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Abstract

This paper describes an extension of the binary
curve pyramid to curves with strengths. In particular
we propose fuzzy relations to represent curve strength.
We show how fuzzy relations can be processed in a py-
ramidal framework. The advantage gained by this me-
thod is that the properties of the binary curve pyramid
are preserved, and that we gain some additional pro-
perties, which can be used in the pyramid construction
phase.

1 Introduction

Curves convey important information about an
image, they may describe either a

� boundary of a region, or

� the skeleton of an elongated thin region

Typically recognition of curves involves 2 steps.
First, local instances of the curves are detected (e.g.
edge detection). Second, these elementary segments
are connected to longer curve segments that may be
matched with higher level curve models.

This paper deals with the second step of the curve
recognition process. In particular we present a hier-
archical method to �nd long curves in images in a
logarithmic number of steps. This is achieved with a
symbolic pyramid structure. The symbols represented
in the pyramid are curve relations, which connect the
sides of a pyramidal cell. In order to be able to handle
also curve strength (i.e. which is typically delivered
by an edge detector) we will introduce the notation of
fuzzy curve relations. The pyramidal process will be
extended to these fuzzy curves. The advantage of this
approach is that we can, additionally to the length
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of the curve, take also its strength into account. In
particular, we will extend the 2 � 2=2 curve pyramid
introduced in [2, 3] to handle also fuzzy curve relati-
ons.

2 2� 2=2 Curve Pyramid

The basic idea is that linear structures of images
are represented by curve relations. A cell of the pyra-
mid is considered as an observation window through
which the curve is observed. A single curve inter-
sects this window twice. Only the intersection sides
(N;E; S;W ) are stored in the cell (i.e. a curve re-
lation). We denote a curve relation by AB, where
A;B 2 fN;E; S;W; Fg (F is the special end code
when the curve ends in a cell). The basic routines
of building the next level of the pyramid are (Fig. 1):

1. Split - subdivision of the cells contents by intro-
ducing a diagonal.

2. Transitive closure - the curve relations of four cells
are merged by computing the transitive closure of
all relations (i.e. AB;BC ) AC).

3. Merge - the curve relations of the new cell are
selected.

The 2 � 2=2 curve pyramid has several interesting
properties. A curve remains connected until it is com-
pletely covered by one cell (then it disappears). Very
important is the length reduction property (i.e. the
number of curve code elements decrease after every
reduction step), see [2]. This important property re-
lates the highest level up to which a curve is still re-
presented to the area that is traversed by the curve.
This implies that short curves will disappear after a
few levels, and only long curves will be represented in
higher levels of the pyramid (see Fig. 1d).

This property has been used for structural noise
�ltering [3], which �rst builds the curve pyramid up
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Figure 1: 2� 2=2 binary curve pyramid

to a certain level and then deletes all curves which are
not represented in the levels below.

3 Fuzzy Curve Pyramid

The (binary) curve pyramid as described above has
the disadvantage that it can only represent the pre-
sence/absence of a curve segment. This binary de-
cision has several disadvantages:

� We must decide already at the base level about
the presence/absence of a curve segment. This
typically involves the determination of a thres-
hold for an edge detector. This is a problema-
tic step, because either we miss curve segments
which cause disconnected curves (therefore the
curve will disappear after a few levels) or we add
too many segments which might connect other-
wise disconnected curves.

� Another problem with the binary representation
of curves arises when di�erent curves meet in one
pyramidal cell, this might cause ambiguities in
the representation due to the restricted storage
capacity of the pyramidal cells.

Therefore it would be advantageous to have a non bi-
nary representation of curves in a pyramid. Since a
curve introduces a relation between two sides of a py-
ramidal cell, a straight forward generalization is to
consider fuzzy relations instead of binary ones. The
strength of the curve is represented by the grade-
membership of the fuzzy relation.

De�nition 1 (Fuzzy Relation)
Let X = fx1; : : : ; xkg be a k�element fuzzy (or crisp)
set. The set R � X �X � [0 : : : 1] is a fuzzy relation.
We denote a fuzzy relation between xi; xj with grade-
membership �(xi; xj) by (xiRxj ; �(xi; xj)) (xi; xj 2
X; 0 � �(xi; xj) � 1).

We say for �(xi; xj) = 0 that there is no relation
between xi and xj . The relation is symmetric if
�(xi; xj) = �(xj ; xi) 8xi; xj 2 X . In what follows
we will always assume symmetric relations.

Let us now describe the individual steps for con-
structing the 2� 2=2 fuzzy curve pyramid. The steps
are generalizations of the binary 2�2=2 curve pyramid
to fuzzy relations. The basic idea is to replace the lo-
gical operations (and, or) by min and max operations.

3.1 Fuzzy Curve Representation

In [3] an 8-bit code was suggested to store the curve
relations. In order to simplify the discussion we use
a simpler code (without end-codes), the extension to
the equivalent of the 8-bit code is straight forward.

A cell in a pyramid has four sides, labeled
N;E; S;W For each of these sides we use b bits (ty-
pically b = 8) to store the fuzzy relation. If a curve
with strength � intersects one of these sides we store a
value of � on the corresponding side. Therefore a sin-
gle curve passing the cell of a pyramid will \activate"
two sides of the pyramid with the same strength. It
should be noted that the decisions are only made local
for a particular cell, therefore a neighboring cell may
have di�erent strengths. In order to guarantee consi-
stency we require that a curve relation does not end
at the side of a cell (e.g. a NS relation in one cell and
no relation at the neighboring cell). If more than one
curve intersect a side of the pyramidal cell we store
the maximum of all these curve strengths.

3.2 Fuzzy Split

The �rst operation to perform is to split the curve
relations by the diagonal, as shown in Fig. 2a. The
curve relations of the cell are transferred to the trian-
gle with the sides a; b; c. Fig. 2b depicts a diagram
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Figure 2: Split operation

for computing these relations. In this and the follo-
wing diagrams small circles with stars indicate min
operations whereas the labeled nodes perform a max
operation. For example the strength of ac is given by:

ac = max(min(N;E);min(W;E))

3.3 Fuzzy Transitive Closure

The important operation in constructing a curve
pyramid is the transitive closure operation. It con-
structs out of the curve segments of the four tri-
angles at level n curve relations for the cell at level
n+1. We make use of the transitivity of relations, i.e.
aRb; bRc ) aRc. For the case of fuzzy relations this
generalizes to:

(aRb; �(a; b)); (bRc; �(b; c)))

(aRc; �(a; c) = min(�(a; b); �(b; c))) (1)

We compute the fuzzy transitive closure in two steps.
We �rst merge the upper and the lower triangles in
parallel (Fig. 3a) and then merge the resulting two
triangles to the �nal square, as depicted in Fig. 3b.
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Figure 3: Transitive Closure operation

The diagram for the upper two triangles is shown in
Fig. 4a left and for merging two triangles to a square
in Fig. 4a right.

It is important to note that a single curve passing a
cell will activate the corresponding unit according to
the minimum strength of the curve segments.
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Figure 4: Fuzzy transitive closure and merge operation

3.4 Fuzzy Merge / Curve Selection

The third operation simply converts the relation
code used for processing the transitive closure to the
code used by the cell of the next level. This is depicted
by the diagram of Fig. 4b.

Putting all these operations together results in a
reduction step for a single cell. In order to handle U-
turns and end-codes correctly some additional nodes
are necessary.

4 Properties of Fuzzy Curve Pyramid

We have described the individual steps necessary to
construct level n + 1 from level n of the fuzzy curve
pyramid. In this section we show several properties of
the fuzzy curve pyramid.

Property 1 (Length Reduction) The Fuzzy curve
pyramid has the length reduction property (i.e. it re-
duces the number of curve code elements after every
reduction step) similar to the 2�2=2 binary curve py-
ramid.

Proof The proof is essentially the same as for the
binary case (i.e. all curve relations with grade-
membership � > 0 have to be considered). One can
convert fuzzy curve relations to binary ones by setting
an arbitrary threshold � at the grade-membership �.

Property 2 (Minimum Strength) If a single
curve intersects the receptive �eld of a cell at level n,
the grade-membership of the relation at level n will be
the minimum of the grade-memberships of the curve
segments of the base level.

Proof Since we are dealing with a single curve we
can proof this property recursively, therefore we need



to consider only two successive levels of the pyramid.
We can consider each individual step in the pyramid
construction separately. Sinve in the case of a sin-
gle curve the split and merge operations are simple
copying mechanisms, we have only to check the tran-
sitive closure operation. From the de�nition of the
fuzzy transitive closure in eq. (1) one can see that if
two segments are connected the grade-membership of
the resulting segment is assigned the minimum of the
grade-membership of the individual segments. If we
apply this recursively property 2 follows. qed.

For the case when two or more curves pass the re-
ceptive �eld of a cell we can proof a more general pro-
perty: We de�ne the strength of a curve as the mi-
nimum strengths of its segments (see above) then the
strength of a fuzzy curve relation AB is the maximum
strength of all curves connecting the side A with side
B. This allows us to formulate following property:

Property 3 (Maximum Strength) Let C be a
curve in the base of the fuzzy curve pyramid with
strength �(C) = !0. Then this curve will remain
connected by the fuzzy reduction process and the
strength of all fuzzy curve relations derived from C
will be greater or equal to !0, i.e. the strength of the
curve is preserved.

Proof 1. Assume that C has the greatest strength of
all curves in the image. In this case taking the maxi-
mum at all operations where curve segments are mer-
ged preserves the strength as long as the curve does
not disappear.
2. If the strength of C is not maximum it could
happen that it gets merged with a curve of higher
strength. The combined segment will receive the hig-
her strength, e.g. �(s1 [ s2) = max(�(s1); �(s2)) �
�(s1). qed.

The two last properties can be combined in the
Minmax Principle, which is satis�ed by the fuzzy
curve pyramid.

Property 4 (Minimax Principle) The strength of
a curve is the minimum of the strength of its segments.
And the strength of a side of a cell in the curve pyra-
mid has the maximum strength of all curves intersec-
ting this side.

5 Enhancements

Until now we have not fully exploited the informa-
tion provided by the grade-membership of the relati-
ons. This will be discussed in this section.

5.1 Ambiguity reduction

The basic idea is that due to the grade-membership
of the relations we can discriminate between curves of
di�erent strength. This is important when more than
one curve meets in a single cell. Consider as an ex-
ample Fig. 5. We see that two curves with di�erent
strength meet in a common cell. In the case of the bi-

Binary-Curve Fuzzy-Curve

Figure 5: Example where curves get merged in the bi-
nary curve pyramid, and remain separate in the fuzzy
curve pyramid

nary curve pyramid we cannot discriminate them, the-
refore we introduce all possible relations and the two
curves are merged. Whereas in the case of the fuzzy
curve pyramid we know due to the grade-membership
that there are two curves (a strong one from North to
West and a weak one from South to East).

There are two possible ways how to modify the al-
gorithm to introduce this ambiguity reduction:

1. Modi�cation of the Split step: We can
modify the split step in order to take the di�erent
grade-memberships into account. However this does
not eliminate all ambiguities; e.g. curves with the
same strength, two curves entering at the same side
of a cell.

2. Eliminate Merge and Split Before the merge
step we have all the necessary information about the
curve relations. If we eliminate the merge and split
step we do not introduce ambiguities. This can be
done in the following manner: A single cell in a 2�2=2
pyramid has two fathers (see Fig. 6A). Therefore we
can connect the result of the transitive closure opera-
tion directly to the two fathers of a cell, in the way it
is depicted in Fig.6B, i.e. we eliminate the merge step
and perform the split operation. Fig. 6C,D shows an
example how the curve relations are transferred to the
fathers. One can see that only those activations get
activated where a curve is present. The disadvantage
of this operation is that we need 10 links between the
cells, whereas we need only 8 links for the original algo-



rithm, however the number of links (processing steps)
in a cell is reduced. It is important to note that as
long as the curves are not parallel (entering and lea-
ving at the same sides) they can be discriminated. In
the case of parallel curves they will get merged. The
resulting activation of the new curve segment is the
maximum of the activations of the two parallel seg-
ments. It should be noted that the methods we have
proposed in this section do not alter the properties we
have discussed above.
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Figure 6: Direct Connection between the cells (wit-
hout Merge step)

5.2 Curve selection

The binary as well as the fuzzy curve pyramid ex-
tract two important properties of curves, that is length
and connectedness but the fuzzy curve pyramid addi-
tionally processes curve strength as. We can use this
additional information to select certain curves in the
pyramid construction or down projection phase, for
example we build the pyramid up to certain level, then
remove all curve relations with a grade-membership
below a threshold. If we then down project the remai-
ning relations we get a structural �lter which takes
also the curve strength into account.

6 Evaluation and Conclusion

In this paper we have proposed fuzzy relations to
represent curves with strength. We have shown that
the fuzzy relations can be processed in a similar man-
ner as binary relations. Moreover the properties of
the binary curve pyramid are preserved, additionally
we have other information about the curve like the
minimum grade-memberships of the curve segments.
The method we have presented shares many simila-
rities to [6]. As one of our next steps we would like
to consider the inclusion of the maximum 
ow algo-
rithm as in [6] to process fuzzy relations. The Mini-
max principle of curves follows a similar objective as
snakes [1]: it combines the cross sectional strengths
along the path of the curve. However, unlike snakes,

the minimax principle uses min and max operators to
combine \internal" and \external" forces instead of
a linear (weight) combination. A lot of research has
been done using hierarchical representation of edge in-
formation (i.e. edge pyramids) [4, 5] however these ap-
proaches store numerical information in the pyramidal
cells, whereas the fuzzy curve pyramid combines sym-
bolic with numeric information.

Compared to the binary curve pyramid the fuzzy
curve pyramid needs more storage space. For the
2 � 2=2 curve pyramid we need only 8 bit per cell
to represent the curve relations. For the fuzzy curve
pyramid we need 8�8 bit per cell (if the end relations
are also considered). The advantage gained is that we
can process curves with di�erent strength. Besides the
storage requirements the computational complexity of
the binary and the fuzzy curve pyramid are the same;
i.e. we can build both pyramids in a logarithmic num-
ber of steps on a parallel hardware.
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