTs.

Correction. According to Eq. (1), the difference between the DT values of any two
adjacent vertices at a given pyramid level should be at most 1 + dc. However, during
the top-down reconstruction of the pyramid, the insertion of a new edge might connect
two vertices whose distance apart is greater than 1 + dc. In such situations, another
application of Eq. (1) is needed to update the new DT and ensure accuracy of the final
result.

Figure 2 illustrates the top-down reconstruction of the pyramid, with the correction
of certain distances represented by bevelled red lines. Algorithm 1 demonstrates the
computation of the Distance Transform (DT) in a connected plane graph.

Algorithm 1. Computing the Distance Transform (DT) in a Connected Plane Graph.

1: Input: Connected Plane Graph: G = (V,E) = (B ∪ F,E) L=pyramid’s level
2: Initialization: Set DT (b) = 0; ∀b ∈ B, and DT (f) = ∞, ∀f ∈ F
3: While there are edges to be contracted, perform the following steps for bottom-up construc-

tion of the pyramid:
4: Propagate the distances using Equ. (1)
5: Select the Contraction Kernels (CKs)
6: Contract the CKs
7: L → L+ 1
8: Record the number of contractions
9: Simplify the resulting reduced graph
10: End While (Top of the pyramid is reached)
11: While there are vertices with unknown DT in the level below, perform the following steps

for top-down propagation of distances:
12: L → L − 1
13: Inherit the computed DT from higher levels
14: Propagate the distances using Equ. (1)
15: Implement corrections if necessary
16: End While

4 Distance Transform (DT) in a Binary Image

A binary image can be conceptualized as a two-dimensional matrix, with each ele-
ment assuming a value of either zero or one. The neighborhood graph corresponding
to this binary image, denoted by G = (V,E), comprises vertices V representing pixels
(p ∈ P ) of the image, and edgesE signifying the adjacency relationships between these
pixels. For the purpose of creating a plane neighborhood graph, we assume 4-nearest
neighbor relations between the pixels. The reason is that the 8-connectivity would not
be a plane graph [23].



26 M. Banaeyan and W. G. Kropatsch

Fig. 2. Top-down propagation of DT.
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The computation of the DT in the binary image employs the use of an irregular
pyramid as proposed by Banaeyan (2023) [7]. In this hierarchical structure, an efficient
selection of Contraction Kernels (CKs) is enabled by defining a total order through the
indices of the vertices, as suggested in [3].

Suppose the binary image comprises M rows and N columns, with pixel (1, 1)
situated at the upper-left corner and pixel (M,N) at the lower-right corner. In such a
setup, the vertices of the corresponding graphG are assigned a unique index as follows,
based on the approach proposed in [5]:

Idx : [1,M ] × [1, N ] → [1,M · N ] ⊂ N, Idx(r, c) = (c − 1) · M + r (2)

where r and c correspond to the row and column of the pixel, respectively.
The Distance Transform (DT) in the binary image can be calculated using a method

similar to Algorithm 1. However, two modifications are incorporated. Firstly, in contrast
to computing the DT in the connected plane graph, the simplification step is executed
before the contraction by Contraction Kernels (CKs), which expedites the pyramid con-
struction. Secondly, by knowing the coordinates of the vertices, the propagation formula
can be directly computed based on the indices of the coordinates, as proposed in [5]:

D(vi) = min{D(vi),D(vj) +

{
1 if T = 1
T
M if T 	= 1

} (3)

where
vj ∈ N (vi), T = |Idx(vi) − Idx(vj)| (4)

Algorithm 2 outlines the specifics of the proposed method.

Algorithm 2. Computing the Distance Transform (DT) in a binary image.

Input: Neighborhood graph of a binary image: G = (V,E), L=pyramid’s level
2: Initialization: Set DT (b) = 0; ∀b ∈ B, and DT (f) = ∞, ; ∀f ∈ F

While there are edges to be contracted, perform the following steps for bottom-up construc-
tion of the pyramid:

4: Propagate the distances using Equ. (1)
Select the Contraction Kernels (CKs)

6: Identify the Redundant Edges
Remove the Redundant Edges

8: Contract the CKs
L → L+ 1

10: End While (Top of the pyramid is reached)
While there are vertices with unknown DT in the level below, perform the following steps
for top-down propagation of distances:

12: L → L − 1
Inherit the computed DT from higher levels

14: Propagate the distances using Equ. (1)
Implement corrections if necessary

16: End While

It is noteworthy to mention that in calculating the DT of the binary image, the selec-
tion of Contraction Kernels (CKs) is executed differently. While in the plane graph the
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Maximum Independent Edge Set (MIES) method selects independent CKs at each pyra-
mid level, the binary image employs a different approach. Here, equivalent contraction
kernels (ECKs) [5] are selected initially, followed by a logarithmic encoding process
which divides the ECKs into a set of independent edges.

5 Evaluation and Results

To underscore the benefits of the introduced logarithmic algorithm, we conducted per-
formance analyses comparing its execution times to those of two other GPU-based
methods, MeijsterGPU and FastGPU, as presented in [1]. The experimental environ-
ment consisted of MATLAB software running on an AMD Ryzen 7 2700X, 3.7GHz
CPU, and an NVIDIA GeForce GTX 2080 TI GPU. The experiments comprised three
distinct types of images: Random (Ran.), Mitochondria (Mit.), and MRI. Table 1 elu-
cidates the results obtained from these experimental scenarios. Table 1 [7] presents the
image size in its first column, followed by execution times (in ms) for our proposed
Logarithmic DT (Log DT) algorithm across three distinct image types, and concludes
with the execution times of two other methods. Figure 3 provides a visual comparison
of the logarithmic algorithm’s performance across the image types. As the Random
images have smaller foreground elements compared to the other types, they are pro-
cessed more rapidly. In Fig. 4, the logarithmic DT’s performance is contrasted with that
of the MeijsterGPU and FastGPU methods. Our proposed algorithm not only outpaces
the others but also displays superior handling of larger images.

Table 1. Execution (ms) of proposed Logarithmic DT, MeijsterGPU and FastGPU [7].

Image-size Mit. Log DT MRI Log DT Ran. Log DT Ran. MeijsterGPU Ran. FastGPU

256×256 0.0953 0.1209 0.0645 3.8524 1.7844

512×512 0.410 0.7310 0.3152 14.2005 4.2309

1024×1024 2.6308 5.1501 0.9364 25.8475 12.4668

2048×2048 4.1088 8.9506 1.8577 110.7817 44.9560

It is worth highlighting that all operations within the proposed algorithms are inde-
pendent and localized, allowing each GPU thread within the shared memory to be allo-
cated to a distinct local process. This distribution creates a performance bottleneck,
determined by the capacity of the shared memory. Nevertheless, with an ample number
of independent processing elements, the algorithms can operate in full parallelism and
maintain logarithmic complexity.

Currently, our team is engaged in the “Water’s Gateway to Heaven” project1,
which focuses on high-resolution X-ray micro-tomography (µCT ) and fluorescence
microscopy. The 3D images involved in this project have dimensions exceeding 2000 in
each direction, and the DT plays a crucial role in the challenging task of cell separation.
We anticipate that our proposed method will significantly enhance the computational
efficiency required for processing such large-scale 3D images. As part of our future
work, we plan to evaluate the effectiveness of our method on diverse graph datasets.

1 https://waters-gateway.boku.ac.at/.

https://waters-gateway.boku.ac.at/
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Fig. 3. The proposed logarithmic DT over different images [7].

105 106 107
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Logarithmic DT
MeijsterGPU
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Fig. 4. Comparison of the proposed algorithm with MeijsterGPU and FastGPU [1,7].

6 Conclusion

The distance transform (DT) calculates the shortest distance to reach a point from the
set of initial points. In this study, we expanded the concept of DT computation from
images (grid structures) to connected plane graphs (non-grid structures). This expansion
can enhance the efficiency of solving the shortest path problem in graph theory. The pri-
mary advantage of the proposed algorithms lies in their parallel logarithmic complexity,



30 M. Banaeyan and W. G. Kropatsch

which is achieved through the construction of an irregular pyramid using fully parallel
local processing. Evaluation of these algorithms using a database of binary images, and
comparison with other contemporary methods, reveals that our proposed algorithm sig-
nificantly reduces execution time. This efficiency makes it especially advantageous for
processing large images.
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