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Abstract. A gray scale digital image can be represented as a 2.5D sur-
face where the height of the surface corresponds to the gray value of the
respective pixel. Analysis of the gray scale image can be efficiently done
by exploiting the properties of the plane graph embedded in the 2.5D sur-
face. The vertices of the graph can be easily categorized into critical and
non-critical points by use of Local Binary Patterns (LBPs). Well defined
graph operations such as contraction and removal of edges are used to
eliminate the non-critical points and preserve the critical points thereby
reducing the size of graph. In this process, it is important to preserve the
structural and topological properties of the regions of a gray scale image.
After analysing the topological properties of a well composed image, we
provide two prototypes of the slope region and the necessary conditions
for their existence. Also we prove that every slope region conforms to
either of the two prototype. Conversely the prototypes may be used to
generate an image with a required topological properties.

1 Introduction

Exploiting the surface properties by its representation using the surface elements
(viz. local maximum, local minimum, etc.) and simultaneously preserving the
structural (topological) properties has been a classical problem in pattern recog-
nition and image processing. It has various applications like multi-resolution
image segmentation, image compression and so on. The surface elements are
broadly classified into two types: critical points (maximum, minimum, saddle)
and non-critical points (slope point). Cayley [4] and Maxwell [14] explored the
critical points and slope lines of a surface in terms of earth’s topography. A
century later, Lee [13] came up with a graphical representation of the surface
and enumerated different possible configurations of the critical points in a Morse
function.

Identifying the critical points in the neighborhood graph of a digital image
was described in [5] using Local binary Patterns (LBPs) which eliminated the
computation of differentiation. An extension, Cerman et al. [6] provided an algo-
rithm for multi-resolution image segmentation using the graph pyramid which is
a stack of reduced graphs. Wei in [15] uses an approach to construct a hierarchical
structure similar to the graph pyramid called ‘super-pixel hierarchy’ for multi-
resolution image segmentation. Edelsbrunner et al. [8] discuss the construction of
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a hierarchy of increasingly smaller Morse-Smale complexes to decompose a piece-
wise linear 2-D manifold. In [11,12] authors provide definitions of slope regions
and slope complex which generalizes Morse-Smale complexes and enumerates the
different configurations of the slope regions formed by critical points. [2] deals
with a prototype of a slope region and counts the number of slope regions at a
given level of the graph pyramid. In [1] authors describe the necessary and suffi-
cient conditions for merging slope regions in the region adjacency graph (RAG)
and its dual the boundary adjacency graph (BAG).

After recalling basic definitions related to the topological aspects of digital
images (Sect. 2), we extend our previous work [11] in several ways. In Sect. 3
we introduce a new prototype for the slope region. Section 4 is devoted to the
description of holes and two different ways they are attached to the boundary of
the slope region. In Sect. 5 we prove that any digital image can be partitioned
into slope regions of one of the two prototypes. Finally, in Sect. 6 we explain the
necessary conditions for the existence of a saddle point on the boundary of the
slope region.

2 Basic Definitions and Formation of a Slope Region

A digital image P can be visually perceived as a sampled version of a geograph-
ical terrain model which is a continuous surface. The sampling frequency to
choose the samples should satisfy the Nyquist criterion for the minimum dis-
tance between any two critical points. The digital image P can be efficiently
represented by a dual pair of plane graphs. The region adjacency graph (RAG)
G = (V,E) is formed by vertices v ∈ V corresponding to pixels p ∈ P connected
to the four adjacent neighbors by edges e ∈ E. The dual of the RAG is the
boundary adjacency graph (BAG) G = ( V , E) where every vertex v ∈ V of
BAG corresponds to a face formed by the intersection of the boundary segments
in the RAG G and edges e ∈ E of the BAG correspond to the boundary sep-
arating the faces in the RAG G [7, Sect. 4.6]. The gray value of the pixel p is
visually conceived as the height of the surface and it is denoted by g(p) = g(v)
where v is the vertex corresponding to p. There are two operations to build a
graph pyramid [10]: contraction and removal of edges in the graph. Contraction
of an edge [7, Sect. 1.7] in G will result in merging the corresponding two pixels
connected by the respective edge. This is equivalent to the removal operation in
the BAG G. Duality imposes a one-to-one correspondence between the edges of
the RAG G and of its dual the BAG G. The removal of an edge (v, w) ∈ E dis-
connects the two vertices v and w and merges the two faces which is equivalent
to contract e ∈ E in G.

By successively contracting and removing edges, we form a stack of progres-
sively reducing planar graphs (Gk, Gk), k ∈ {0, 1, . . . , n} where each graph Gk+1

is smaller than the graph Gk [3,9,10]. The base level of the graph pyramid is
the neighborhood graph or RAG G0.
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Definition 1. The orientation of an edge (v, w) ∈ E in the RAG G =
(V,E) is directed from vertex v ∈ V to vertex w ∈ V iff g(v) > g(w), otherwise
edges are not oriented.

The edge e ∈ E connecting two vertices v, w ∈ V with g(v) = g(w) is non-
oriented. Note that we define the orientation of edges by considering only the
gray values as a feature of an image. The theory stated in this paper remains valid
for higher dimensional feature vectors provided that their ordering is defined.

Now using the orientation of an edge incident to a vertex, we can categorize
a vertex into a local maximum, local minimum, saddle or a slope point.

Definition 2. A vertex v ∈ V is a local maximum ⊕ if all the edges incident
to v are oriented outwards.

Definition 3. A vertex v ∈ V is a local minimum � if all the edges incident
to v are oriented inwards.

Definition 4. A vertex v ∈ V is a saddle point ⊗ if there are more than two
changes in the orientation of edges when the edges incident on v are traversed
circularly (clockwise or counter-clockwise direction).

Definition 5. A vertex v ∈ V is a slope point if there are exactly two changes
in the orientation of edges when traversed circularly (clockwise or counter-
clockwise direction).

Categorizing a vertex using orientation of edges incident to it is equivalent
to that of LBP code. The LBP value of an outward oriented edges are encoded
as 1 and inward orientated edges are encoded as 0. The LBP code of a vertex
is formed by concatenating LBP values of the incident edges in clockwise or
counter-clock wise direction. The LBP code of a maximum will consist of 1 only
while the LBP code of a minimum will consist of 0 only. The LBP code of slope
points will have exactly 2 bit switches and saddles will have more than 2 bit
switches. By use of orientated edges, we avoid the calculation of derivatives and
eigen-values of the Hessian matrix to categorize a vertex.

Definition 6. A path π is a non empty sub-graph of G, consisting of an alter-
nating sequence of vertices and edges π = v1, e(v1, v2), v2, . . . , e(vr−1, vr), vr. A
path π(v1, vr) is monotonic if all the oriented edges (vi, vi+1), i ∈ [1, r−1] have
the same orientation.

Note: Paths with non-oriented edges are called level curves. A level curve can
be part of a monotonic path.

A monotonic path π(v1, vr) can be further extended by adding an edge ori-
ented in the same direction as the direction of monotonic path π(v1, vr). A
monotonic path which cannot be further extended is called a maximal mono-
tonic path. The end points of a maximal monotonic path will always be a local
maximum and a local minimum. The definition of the monotonic paths is used
to define the slope region which is the foundation for the rest of the paper.
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Definition 7. A face in a surface embedded plane graph G is a slope region S

if all the pairs of points in the face can be connected by a continuous monotonic
curve inside the face.

Remark 1. The boundary δS of the slope region S is either a level curve or it
can be decomposed into exactly two monotonic paths [11, Lemma 1].

Remark 2. Property of a slope region: Saddle points can only exist on the
boundary δS of the slope region S and not in the interior S \ δS [11, Lemma 2].

Contraction of the low contrast edges in the monotonic paths without elimi-
nating the critical points, preserves the monotonicity of the path. A sequence of
contractions may generate self-loops and multiple edges. In such cases, the slope
region is difficult to analyze. The next section deals with the prototypes of the
slope region in which the slope regions can be categorized.

3 Two Prototypes of the Slope Regions

A prototype of a slope region is a graphical representation including all the
possible components that a slope region may consist of. In other words, a slope
region conforming to a prototype will obey the properties of the prototype. In
this section, we explain the two prototypes of the slope region i.e. horizontal
and inclined, by analyzing the similarities and the differences between them.
Prototype 1 - Inclined slope region prototype is the extended version of the
slope region prototype mentioned in [11]. The graphical and 2.5D representation
of the prototype 1 and the prototype 0 are showed in Figs. 1 and 2 respectively.
Existence and properties of holes in slope regions are described in Sect. 4.

3.1 Components and Similarity Between the Two Prototypes

Figures 1(a) and 2(a) show all the components of prototype 1 - the inclined slope
region and prototype 0 - the horizontal slope region respectively. Horizontal slope
region prototype, in short is called as prototype 0 since it has zero inclination
unlined the inclined slope region prototype. Both of them consists of at most
two extrema (one local maximum ⊕ and one local minimum �) geometrically
inside the boundary of the slope region and are connected to the boundary via
a monotonic path. All the elements such as ⊕,�, holes are required to be con-
nected to the boundary of the slope region to avoid generation of a disconnected
graph. Therefore we have paths (⊕,m1) and (m2,�) connecting ⊕ and � to
the boundary at vertex m1 and m2 respectively. The paths (⊕,m1) and (m2,�)
must be monotonic to satisfy the Definition 7. A saddle point can only be present
on the boundary of the slope region as stated in Remark 2. There might exist
points (for example a local maximum or a local minimum disregarding ⊕ and �)
within the boundary which cannot be connected to either of the two extremum
with a monotonic curve. Collections of all such points, geometrically inside the
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boundary of the slope region are classified as holes. Semantically, holes are not
part of the slope region, since slope region is homeomorphic to the disk.

A hole in the slope region which do not lie on the monotonic path (for
example: Hole3 in Figs. 1 and 2) is surrounded by a self-loop and is connected
to the boundary of the slope region by a level curve.

Fig. 1. Prototype 1: inclined slope region.

A complete traversal of the potentially folded boundary of the inclined
slope region is an alternating sequence of vertices and edges: (⊕, â, p1, h1, p2, b̂,

m1, ě,m2, d̂, p3, h4, p4, ĉ,�, č, p4, h3, p3, ď,m2, ǧ,m3, h5,m, h,m, h6,m3, f̂ , m1, b̌,
p2, h2, p1, ǎ,⊕). Traversal of the folded boundary for horizontal slope region pro-
totype can be worked out in similar fashion.
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For a continuous case, all the gray values in the range [g(�), g(⊕)] exist on
the potentially folded boundary of the slope region. Any component, i.e., ⊕, �
and holes may be excluded from the prototype to form a catalogue of all the
possible slope regions conforming to the prototype 1 or prototype 0 respectively.
An example of a mesh plot of prototype 1 and prototype 0 without Hole1 and
Hole2 can be viewed in Fig. 1(a).

Orientation of Paths in Inclined Slope Region: All the paths are oriented
following Definition 1 of edge orientation, i.e., from the higher gray-value vertex
to the lower gray-value vertex. The two paths â and ǎ are on the same curve
but are defined separately to complete the closed walk along the boundary of
the slope region. â is the walk from ⊕ to Hole1 following the orientation of the
path from ⊕ to Hole1. ǎ is an up-hill walk from Hole1 to ⊕ in the direction
opposite to the oriented path connecting ⊕ and Hole1. Same applies to all the
paths: b̂, b̌, ĉ, č, d̂, ď, h5, h6.

3.2 Difference Between the Two Prototypes

The only difference between the two prototypes is that, the outer bound-
ary of Prototype 1 consists of exactly two monotonic paths (m1, ě,m2) and
(m1, f̂ ,m3, ĝ,m2). In contrast to the Prototype 1, the outer boundary of Pro-
totype 0 is made up of level curve (m1, e,m2, g,m3, h5,m, h, h6, f) i.e. all the
points on the boundary have same gray value. Consequently, it is possible that
the extrema and holes are connected to only one vertex on the level curve, which
would be the result of contraction of edges connecting (m1,m2) and (m2,m3)
forming a self-loop. Hence the boundary in the self-loop slope region is non-
oriented.

Note 1. The outer boundary of the Prototype 1 consists of exactly two mono-
tonic paths while the outer boundary of the Prototype 0 is a single level curve.

4 Holes in the Slope Region

Collections of all the points within the boundary of the slope region, which
cannot be connected to the other points with a monotonic curve are classified as
holes in the slope region and the points inside the hole do not belong to the slope
region. Holes can be distinguished into two types depending on the connection
of the hole with he boundary of the slope region. In Sect. 4.1 we describe the
properties and condition for the hole connected to the boundary with a level
curve and in Sect. 4.2 for the hole connected to the boundary with a monotonic
path.
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Fig. 2. Prototype 0: horizontal slope region.

4.1 Hole Outside the Monotonic Path (Hole3)

Collection of points which do not appear on the monotonic paths (⊕, m1) and
(m2,�) and which cannot be connected to either ⊕ and � by a monotonic curve
will be classified as a hole: Hole3.

In prototype 1, as all the gray values in the range [g(m1), g(m2)] exist on the
outer boundary. Every point in one of the two monotonic paths of the boundary
will be connected via an isoline (level-curve) to its counterpart point (with the
same gray value) on the other monotonic path. If the boundary of the hole
intersects multiple isolines, it will generate pair of points which can not be
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anymore connected by monotonic curves. This will invalidate the property of
the slope region. Hence a single isoline will surround holes which are outside the
monotonic path.

The hole must be connected to the boundary of the slope region by a level
curve (cf., connection of vertices m and m3 in Figs. 1(a) and 2(a)). In contra-
diction, if the hole was connected to the boundary with a path other than level
curve, the pair of points on the either side of this path would not be connected by
a monotonic curve. Similarly observations can be made for Hole3 in prototype 0.

In case of multiple holes of same category, all the holes will be individually
connected to the boundary of the slope region with a level curve. Since the hole
is surrounded by a level curve, it must conform to prototype 0.

4.2 Holes on Monotonic Paths (⊕, m1) and (m2,�): (Hole1 and
Hole2)

A hole on a monotonic path needs to intersect at least two distinct points to
invalidate the monotonicity of the path. Referring to Figs. 1(a) and 2(a), Hole1
intersects the monotonic path (⊕,m1) at two distinct points p1 and p2.

Figure 3(a) and (b) shows the simplest example of existence of such hole
which are formed by a local maximum and a local minimum (disregarding ⊕
and �) respectively. In Fig. 3(a), the curve marked in yellow color will surround
the hole with gray value g(u). Similarly in Fig. 3(b), the curve marked in yellow
color will surround the hole with gray value g(l). In both the cases, the region
between the range [g(u), g(l)] (visible region between red and yellow curve) can
be connected to the rest of the slope region with a monotonic curve, and hence
will not be considered as a hole. Corresponding contour plots of Fig. 3(a) and
(b) can be seen in Fig. 3(c) and (d) respectively where the boundary of the holes
are marked in black. In prototype 1 and 0, referring to Figs. 1(a) and 2(a), the
gray value of the path h1 and h2 connecting the two vertices p1 and p2 will be
decided depending whether the hole is encapsulating a local maximum or a local
minimum inside it. If the hole encapsulates a local maximum, the boundary of
the hole equals to g(u) and in case of minimum it equals to g(l) as shown in
Fig. 3. Same applies to the boundary of Hole2 appearing on the monotonic path
m2,� in both the prototypes. Since the hole is surrounded by a level curve, it
must conform to prototype 0.

4.3 Multiple Holes on Monotonic Paths

As we have already showed in the previous section that the boundary of the hole
is a level curve, in Fig. 4 g(p1) = g(p2) and g(p3) = g(p4). In case of multiple holes
appearing on the same monotonic path, the boundaries of different holes will be
connected to each other either by a level curve or a monotonic path depending on
the gray values of the level curve surrounding the holes. Referring to Fig. 4, if the
gray values of the level curves surrounding the holes: Hole1 and Hole2 are the
same, then the boundaries of the holes are connected by a level curve. Otherwise,
they are connected by a monotonic path with orientation defined in Definition 1,
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Fig. 3. Examples of mesh and contour plot of a hole on the monotonic path surrounding
a local maximum (left) and a local minimum (right). (Color figure online)

i.e., from higher (p2) to lower (p3) gray value. The orientation will preserve the
monotonicity of the path (⊕,m1) and (m2,�) in both the prototypes.

5 Partitioning of 2D Digital Image into Prototypes of
Slope Region

Remark 3. A 2D image can be partitioned into the slope regions which can
be categorized into one of the two prototypes: 1. inclined slope region and 2.
horizontal slope region.

Proof. We already know that all the faces in the RAG G of a well-composed sam-
pled surface are slope regions [2, Lemma 1]. The boundary of the slope region
is composed by either a level curve or exactly two monotonic paths connect-
ing the local maximum to the local minimum [11, Lemma 1]. The prototype of
the inclined slope region (Sect. 3) corresponds to the slope region surrounded
by exactly two monotonic paths. The prototype of horizontal slope region cor-
responds to the slope region surrounded by a level curve. Consecutively all the
holes in both the enumerations follow the prototype 0 - horizontal slope region.
The prototype satisfies the basic condition, that any pair of points inside the
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Fig. 4. Graphical representation of multiple holes on the monotonic path.

slope region can be connected by a monotonic curve. Thus we can span a 2D
digital image with these two prototypes of slope regions. In other words, a 2D
digital image can be partitioned into these two prototypes. ��

6 Slope Regions Connected to Saddle Point

Lemma 1. Presence of a saddle point guarantees existence of at least two slope
regions.

Proof. We prove Lemma 1 by contradiction. We already know that a saddle
point cannot exist inside the slope region. A saddle point can only occur on the
boundary of the slope region (Remark 2). A saddle point requires a minimum of
4 edges and at least 4 bit switches in the LBP coding (cf. Definition 4). When a
saddle point is on the boundary of the inclined slope, it has at least two oriented
edges or at most three oriented edges (if either of u or l in Fig. 1 are saddle
points) connected to it. The saddle point on the boundary with two incident
edges: 1. oriented inwards from local maximum towards to saddle point and 2.
oriented outward from saddle point towards the local minimum. Let us assume
that the other two edges incident on the saddle are inside the slope region.
Referring to Fig. 5, the saddle point will require two additional edges which
are connected to smax and smin. Also we know that for every point on the
monotonic path ǎ connecting u and l, there exists a point on another monotonic
path (f̂ , ĉ) connecting u and l, which can be connected by a level curve. Thus
we cannot connect � and smin with a monotonic curve. Similarly we also cannot
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connect smax and ⊕ with a monotonic curve. This results in contradiction to
our Definition 7 of slope region. We can prove the same for the saddle point (on
u and l) with three incident edges. In case of horizontal slope region, the point
m in Fig. 2 can be a saddle point on the boundary of the slope region the proof
by contradiction holds good. Hence the presence of a saddle point guarantees
existence of at least two slope regions, as one slope region is insufficient to satisfy
the conditions of a saddle point.

Fig. 5. Saddle on the boundary of a single slope region.

7 Conclusion

We introduced two prototypes of slope region: 1. inclined slope region and 2.
horizontal slope region. We showed that a well composed 2D digital image can
be partitioned into slope regions categorized into one of these two prototypes.
We described the properties of the different types of holes which may appear
inside a slope region and show that all holes follow prototype 0. We exploited
the properties and connections incident to a saddle point on the boundary of the
slope region. With the presence of a single saddle point, the property guarantees
existence of at least two slope regions connected to the saddle point. The proto-
types of the slope region along with the property of the saddle point introduced
in this paper can form a grammar to generate digital images. We leave this topic
and related questions for future research.
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