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Abstract

Neural networks and image pyramids are massively parallel processing structures. In this

paper we exploit the similarities as well as the di�erences between these structures. The

general goal is to exchange knowledge between these two �elds. After introducing the

basic concepts of neural networks and image pyramids we give a translation table of the

vocabulary used in image pyramids and those used in neural networks. In the following

sections we compare neural networks and image pyramids in detail. We show how a modi�ed

Hop�eld network can be used for irregular decimation. We examine the type of knowledge

stored and the processing performed by pyramids and neural networks. In the case of

numerical information, so called "numerical pyramids" are rather similar to neural networks.

But also for "symbolic pyramids" we show how to implement them by neural networks. In

particular we present a neural implementation of the 2 � 2=2 curve pyramid. We derive

some general rules for implementing symbolic pyramids by neural networks. Finally we

brie
y discuss the role of learning in image pyramids.



1 Introduction

Arti�cial neural networks (henceforth called neural networks) are characterized by massive

parallelism and the ability of learning. Their features make neural networks interesting for

pattern recognition and computer vision.

Though neural networks have success in many domains e.g. [51, 47, 5, 45], for complex

problems, such as vision, the current approach of using fully connected (three-layer) neural

networks has severe de�ciencies. As Le Cun [35] has stated "Expecting good performance

without any a priori knowledge, releying exclusively on learning is wishful thinking". One

way to incorporate a priori knowledge is to specify a proper topology of the network. The

question we are concerened in this report, is which neural network topology is suited for

computer vision.

Image pyramids have shown to be an e�cient data and processing structure for digital

images in a variety of vision applications [36, 49]. Therefore we would like to exploit the

similarities as well as the di�erences of neural networks and image pyramids. The general

goal of this report is to exchange knowledge between the �elds of neural networks and

image pyramids. We would like to emphazise that though both types are massive parallel

processing structures, there has been no attempt to view these systems in a common

framework.

The structure of this report is as follows: In sections 2 and 3 we brie
y introduce neural

networks and image pyramids in order to de�ne the basic concepts. We give a translation

table of the vocabulary used in image pyramids and those used in neural networks. In the

following sections we compare neural networks and image pyramids in detail. In section

4 we consider the structure of pyramids (regular and irregular). We derive a Hop�eld

network that is able to decimate a level of an irregular pyramid. In section 5 we examine

the types of information stored in the cells of a pyramid (numeric and symbolic). And in

section 6 we examine the processing done by the cells. In particular, networks simulating

the curve reduction process of the 2 � 2=2 curve pyramid are presented. Finally we give

some conclusions and an outlook for further research. Especially the role of learning will

be discussed.

2 Neural Networks

There are a variety of di�erent neural network models (e.g. [52, 12]), but there is a common

structure to all of them which we describe in this section. A more detailed model can be

found in [1]. A neural network consists of a number of highly interconnected processing

elements called units. The network is characterized by the interconnection scheme, which

we call the topology, the types of units, the processing performed by them, and the weights

of the connections.
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2.1 Network Topology

The topology of the network can be described by a directed Graph G = hU;Ei; U is the

set of units and E � U � U is the set of arcs between the units. The set of units U is

partitioned into three subsets I;H;O (corresponding to input, hidden and output units)

such that I [H [O = U; (I [O)\H = fg; I; O 6= fg. We call a network fully connected if

E = U � U . Each arc hi; ji 2 E has a weight w

ij

2 <. We call an arc with the associated

weight a connection.

Some common topologies are:

� 2{layer network (perceptron): The network has only input and output units (H = fg).

Arcs exist only between input and output units i.e. E � (I �O).

� Multi-layer network (multi-layer perceptron, feed-forward network): The hidden units

are arranged in layers H = H

1

[ � � � [ H

n

and H

i

\ H

j

= fg if i 6= j. Arcs exist

only between adjacent layers i.e. E � (I � H

1

) [ (H

1

� H

2

) � � � � � (H

n

� O). If

E = (I �H

1

) [ (H

1

�H

2

)� � � � � (H

n

�O), such a network is called fully connected

feed forward network.

� Fully connected network (Hop�eld network): There exist arcs between all units in

the network, i.e. E = U � U . Sometimes self-connections are not allowed, i.e.

E = U � U � fhi; iij i 2 Ug.

� Recurrent network: The Graph G has cycles; This means that there exists at least

one path with fhi

1

; i

2

i; hi

2

; i

3

i; :::; hi

n

; i

1

ig � E.

2.2 Units

Processing of information occurs in the units. A unit i has a state vector s

i

2 S � <

N

which

describes the internal state of the unit and an output value o

i

2 < which is sent to other

units. The main task of a unit is to compute a new state and a new output value, using

the incoming signals (output values of the connected units), the weights of the connections

and the own state vector. Formally this process can be stated as the application of an

update function f

i

. Let us call the application of the function f

i

, update of unit i.

The other task of the unit is to change the weight vector in order to adapt its behavior.

Formally this is stated in a learning function l

i

. Note that for the update and the learning

function only information locally available at the unit is used. The units can therefore

operate in parallel and independent of one another.

2.3 Representation

It is important to distinguish between two kinds of representation in a neural network.

One is called local representation and the other is called distributed representation. The

information to be represented in a neural network can be manyfold, e.g. characters of an
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alphabet, greyvalues of pixels, etc.. Let us call the piece of information we are interested

in an item. We call a representation local if an item is represented by one unit i.e. this

unit is activated when the item is present and not activated when the item is not present.

In the case of a distributed representation we have a group of units which represent one

item, i.e. one item is represented by many units and each unit participates in representing

many items.

A local representation is usually much easier to interpret, but a distributed represen-

tation is often more economical in terms of units and more robust against noise [22].

3 Image Pyramids

Image pyramids have shown to be e�cient data and processing structures for digital images

in a variety of vision applications. An image pyramid is a stack of images with exponentially

decreasing resolutions [55]. The bottom level of the pyramid is the original image. In the

simplest case each successive level of the pyramid is obtained from the previous level by

a �ltering operation followed by a sampling operator [17]. More general functions can be

used to yield the desired reduction. We therefore call them reduction functions.

Many image processing algorithms run on this hierarchical structure in O(log n) parallel

processing steps (n is the image diameter), whereas they needO(n

2

) steps without the use of

pyramids. Image pyramids are closely related to the concept of scale space [60], in which the

scale is introduced as an additional continuous dimension (e.g. by smoothing). A pyramid

is then a logarithmically sampled version of scale space. Also wavelet transformations are

closely related to image pyramids. For more details on these similarities see [32].

There are three important properties that characterize a pyramid:

1. Structure: e.g. neighbors, father{son relations between levels

2. Contents of a cell: e.g. pixel, edge, or more

3. Processing performed by the cells: e.g. �ltering

We will now discuss these properties brie
y with respect to image pyramids. In the

subsequent sections of this paper we will analyze these properties in more detail with

respect to neural networks.

3.1 Structure

The structure of a pyramid is determined by the neighbor relations within the levels of the

pyramid and by the father{son relations between adjacent levels. We distinguish between

� regular structures and

� irregular structures

depending on whether the structural relations are the same for all pyramid cells (except

on the boundary) or whether they may vary from cell to cell.
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3.1.1 Regular Pyramids

Two terms describe the structure of a regular pyramid: reduction factor and the reduction

window. The reduction factor r determines the rate by which the number of cells decrease

from level to level. The reduction window (typically a square n�n) associates to every cell

in a higher level (called father) a set of cells in the level directly below (called sons). The

cells which are neighbors on the same level are called brothers (sisters). The usual notation

for describing the structure of a regular pyramid is n � n=r. For example in the classical

2�2=4 pyramid a window of 2�2 cells forms a new cell of the next lower resolution. Since

there is no overlap in this pyramid the number of cells decrease from level to level by a

factor of 4.

3.1.2 Irregular pyramids

In irregular pyramids the regularity constraint of regular pyramids is relaxed. These py-

ramids operate on a general graph structure instead of the regular neighborhood graph as

in the case of regular pyramids. There are two ways to construct an irregular pyramid:

1. Parallel graph contraction [50]

2. Decimation of the neighborhood graph [39]

The main purpose for the introduction of irregular pyramids was the rigid behavior

(e.g. shift variance) of regular structures [6]. Irregular pyramids o�er greater 
exiblility

[41] for the price of less e�cient access.

3.2 Contents of a cell

One can consider the contents of a pyramidal cell as a model of the region which it repres-

ents. In the simplest case a cell stores only one (grey) value. We call such pyramids grey

level pyramids. In more complicated cases several parameters of general models are stored

in a cell [19]. But the basic property that numerical values are stored in a cell remains.

Subsequently we will call these pyramids numerical pyramids.

Besides numerical values it is also possible to store symbolic information in a cell [29].

In this case we have a �nite number of symbols, and a cell stores these symbols or relations

among them. We call such a pyramid symbolic pyramid.

3.3 Processing by a pyramid cell

The main property of processing in a pyramid is that it occurs only local, i.e. every cell

computes from the contents of the sons, the brothers, and/or the parents a new value

and transmits it to one or more cells of its pyramidal neighborhood. In the bottom{

up construction phase input comes from the sons but for some algorithms the 
ow of

information is also in the top{down direction [15].
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Table 1: Translation table

Image Pyramids Neural Networks

cell unit

level layer

structure topology

contents of cell activation of unit

bottom-up reduction activation function

parameters of reduction function weight of arc

The type of operations performed by the cells depends of course on the type of the cell's

contents. For grey-level pyramids linear �lters e.g. Gaussian are commonly used. But also

other non{linear �lters have some interesting properties, e.g. minimum and maximum

�lter or �lters based on mathematical morphology. In the case of symbolic pyramids other

types of reduction functions have to be used. For example [29] introduced curve relations

and a reduction algorithm based on the transitive closure of curve relations. In general a

�nite state machine [24] may be used to perform a symbolic reduction.

3.4 Translation of terminology

We have introduced the basic concepts of pyramids and neural networks. Since the two

research areas have introduced a di�erent terminology we summarize in Table 1 the equi-

valent notions of the important concepts in these two �elds. This should help one being

familiar in one of the two �elds to translate his knowledge in the other �eld. In the sequel

we will use the vocabulary for image pyramids when talking about image pyramids and

that of neural networks when talking about neural networks. But one should keep in mind

that the words can be often used interchangeably.

4 Structure

The structure of regular and irregular pyramids can be described by horizontal and vertical

graphs. Each level i of a pyramid can be described by a neighborhood graph G

i

= hV

i

; A

i

i.

Where the set of vertices V

i

corresponds to the pixels of level i, and A

i

� V

i

� V

i

are the

neighborhood relations of the pixels. Two vertices p; q 2 V

i

are connected in G

i

if they are

neighbors in the structure.

De�nition 1

The neighborhood of vertex p 2 V

i

is de�ned by �(p) := fpg [ fq 2 V

i

j(p; q) 2 A

i

g.

The structure is regular if a well de�ned neighborhood relation holds for all vertices (except

for the boundary).
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The vertical structure (i.e. the connectivity between the levels) can also be described

by a (bipartite) graph: R

i

= h(V

i

[ V

i+1

); L

i

� (V

i

� V

i+1

)i. The receptive �eld (i.e. the

set of all sons) of a cell q 2 V

i+1

is de�ned as: RF (q) := fpjhp; qi 2 L

i

g. In a similar

manner the projective �eld of a cell p 2 V

i

(i.e. the set of all fathers) can be de�ned

PF (p) := fqjhp; qi 2 L

i

g.

Any pyramid with n levels can be described by n neighborhood graphs and n{1 ver-

tical graphs. In the case of regular pyramids we need not store all these graphs because

information is given implicitely by the the term n� n=r.

From these considerations it is clear that one can built for any pyramid structure

an equivalent neural network topology. Therefore all knowledge about the structure of

pyramids can be transfered to neural networks. Also the results of shift variance of regular

pyramids [6] hold for equivalent neural networks. Indeed we were able to proof that any

rigid locally connected neural network structure has shift variance problems [4].

4.1 Irregular Pyramids

In this section we will show how to use neural networks for construction of irregular pyra-

mids by decimation. Decimation divides the cells in a pyramid level into two categories:

cells that survive form the cells of the next level and cells that do not appear at reduced

levels (non survivor). Peter Meer [39] has given two rules which should be full�lled by the

decimation process. His rules are:

De�nition 2

1. Two neighbors at level i cannot survive both;

2. a non survivor must be a neighbor of a survivor.

We call a decimation which satis�es these rules a valid decimation. In [39] it was

shown how a decimation can be computed in parallel by a stochastic algorithm. It is also

worth noting that the rules 1 and 2 are equivalent to saying that the vertices V

i+1

of the

Graph G

i+1

on level i + 1 de�ne a maximum independet (vertex) set (MIS) of the graph

G

i

= hV

i

; A

i

i.

The algorithm for stochastic decimation proceeds in following major steps (for more

details see [34]):

1. Assign uniformly distributed random numbers to the cells.

2. Select local maxima as surviving cells.

3. Fill holes, i.e. repeat step 2 as long as there are non-surviving cells which have no

surviving neighbor.

4. Every non surviving cell selects a father. This construction also de�nes the receptive

�elds.
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5. Construct the neighborhood graph of the new level; Two surviving vertices become

neighbors if they have vertices in their receptive �elds which are neighbors in the

level below.

6. Repeat steps 1 - 6 with new level until only a single vertex is in the receptive �eld.

This basic algorithm can be modi�ed in order to take into account the contents of a

cell ending up with an adaptive pyramid [27]. This has been used for image segmentation

or connected component analysis in logarithmic time complexity.

4.2 Decimation by Hop�eld networks

In the following we will show that we can replace the steps 1 { 3 with a modi�ed Hop�eld

network which works on the neighborhood graph G = hV;Ai

1

.Moreover we show that the

formulation as a Hop�eld network is more general than the stochastic decimation, and it

naturally includes the concept of the adaptive pyramid.

Let us introduce the notion of a survival state of a cell:

De�nition 3 The survival state of a cell p 2 V is a function

s : V 7! f0; 1g with s(p) =

(

1 if cell p survives

0 otherwise

Let us further introduce the following energy function:

E =

X

hi;ji2A

s(i)s(j)�

X

k2V

s(k) (1)

Now the following theorem holds:

Theorem 1 The energy function E from eq. (1) obtains a local minimum, E

min

, if and

only if the assignment of surviving and non{surviving cells, s(p) is a valid decimation (i.e.

satisfying the rules 1 and 2 of de�nition 2) or, equivalently, forms a maximum independent

vertex set of G.

Proof.

(a) E

min

is a local minimum of E ) s(p) is a valid Decimation.

Assume E = E

min

is a local minimum but fp 2 V js(p) = 1g is not a valid decimation,

then at least one of the rules 1 or 2 must be violated.

Case a.1: rule 1 does not hold:

) 9 p; q 2 V such thathp; qi 2 A and (by Def. 3) s(p) = s(q) = 1. Changing s(p) to 0

can a�ect only those terms in equation (1) where s(p) occurs. We can write E as

E =

X

hp;ni2A

s(p)s(n) +

X

hn;pi2A

s(n)s(p) +

X

hi;ji2A

i;j 6=p

s(i)s(j)� s(p)�

X

k 6=p2V

s(k)

1

We skip the subindices for level i because the algorithm works only on one level
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because E is symmetric. The fourth term increases the energy by 1 if we change s(p)

to 0. But the �rst and second term decreases the energy at least by 2 because s(p)s(q)

changes from 1 to 0 in both terms. Following inequality holds: E(s(p) = 0; s(q) = 1) �

E

min

+1� 2 = E

min

� 1 < E

min

and this is a contradiction that E

min

is a local minimum.

Case a.2: rule 2 does not hold

) 9p 2 V such that s(p) = 0 and 8q 2 �(p) : s(q) = 0. Again changing s(p) to one

yields E(s(p) = 1) = E

min

� 1 < E

min

and this is a contradiction to the fact that E

min

is

a local minimum.

(b) fpjs(p) = 1g de�nes a valid Decimation) E = E

min

is a local minimum

We have to show that by changing only one state of a cell r 2 V we get a higher energy

value.

b.1: s(r) = 0) 9q 2 �(r) : s(q) = 1 ) E(s(r) = 1) = E

min

�1+2 = E

min

+1 > E

min

b.2: s(r) = 1 ) 8q 2 �(p) : s(q) = 0 ) E(s(r) = 0) = E

min

+ 1 > E

min

From b.1 and b.2 we conclude that E

min

is a local minimum of E. qed.

Given the energy function in eq.(1) we can now de�ne a Hop�eld network operating

on the neighborhood graph which minimizes this energy function. In [25, 26] Hop�eld has

described a network of fully connected units operating asynchroniously which is governed

by the following energy function:

E = �

1

2

X

i

X

j

w

ij

s(i)s(j)�

X

i

I

i

s(i) +

X

i

U

i

s(i) (2)

where w

ij

2 < is the weight between unit i and j, I

i

is the external Input and U

i

is the

threshold of unit i.

Hop�eld proved that if the weights are symmetric (i.e. w

ij

= w

ji

) and the units update

asynchroniously, the network will settle in a local minimumof E. If we now set in equation 2

w

ij

=

(

�2 hi; ji 2 A

0 otherwise

and I

i

= 1 and U

i

= 0 for all i we get equation 1.

The resulting Hop�eld network operates on the neighborhood graph G and computes

valid decimations (according to de�nition 2). The update procedure of the cells is as

follows:

s(p) =

8

<

:

1 if 1� 2

P

q;hq;pi2A

s(q) > 0

0 otherwise

The initial state of the network can be choosen at random.Having established this

relationship we can now apply all the theory available for Hop�eld networks. For example

the convergence time is of interest because in the algorithm of Meer [39] the convergence

takes O(jV j) steps in the worst case (when the random number generator produces a ramp

function on every iteration). In [58] it was proven that a Hop�eld network with negative
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weights (if weights are 0 the connection is not present) and a sequential update algorithm

(i.e. at a time only one unit is updated) converges in the worst case in 2jV j steps.

But one should note that by a parallel update scheme and a connectivity graph which

is far away from full connectivity one could design a parallel algorithm which converges

much faster, because all units which are not connected can be updated in parallel without

altering the convergence properties.

4.3 Adaptive Pyramids

The energy function in eq.(2) has many parameters which can be changed in order to

in
uence the decimation: The weights w

ij

between two cells express the constraint on the

states of these cells. If w

ij

is negative these two cells should not be both on, on the other

hand a positive weight forces the two cells to be both on. One should note as long as

w

ij

> �I

i

the behavior of the network is not changed. This can be seen easily from the

proof of Theorem 1. The external input I

i

(and the threshold U

i

) can force a single cell to

survive or not if set properly (e.g. if I

i

>

P

j2�(i)

jw

ji

j the cell i survives).

We can use these observations to build adaptive pyramids [41, 27]. To determine the

connected components of a binary image we can set the weights according to

w

ij

=

(

�2 i and j are neighbors and they have the same grey value

0 otherwise

In this case the survivors and non-survivors are computed only within a homogeneous

region (with identical pixel values). This procedure is equivalent to Montanvert's algorithm

[41], which applied the stochastic decimation only within a homogeneous region.

This scheme can be easily generalized to grey-level image segmentation where the

weights of the corresponding Hop�eld network are set according to the di�erence in greyva-

lue of the pixels;

i.e. w

ij

= �f(d

ij

) and d

ij

= jg

i

� g

j

j

where g

i

and g

j

are the greyvalues of pixel i and j, and f is a suitable function, e.g.

linear, logarithmic or some step function as shown in Fig. 1.

255 d ij

1

255 d ij

ijf(w )

1

255 d ij

1

ijf(w ) ijf(w )

Figure 1: Di�erent functions for setting the weights of a Hop�eld network
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From these considerations one can see that the decimation by using Hop�eld networks

has the advantage that it naturally includes the concept of the adaptive pyramid.

4.4 Experiments

In order to demonstrate the theoretical results we have performed several experiments. For

the simulations we have used a small image with 30 � 30 pixels. We show the decimation

only for the base level of the pyramid.

Fig. 2 depictes a decimation for a 4-connected (left) and an 8-connected (right) neigh-

borhood graph. The decimations are all valid, as is expected from Theorem 1. In the case

of 4-neighborhood one can see that regular patterns, which are the dominant structure,

are broken by line-like structures. This resembles somehow the structure of the human

retina, where one can see similar patterns [33]. The network converges on the average in

8 asynchronous update steps. The maximum number during our simulations (100 runs)

were 12 update steps.

Fig. 3 shows the decimation for a binary image with 8-neighborhood where we have

used a line from left to right at rows 13-15. The weights of the units on the line to the

units of the background are set to zero. The Hop�eld network treats the components of

the image independently, i.e. the line and the background are decimated independent of

one another.

These expermints have shown that the decimation by Hop�eld networks is an alternative

to the algorithm of Meer. In the future we will integrate this decimation in a pyramidal

algorithm, and build whole pyramids. The main goal is image segmentation. An interesting

question in this respect is the di�erence between the segmentations of our algorithm to the

one of Montanvert [41].
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(a) (b)

Figure 2: Decimations of graphs with 4-neighborhood (a) and 8-neighborhood (b)

Figure 3: Decimation of a binary image
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5 Contents

We have seen in section 3.2 that we can distinguish pyramids with numeric and symbolic

contents in the cells. Whereas neural networks store only numeric information in the units.

Therefore cells of a numeric pyramid are from the viewpoint of contents rather similar. We

will show in section 6 that also the processing performed by the cells and units respectively

is not very di�erent. The case of symbolic information needs further investigation.

5.1 Symbolic Content of a cell

Let � = f�

1

; �

2

; � � ��

N

g be a �nite set of symbols, and R � ��� a binary relation between

these symbols. A cell in a symbolic pyramid stores symbols and/or relations between these

symbols. Our main concern in this section is on how we can represent this information by

a neural network. We are therefore confronted with a representation problem.

Since we have a �nite number of symbols (and relations) we can code a symbol by the

activation of a unit e.g. �

1

= 0; �

2

= 0:1 etc. This representation is very "unnatural" for

neural networks and we would give up some essential characteristics of neural networks.

We therefore have to use several units to store symbolic information. The general idea is

to replace a cell of the pyramid by a small neural network. We have two possibilities:

1. local representation

2. distributed representation

5.1.1 Local Representation

If we have N symbols we need N units to represent these symbols. Every symbol has a

designated unit which becomes active when the symbol is present. If we have to represent

relations among the symbols we need O(N

2

) units to represent all possible relations. When

only one symmetric relation at a time needs to be stored N units are su�cient (i.e. if both

unit �

1

and unit �

2

are active the relation �

1

R�

2

is represented). But if more relations

need to be stored we are facing the so called binding problem [13]. We need therefore a

designated unit for each relation �

i

R�

j

which is active when the relation is present. The

problem even becomes more severe when several di�erent relations or n-ary relations need

to be represented.

5.1.2 Distributed Representation

Distributed representations are more economical in terms of units and are also more robust

than local representations. The general idea is that more than one unit is active when

representing one item and a single unit participates in representing more than one item.

Many possibilities for distributed representation have been proposed [22, 16, 46, 44, 9, 10].

Many of them are suited for representing numeric information [16, 9], others have been

proposed for symbolic information [46, 44].
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Recently Pollack [46] has introduced the concept of "Recursive Distributed Represen-

tations". He has shown that he can represent binary trees and arbitrary list structures in

this framework. The general idea is very simple. An autoassociative network like the one

in Fig. 4a is used.

This network is trained to reproduce the input at the output units through a narrow

channel of hidden units (half the number of hidden units than input units). The activation

of the hidden units is then the distributed representation. This network can now be used

iteratively to produce complicated data structures.

k-Units k-Units

k-Hidden units

k-Units k-Units

(a)

σi

σi σj

σi σj

σjR

(b)

Figure 4: (a) Autoassociative Network used by Pollack to encode symbolic structures (b)

encoding curve relations

For our purpose we can use this scheme to represent relations with only O(N) units

(N is the number of symbols to represent). Assume we have a local representation of the

individual symbols. We can now represent the relation �

i

R�

j

with N units like in Fig. 4b.

Since for N 6= 3; 2

N

� N

2

we can represent all relations with this scheme and have also the

possibility to convert it back into a local representation. Moreover we can use constraints

on the weights for special relations, e.g. if the weights from the �rst set of input units are

identical to the second set of input units the representation of the relation is symmetric

i.e. �

i

R�

j

= �

j

R�

i

.

We have performed a simple experiment which shows the distributed code which is

developed in the hidden units. We use 4 relations, represented locally at the input and

output units. The network has 8 input units, 4 hidden units, and 8 output units. The

weights of the inputs units 1 { 4 to the hidden units are constrained to be identical to those

of the input units 5 { 8 to the hidden units (e.g. w

11

= w

51

). The network is trained with

back-propagation [52] to autoassociate the input with the output. This taskes about 100

presentations of training patterns till the network has converged. In table 2 we show the

activations of the hidden and output units for certain inputs. One can see that the network

has completely learned the task and that the hidden units have developed a distributed

13



Table 2: Distributed representation of relations developed by an autoassociative network

input hidden output

0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1 1 0.15 0 0.2 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1

....

1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0

representation of the relation. We will discuss in section 6.2 how this code can be used to

process symbolic information.

6 Processing

The result of a reduction function of a pyramid depends on the contents of the cell, there

is no use of performing symbolic reduction on grey-level pyramids and vice versa. We will

therefore consider processing of numerical and symbolic information separately.

6.1 Numeric Information

Three types of �lters are commonly used as reduction functions in numeric pyramids:

1. Linear �lters

2. Non-linear �lters

3. Morphological �lters

6.1.1 Linear reduction functions

The most commonly used reduction function in a pyramid is a convolution. This operation

is also used by units in neural networks (though some other models exist [11, 8]), when

computing the weighted sum of inputs and connection weights.

In pyramids all cells usually perform the same reduction function (same kernel) whereas

in neural networks di�erent units have di�erent weights. But there are some models (e.g.

weight sharing [35]) which force units to develop the same weights.

Another di�ernce is that after computing the weighted sum, units usally use a nonli-

nearity (typically a sigmoid function f(x) =

1

(1+e

�x

)

), before sending their output to other

units. In image processing terms, the application of this activation function corresponds to

14



a non-linear contrast enhancement. Let us call such pyramids which use a sigmoid contrast

stretch sigmoid pyramids.

In order to study the e�ect of this operation for pyramids we have conducted a set

of simple experiments. We have used a n � n=4 Gaussian pyramid allowing only integer

values in the range [0 : : : 255] for the greyvalues. Since we want to process greyvalues in

the range [0 : : : 255] we have to adapt the sigmoid to that range. In particular we have

used following sigmoid function:

f(x) =

255

1 + e

�

14x

255

+7

(3)

In oder to control the steepness of the function an additional parameter � is introduced:

f(x) =

255a(�)

1 + e

�(�

14x

255

+7)

� b(�) (4)

a(�) and b(�) are choosen such that f(0) � 0 and f(255) � 255, i.e.: a(�) =

1+e

7�

e

7�

�1

and

b(�) =

255

e

7�

�1

For 0 < � < 1 f(x) is 
at and for � > 1 f(x) gets steeper. In the limit � ! 0 f(x)

approaches a linear function and for � !1 f(x) approaches a step function. In Figure 5

you can see f(x) for various values of �.

Figure 5: The sigmoid function f(x) for � = 2; 1; 0:5

The �rst experiment shows the e�ect of boundary preservation and noise elimination.

We have generated a black test image of size 256 � 256 containing a white square of size

50 � 50 (see Fig. 6 (left)), and then we have added uniform random noise in the range

[�100 : : : 100] to this image (see Fig. 6 (right)). We have build 4 levels of a 5�5=4 Gaussian

pyramid on these two images (Fig. 7 for displying purpose the images of the pyramids are
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zoomed to be of identical size, no interpolation was used). In the case without noise one

can see that the edges get blurred. In the case with noise the noise is gradually decreased

from level to level. Then we have constructed the same 5� 5=4 pyramid, but with the use

of the sigmoid function, where we set � = 2 (Fig. 7). From this simple expermiment one

can see that the sigmoid pyramid e�ectively eliminates the noise as well as it preserves the

edges of the square.

Figure 6: The test image with (right) and without (left) noise

In the second experiment we have used a 3 � 3=4 Gaussian pyramid on a real image.

Fig. 8 shows the Gaussian and the sigmoid pyramid with � = 0:4. The Gaussian pyramid

produces a blurred version of the image whereas the sigmoid pyramid tends to produce a

binary image. This e�ect can also be seen from the histograms (see Fig. 9). This e�ect of

the sigmoid pyramid is useful for image segmentation and threshold selection. For example

based on the histogram of Fig. 9 a threshold for detecting the road can be easily found.

This is not the case for the Gaussian pyramid.

A critical parameter of the sigmoid pyramid is �. � controls the steepness of the

sigmoid function as well as the "degree" of nonlinearity. If � is choosen too large we have

saturation e�ects; i.e. the whole images gets black or white. The choice of � depends on

the image content and the goal of processing. For binary images � can be choosen large,

this is also the case when the goal is to segment the image, in other cases � should be

choosen rather small. The choice of � can also be controlled by some adaptive procedure

similar to adaptive threshold selection [53].

6.1.2 Non-linear �lters

We have already seen in the previous section how a linear pyramid can be augmented by

nonlinear processing from neural networks. But also other non-linear �lters (e.g. minimum

or maximum) have been used as reduction functions for pyramids [7]. Local maxima

(minima) detection can also be performed by neural networks [43] by a mechanism called

lateral inhibition or Winner Takes All (WTA). Most of the proposed schemes have the

disadvantage that the value of the maximum is not preserved. Recently Tsotsos [56] has

introduced an algorithm which preserves the value of the maximum. This algorithm can

be used for building maximum (minimum) pyramids.
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Figure 7: Gaussian (upper two rows) and Sigmoid (lower two rows) Pyramids of the test

images
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Figure 8: Gaussian and Sigmoid Pyramids on the road image

Figure 9: Histograms of level 3 of the Gaussian (left) and Sigmoid Pyramid (right)

6.1.3 Morphological �lters

Haralick et.al [18] have introduced the concept of a morphological pyramid, which is built

by morphological operations [54]. It has also been shown that certain types of neural

networks (iconic neural networks) can implement morphological operations [57]. Morpho-

logical neural networks have been proposed which share principles from neural networks

and mathematical morphology [48].
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6.1.4 Summary

From the considerations of the three previous sections we can conclude that numerical py-

ramids and neural networks share many similarities. Indeed most operations performed by

pyramids can also be implemeneted by neural networks. Taking into account also section

4 (Structure) and 5 (Contents) we can conclude that neural networks can be used to im-

plement any numerical pyramid. Moreover we have seen that pyramids can be augmented

by functions from neural networks. These results will give us also a �rm basis for studying

learning algorithms for pyramids, which will be subject of a further research.

6.2 Symbolic Information

As we have seen in section 5.1, in order to represent symbolic information we have to give

up the one-to-one correspondence between cells and units; we have to replace a cell of a

pyramid by a small neural network. We will now extend this concept to describe processing

of symbolic information by neural networks. We will start by designing a neural network

for the 2�2=2 curve pyramid [29]. Finally we present some broader view of neural networks

within the concept of symbolic pyramids.

6.2.1 2 � 2=2 Curve pyramid

The 2� 2=2 curve pyramid was introduced in [28]. The basic idea is that linear structures

of images are represented by curve relations. A cell of the pyramid is considered as an

observation window through which the curve is observed. A single curve intersects this

window only twice. Only the intersection sides (N;E; S;W ) are stored in the cell (i.e. a

curve relation). We denote a curve relation by AB, where A;B 2 fN;E; S;W;Fg (F is

the special end code when the curve ends in a cell).

N

E

S

W

N E

SW

Figure 10: A reduction steps of the 2� 2=2 Curve Pyramid
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The basic routines of building the next level of the pyramid are (Fig. 10, Fig. 11):

1. Split - subdivision of the cells contents by introducing a diagonal.

2. Transitive closure - the curve relations of the four son cells are merged by computing

the transitive closure of all relations (i.e. AB;BC ) AC).

3. Merge - the curve relations of the new cell are selected.

a

b

c c

b

ac c

b b

21
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1 2

EN

W S

E

N

W

S

SPLIT TRANSITIVE-CLOSURE

Figure 11: Splitting the Curve Relation by the diagonal

The 2� 2=2 curve pyramid has several interesting properties like the length reduction

property, "structural" noise �ltering etc. which are described in [30, 31].

6.3 Neural Network curve pyramid

The 2� 2=2 curve pyramid is an ideal test case to study neural network implementations

of symbolic pyramids and to illustrate the concept of replacing a cell of a pyramid by a

neural network. In order to simplify the discussion we will not describe end codes F and

U-turns, but they can be easily included.

The representation of the relation is as follows. Each cell has four output units

(N,E,S,W), which have connections to the cells in the next higher level. With this scheme

only one relation per cell can be stored unambiguously. In this case exactly two units are

activated (i.e. output value = 1) and two units are not activated (i.e. output value =

0). For example if the units N and S are activated a North-South relation is represented.

Inside a cell we represent the relations by a local representation as described in section 5.1

(i.e. one cell per possible relation), since we have to represent multiple relations in order

to compute the transitive closure.

We have to describe 3 steps in terms of neural networks:

1. Split

2. Transitive Closure

3. Merge
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6.3.1 Split

The �rst operation to perform is to split the curve relations by the diagonal as shown in

Fig. 11. This can be done by a neural network like the one in Fig.12.

N

E

S

W

ab

ac

bc

*

*
*

*
*

Figure 12: Neural Network Implementation of the splitting operation

The small circles with the star inside indicate multiplicative connections, i.e. only if

all inputs are activated a value of one is passed to the units. One should note that three

units are su�cient to represent the possible relations in the triangle because the relation

is symmetric. The operation depicted in Fig. 12 is done for all four sons of a cell.

6.3.2 Transitive closure

At the next step we have to connect the curve segments in the four triangles by computing

the transitive closure of the curve relations. We will �rst merge the upper and the lower

two triangles in parallel, and then merge the resulting two triangles to the �nal square,

like it is shown in Fig 11.

ab

ac

bc

ab

ac

bc

12*

23*

13*

12

13

23

23

13

NE

NS

NW

ES

EW

SW
12

*

*

*

*

Figure 13: Neural Network Implementation of transitive closure operation. left: for two

triangles to another traingle, right: two triangles to a square
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The networks for merging two triangles to another triangle and merging two triangles to

a square are shown in Fig. 13 (small circles with stars indicate multiplicative connections,

small arrows indicate connections with a weight of 1). It is easy to verify that these circuits

compute the transitive closure.

6.3.3 Merge

The third operation simply converts the relation code used for processing the transitive

closure to the code used by the output units. This can be done by the network shown in

Fig. 14.

When putting all the subnetworks together we get a network for performing a reduction

step for a single cell (see Fig. 15). One can see that this network is hierarchically structured

and consists of many identical subnetworks. In order to handle U-turns and end-codes

correctly a few additional units are required. One should note that this network is a

designed solution (no learning is required), and performs the same operations as the 2�2=2

curve pyramid. But it nicely demonstrates that the operations of a symbolic pyramid can

be performed by a neural network.

NE

NS

NW

ES

EW

SW

N

E

S

W

Figure 14: Neural Network for Merging the curve Codes

6.4 Distributed curve pyramid

In section 5.1.2 we have seen how we can learn a distributed code for relations by an

autoassociative network. However we need also to process these relations. This cannot

be done the same way we did it for a local representation of the relations, where we have

designed a network by hand. Therefore we have to employ some learning algorithm. A

simple way would be to enumerate all possible combinations of relations, and training of

a suitable network by a supervised learning method (e.g. back-propagation). The result

would implement the desired reduction function with a distributed representation. With

22



12

13

23

23

13

NE

NS

NW

ES

EW

SW
12

*

*

*

*

N

E

S

W

ab

ac

bc

N

E

S

W

*
*
*
*
*

ab

ac

bc

N

W

S

E

*
*
*
*
*

*

*

*

ab

ac

bc

S

E

N

W

*
*
*
*
*

ab

ac

bc

S

W

N

E

*
*
*
*
*

*

*

*

Figure 15: Neural Network for a reduction step in the 2� 2=2 curve pyramid

this approach no new representations (e.g. new curve primitives) will arise.

For these reasons we would like to employ some unsupervised learning method which

has the freedom to form also new representations. A possible architecture for this goal

is similar to the autoassociative network we have used for learning the distributed curve

relations.

However with the unsupervised method we are facing the fundamental problem that

the code developed is not necessarily the same as that used as an input. Therefore we

have to train all levels of the pyramid and use di�erent reduction functions at these levels.

The other problem is that we cannot decode the distributed code into a local one for

interpretation purposes.

We hope that these problems listed above can be circumvented by special autoassocia-

tive networks where we are employing constraints on the weights, and an iterative training

scheme; i.e. start with some distributed code; learn the reduction step; take the newly for-

med code as input and apply it again to the same network; repeat this process until some

code has stabilized. In order to check these ideas several experiments and a theoretical

analysis have to be performed.
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6.5 General neural network scheme for symbolic pyramids

Though the scheme with the distributed representation should be more general than the

network with local representation, it is not general enough for all kinds of symbolic pyra-

mids. Replacing a cell of a pyramid by a small neural network gives us enough freedom to

perform more general computations. In order to process symbolic information we need a

network which can act as a �nite state machine.

In general these small networks can be considered as grouping small image parts to

objects (or parts of objects). Certain constraints have to be satis�ed by this grouping pro-

cess (e.g. the parts meet at a certain angle). Since the grouping is done hierarchically the

"combinatorial explosion" of checking all possible combinations can be avoided. Moreover

we can use learning algorithms to alter this grouping process. From this considerations we

can describe the required properties of the networks.

1. Recurrent network - each state of the network can be associated with a symbol.

2. Constraint satisfaction - the network must converge to a stable state which full�lls

as much constraints as possible in order to arrive at a "good" interpretation of the

scene.

3. Distributed representation - as we have seen in section 5.1 an e�cient representation

of symbolic structures has to be distributed.

4. Unsupervised Learning - if learning should be performed at the small networks it has

to be unsupervised in order to avoid the problem of teaching each cell of the pyramid

separately [14, 59].

There are some network models which full�ll the properties 1 - 3, e.g. Hop�eld network

[25, 26] recurrent Jordan network [40], Boltzmann machine [23]. But all these models use

a supervised learning scheme. Some research has to be done to �nd an ideal combination

for our purposes. Especially the learning problem is still a major obstacle to perform these

tasks.

7 Conclusions and Outlook

The goal of this report was to identify the similarities of image pyramids and neural net-

works. We have considered the structure of pyramids and the topology of neural networks:

the type of information stored in the cells and units; and the kind of processing performed

by them. In all of the above cases we have found considerable similarities between neural

networks and image pyramids. Though the major goal was to compare existing methods

we have also introduced several new ideas and methods:

1. Hop�eld networks for constructing irregular pyramids

2. Distributed representations of curve relations
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3. Sigmoid pyramids

4. Neural curve pyramid

5. Replacement of a pyramidal cell by a small neural network

As a major open problem we have identi�ed suitable learning algorithms for the architec-

tures intoduced.

Learning has to a great extend been excluded from this report. But one of the main

motivations for identi�ng the similarities between neural networks and image pyramids is

to employ learning algorithms on pyramids. An ideal learning algorithm for pyramids has

to be unsupervised in order to avoid the problem of long learning times and bad scaling

characteristics [21]. A reasonable principle for learning in such pyramidal architectures is

the infomax principle proposed by Linsker [38, 37]. It states that the cells of each level

should preserve as much information as possible. This principle is tightly connected to

Hebbian-Learning [20]. We have recently proposed an algorithm [2] based on a modi�ed

Hebb-rule of Oja [42], which is able to learn the weights of a numerical pyramid. In a

forthcomming paper [3] we will exploit the use of learning algorithms in pyramids in more

detail. We would like to emphazize that this extends the capabilities of image pyramids

aiming at a common framework for cellular processing structures.
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