
Implicit Encoding
and Simplification/Reduction of nGmaps

Florian Bogner(B), Jǐŕı Hlad̊uvka, and Walter Kropatsch

Pattern Recognition and Image Processing Group, Vienna University of Technology,
Vienna, Austria

florian.bogner@tuwien.ac.at, {jiri,krw}@prip.tuwien.ac.at
https://www.prip.tuwien.ac.at

Abstract. This paper aims to present a new method of translating
labeled 3D scans of biological tissues into Generalized Maps (nGmaps).
Creating such nGmaps from labeled images is a solved problem in 2D
and 3D using incremental algorithms. We present a new approach that
works in arbitrary dimensions. To achieve this in an effective manner,
we perform the necessary operations implicitly using theory rather than
explicitly in memory. First we define implicit nGmaps. We then present
a scheme to construct said nGmap representing an nD pixel/voxel-grid
implicitly. Thirdly we give a description of the process needed to reduce
such implicit nGmap. We demonstrate that our implicit approach is able
to reduce nGmaps in a fraction of otherwise necessary memory.

Keywords: Generalized Maps · nGmaps · Implicit representation ·
Memory savings

1 Introduction

For analysing CT scans of biological tissues, methods are needed to process the
images. Assume that we have a microscopic 3D raster image of tissue and want
to run a simulation of physiological processes within, for example leaf tissue and
its inherent osmotic movements, respiration and further aspects of biological
interest. Assume furthermore that the image is already segmented, meaning
each pixel1 is labeled. This means we know the specific cell or air-pocket a pixel
belongs to.

1.1 Problem Statement

For such a simulation we need a data structure where cells and the connec-
tions between them are the primary objects. A data structure that meets these
requirements and we therefore choose to use, is the n-dimensional Generalized
Map (or nGmap for short) [3]. Thus we are faced with the problem of converting
the labeled image into an nGmap.
1 In this paper we use pixel as generic term for any dimension, i.e. including voxels in

3D and hypervoxels in 4D.

c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 110–122, 2022.
https://doi.org/10.1007/978-3-031-19897-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19897-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-19897-7_10

Implicit Encoding and Simplification/Reduction of nGmaps 111

1.2 Prior Work

For 2D-images an algorithm already exists [3]. For 3D-images there is an algo-
rithm for Combinatorial Maps [1]. While this algorithm could be adapted for
3Gmaps, we present a new method that generalizes to arbitrary dimensions.

1.3 Content

To coherently present our approach we first need to explain nGmaps and their
specifics. In the following section we give a recap on nGmaps as well as new
definitions.

In later sections we will present a new algorithm to translate labeled images
into nGmaps. This includes two steps:

1. The implicit construction of the pixel-grid.
2. The contraction of the pixel-grid to adequately represent the labeled regions.

2 Basic Definitions

2.1 nGmap - The Intuitive Definition

An nGmap is a data structure similar to a graph or a mesh. It encodes topological
information of a subdivision of an n-dimensional manifold. It consists of so-called
i-cells for i from 0 to n. The number i describes the dimension of the i-cell. A
0-cell is a point, a 1-cell is a line bound by two points, i.e. two 0-cells. A 2-cell is
a surface patch bound by 1-cells and so on. In general, a (i + 1)-cell is bounded
by i-cells.

For i �= j we call an i-cell A incident to a j-cell B, if A is in the boundary of
B or vice-versa.

d

Fig. 1. Left: A 2Gmap consisting of five 0-cells, six 1-cells and three 2-cells (including
the outside one). Right: The same 2Gmap depicted via its darts, which are drawn as
arrows.

These i-cells, however, are not the primary elements used to encode the
nGmap, instead so called darts are. A dart can be thought of as the intersection
of incident i-cells, one for each dimension, i.e. for i ∈ {0, . . . , n}. For example, the

112 F. Bogner et al.

marked dart d in Fig. 1 corresponds to the middle-right 0-cell, the top-horizontal
1-cell and the square 2-cell. This interpretation of a dart as an intersection of
i-cells is quite important for the intuitive understanding of nGmaps.

For a given i if two darts share the same j-cells for j �= i, but have a different
i-cell, we call them i-linked. It turns out that a dart is only ever i-linked to a
maximum of one other dart. Therefore we can define the involution αi as the
function that maps a dart to its i-linked partner or itself if it has none.

It turns out that the set of darts and the involutions α0, . . . , αn fully describe
the structure of the nGmap. Therefore we define an nGmap in the formal defi-
nition by its darts and subsequently also define i-cells in terms of darts.

2.2 The Formal Definition

Definition 1. Involution: A function f : X → X is called an involution if

∀x ∈ X : f(f(x)) = x

Definition 2. nGmap: For n ∈ N0 an nGmap or n-dimensional Generalized
Map is a tuple (D,α0, . . . , αn), where:

– D is a finite set of darts.
– For i ∈ {0, . . . , n} the function αi : D → D is an involution.
– For i, j ∈ {0, . . . , n}, |i − j| ≥ 2 the composition αi ◦ αj is an involution.

To define i-cells we first need to define the term orbit:

Definition 3. Orbit: Let A be a set, B ⊂ A and f1, . . . , fn : A → A be func-
tions. Then the orbit of B under f1, . . . , fn:

〈f1, . . . , fn〉(B)

is the smallest super-set of B closed under f1, . . . , fn, i.e.:

– B ⊂ 〈f1, . . . , fn〉(B) ⊂ A
– ∀i ∈ {1, . . . , n},∀x ∈ 〈f1, . . . , fn〉(B) : fi(x) ∈ 〈f1, . . . , fn〉(B)
– These are all.

For x ∈ A the orbit is defined as the orbit of the singleton set {x}.
For example, the orbit of a single element under a single function is

〈f〉(x) = {x, f(x), f(f(x)), f(f(f(x))), . . .}
In formal definition i-cells are sets of darts. To a given dart we can find the

corresponding i-cell for given i as follows:

Definition 4. i-cell: Let (D,α0, . . . , αn) be an nGmap, d ∈ D a dart and i ∈
{0, . . . , n}. The i-cell containing d is defined as the set of darts:

ci(d) := 〈α0, . . . , αi−1, αi+1, . . . , αn〉(d)

Implicit Encoding and Simplification/Reduction of nGmaps 113

This definition is motivated by the intuitive understanding that αi changes
i-cell and in turn αj (for j �= i) remains with the same i-cell. Therefore by
traversing the orbit of d under αj for j �= i we never leave the i-cell and because
we consider all αj , we find every dart of the i-cell.

3 Motivation

3.1 The Naive Algorithm

Let us consider a naive algorithm for the problem:

– Generate a 3Gmap with one cubic 3-cell for every pixel.
– To merge all adjacent pixels with the same label, remove in-between 2-cells.
– Form membranes by merging adjacent 2-cells that border the same 3-cells.
– Form membrane edges by removing every 0-cell that has less than three inci-

dent 1-cells.

We now have created a 3Gmap from a labeled image, effectively solving the
problem in theory. However, let us estimate the memory requirements: Assuming
that a dart is a class consisting of four pointers, one for each involution. A pointer
takes up eight bytes in a 64-bit system. A cube in a 3Gmap consists of 48 darts.
The 3D-images of the plant scans that motivated this work have a resolution of
about 20003 pixels. So in total we have

20003 × 48 × 4 × 8 bytes ∼= 12 terabytes

Clearly the memory requirements for creating the pixel-grid mentioned in
step one render the naive algorithm infeasible for such a scan. Our solution to
circumvent the huge memory requirements is to represent the pixel-grid implic-
itly, instead of explicitly representing it in memory. Furthermore the reduction
as in step 2 onward of the naive algorithm, can be represented implicitly. These
two processes will be topic of Sects. 4 and 5 respectively. However one more tool
needs to be defined as groundwork before.

3.2 Implicit nGmaps

Definition 5. Implicit nGmap: For n ∈ N0 an implicit nGmap is a tuple
(D,D′, α0, . . . , αn), where:

– D is a (not necessarily finite) set of darts.
– D′ ⊂ D is a finite set of seed-darts.
– ∀i : αi : D → D is a function. (Not necessarily an involution.)
– (〈α0, . . . , αn〉(D′), α0, . . . , αn) is an nGmap, which is called the Construction.

114 F. Bogner et al.

The idea here is that not all elements of D are darts in the nGmap we want
to define. The darts in D′ are called seed-darts because from them the orbits
grow.

To distinguish, we will also call nGmaps as of Definition 2 explicit nGmaps.
One major difference between the two types is less of theoretical nature and
more related to actual implementations in code:

– Explicit nGmaps can be thought of as being stored in memory, with the α-
involutions being implemented via lookup-table or memory pointers. They
are mutable.

– Implicit nGmaps however can be thought of as being computed on the fly.
Their α-involutions are procedures without state. Therefore they do not
occupy much memory, but as a downside they are immutable.

4 Implicit Encoding of the Pixel-Grid

In this section we define an nGmap representing an infinite nD grid. By defining
an infinite rather than a finite grid corresponding to the size of the image, we
can avoid special cases related to the boundary.

4.1 Darts

As the set of darts we use2:

D := Z
n × N<2n·n!

A dart is a tuple d = (p, s) ∈ D. The first component p ∈ Z
n is called

the pixel-position. The second component s ∈ N<2n·n! is called the subpixel-
position. Note that there are 2n · n! darts in an nGmap representing a bounded
nD-hypercube.

The following is a scheme to enumerate all darts in the interior of an nD
cube. Recall that a dart represents the intersection of one i-cell for each i from
0 to n. Thus we describe a dart first by its position via those i-cells and then
transform that description into an integer.

4.2 Positional Dart Descriptions

We construct our Positional Dart Description by answering a series of questions.
First: In which n-cell is the dart? We only have one n-cell, so the answer is

trivial.

2 Because the grid is infinite, the construction technically is not an nGmap. One can
modify D := Z

n
k × N<2n·n! using the cyclic group Zk for some sufficiently large

number k. The nGmap then represents a grid on a large torus and D is finite. When
implementing D in code using for example 32-bit ints, this automatically happens
with k = 232.

Implicit Encoding and Simplification/Reduction of nGmaps 115

0 1

2 3

4 6

5 7

(i, j)

0
4

0 1
4 6

1
6

1

3

6

7

0

2

4

5

2 35 73 7 25

(i − 1, j)

(i + 1, j)

(i, j − 1) (i, j + 1)

Fig. 2. Representation of one pixel and its neighbors in 2D. (s is attached to each dart,
while p = (i, j) is written in the center of each pixel instead of duplicated 8 times.)

(0)

(1)

(2)

d

Fig. 3. 3Gmap of a cube, with one dart d marked as an example. Note the orientation
and direction of the coordinate axes.

Next: In which (n − 1)-cell is the dart? There are two (n − 1)-cells for each
coordinate axis, so we can describe the (n − 1)-cell by the coordinate axis it is
perpendicular to and whether it is facing the positive or the negative direction,
here called the “top” or the “bottom” respectively. The example dart d in Fig. 3
is in a 2-cell perpendicular to the (1) coordinate axis and on the “top”. The
descriptions thus begins with:

1 ↑ . . .

The identified (n−1)-cell now itself consists of (n−2)-cells, so our description
continues recursively. In which one does it lie?

The example dart d is on the 1-cell perpendicular to the (0) axis and on the
“top”. Finally, d is on the “bottom” side of the (2) axis. The full description
therefore is:

1 ↑ 0 ↑ 2 ↓
In general, a description is a list of length 2n, a permutation of {0, . . . , n −

1} interleaved with arrows ↓ or ↑. As a sanity check, lets calculate the total
possibilities: each of the n arrows can be up or down, so we have 2n possibilities
here. The axis numbers can be permuted in n! ways. These are independent, so
in total we have 2n · n! possibilities. This exactly matches the number of darts
in the nD hypercube.

116 F. Bogner et al.

4.3 Mixed Radix Numbers

To transform a Positional Dart Description into a number, we use a mixed radix
numbering system with the signature (. . . 5, 2, 4, 2, 3, 2, 2, 2, 1, 2) as explained
below.

Table 1. Mixed radix system for our dart numbering system

Radix . . . n 2 . . . 5 2 4 2 3 2 2 2 1 2

Digit worth . . . 2nn! 2n−1n! . . . 768 384 96 48 16 8 4 2 2 1

In a usual numbering system with base b, each digit is worth b times the one
on the right. In a mixed radix system, the relative worth of a digit is different
for each digit according to its signature. The most common mixed radix system
is used to measure time with the signature (7, 24, 60, 60). Each week has 7 d,
each day has 24 h, each hour has 60 min, each minute has 60 s.

Table 2. Mixed radix system for time

Name Weeks Days Hours Minutes Seconds

Radix − 7 24 60 60

Digit worth 604800 86400 3600 60 1

To transform a dart description, we translate each part into a digit of the
mixed radix. For the arrows we can simply put 0 for ↓ and 1 for ↑.

The axis numbers are not translated directly, i.e. are not the translated digits
themselves. Instead, the translation of an axis is its index on the list of not-yet-
used axes. This is best explained by example. Let us translate the 4D dart
description 0 ↑ 3 ↓ 1 ↑ 2 ↑. At first, no axes were used, so the list is [0, 1, 2, 3]. 0
has index 0. Our number thus starts as

(01??????)b

The remaining list is now [1, 2, 3] and 3 has index 2 on that list, so the number
continues as

(0120????)b

The remaining list is now [1,2]. 1 has index 0, and afterward 2 has index 0 so
the complete number is

(01200101)b

Finally lets translate the number into the decimal system using the ’Digit worth’
entries from Table 1.

(01200101)b = 0 · 96 + 1 · 48 + 2 · 16 + 0 · 8 + 0 · 4 + 1 · 2 + 0 · 2 + 1 · 1 = 83

Implicit Encoding and Simplification/Reduction of nGmaps 117

Notice how we have for every digit exactly as many choices as is the radix
for this digit. Therefore the dart numbers lie flush without gaps.

4.4 Involutions

We define the involutions by lookup-tables (LUT). The LUT maps a subpixel-
position to another subpixel-position as well as an offset to the pixel-position.
Because only αn leaves the n-cell i.e. the pixel, the offset is actually only required
for this single involution.

We thus define:

αi((p, s)) :=

{
(p, α∗

i (s)) i < n

(p + Δp(s), α∗
i (s)) i = n

where α∗
i and Δp are called lookup-tables.

Table 3. Lookup-tables for the 2D case corresponding to Fig. 2 as well as an imple-
mentation using bit-flipping magic on the binary representation. (The hat means bit
negation.)

s α∗
0(s) α∗

1(s) α∗
2(s) Δp(s)

0 1 4 2 (−1, 0)

1 0 6 3 (−1, 0)

2 3 5 0 (1, 0)

3 2 7 1 (1, 0)

4 5 0 6 (0, −1)

5 4 2 7 (0, −1)

6 7 1 4 (0, 1)

7 6 3 5 (0, 1)

abc abĉ âcb ab̂c N/A

But how can we define these lookup tables? Let us again turn to the Positional
Dart Description. First, notation: For i ∈ {0, . . . , n − 1}, let xi ∈ {0, . . . , n − 1}
be the axis that the i-cell is perpendicular to and Ii ∈ {↓, ↑} be the bottom-top-
indicator. Îi shall denote the opposite arrow of Ii itself. A general description
then looks like this:

xn−1In−1 . . . x1I1x0I0

– α∗
0: The involution α0 changes 0-cell while staying in the same i-cell for i > 0.

Thus the start of the description stays the same and only in the last part we
swap which side we are on. Thus:

α∗
0(xn−1In−1 . . . x1I1x0I0) = xn−1In−1 . . . x1I1x0Î0

118 F. Bogner et al.

– α∗
i for 0 < i < n: The involution αi changes i-cell while staying in the same

j-cell for j �= i. Therefore the description before xiIi stays the same. The i-
cell changes, therefore xi must change. The original i-cell and the image i-cell
intersect in an (i−1)-cell. This (i−1)-cell is perpendicular to both axes xi and
xi−1. Therefore the image i cell is perpendicular to xi−1. This intersecting
(i − 1)-cell is now on the xi side of the image i-cell. xi and xi−1 therefore
swap places in the description. The arrows swap with them. Afterwards, we
are in the same (i−2)-cell and so on, so the suffix of the description does not
change as well.

α∗
i (. . . xiIixi−1Ii−1 . . .) = . . . xi−1Ii−1xiIi . . .

– α∗
n and Δp: The involution αn moves us from one n-cell to another, in par-

ticular the one that shares the same (n− 1)-cell. The orientation in regard to
the other axes does not change. The direction we move is dependent on In−1.
Therefore we find that:

α∗
n(xn−1In−1 . . . x1I1x0I0) = xn−1În−1 . . . x1I1x0I0

Δp(xn−1In−1 . . . x1I1x0I0) =

{
exn−1 In−1 =↑
−exn−1 In−1 =↓

where ek is the k-th unit vector.

Note that these definitions elegantly fulfil condition 2 and 3 of Definition 2.
Table 3 is generated with these definitions.

4.5 Labels

With the structure of the grid fully defined, we finally need to associate every
dart with a label. For a dart d = (p, s) we associate:

– If the pixel-position p is within the image, we associate the label from that
pixel in the image.

– Otherwise we associate an additionally created label not occurring in the
image called the Out-Of-Bounds-Label. By treating the OOBL as just another
label, we can avoid having to consider special cases on the boundary of the
image.

Going forward, we denote the set of labels including the OOBL as L and the
association between darts and labels as the function L : D → L.

5 Implicit Reductions and Contractions

Given an nGmap (D,α0, . . . , αn) and a label function L : D → L we want
to define new involutions βi and the set D′ such that (D,D′, β0, . . . , βn) is an
implicit nGmap. Note that the original nGmap doesn’t have to be the pixel-grid
from the previous section. All that is required is that the label function L is
consistent, meaning all darts from a n-cell map to the same label. We define the
β-functions iteratively from the highest dimension to the lowest and then discuss
finding an appropriate set of seed-darts D′.

Implicit Encoding and Simplification/Reduction of nGmaps 119

5.1 Defining βn

Recall the intuitive understanding of αn. It changes n-cell while staying in the
same i-cell for i < n. Since we don’t want to remove n-cells, but only merge
them later on, we can just define βn := αn.

5.2 Defining βn−1

L1L1

L3L2

dβ1(d)

Fig. 4. 2D Example: The grey 1-cell ought to be removed, as it has the same label
on both sides. The relevant involutions α1 and β2 are illustrated in blue and pink
respectively. (Color figure online)

Intuitively the involution αn−1 changes to a different (n − 1)-cell, but such
an (n−1)-cell may ought to be removed, if the labels on both sides are equal. In
this case, illustrated in Fig. 4, we would have to move past that (n− 1)-cell onto
the next one via αn−1 ◦ βn ◦ αn−1. Of course, it has to be checked if this next
(n − 1)-cell ought to be removed as well. We define the condition that describes
if the (n − 1)-cell cn−1(d) of a given dart d is removable:

Rn−1(d) :⇔ L(d) = L(βn(d))

With this, we can define the new involution:

βn−1 (d) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αn−1 (d)
if ¬Rn−1 (αn−1 (d))

αn−1 ◦ βn ◦ αn−1 (d)
elif ¬Rn−1 (αn−1 ◦ βn ◦ αn−1 (d))

αn−1 ◦ βn ◦ αn−1 ◦ βn ◦ αn−1 (d)
elif ¬Rn−1 (αn−1 ◦ βn ◦ αn−1 ◦ βn ◦ αn−1 (d))

. . .

(αn−1 ◦ βn)k ◦ αn−1 (d)

elif ¬Rn−1

(
(αn−1 ◦ βn)k ◦ αn−1 (d)

)

120 F. Bogner et al.

The implicit nGmap (D,D′, α0, . . . , αn−2, βn−1, βn) represents an nGmap where
the pixels are merged into bigger n-cells according to their labels, but the (n − 1)-
cells are still the sides of a pixel. They can be simplified further.

5.3 Defining βi for i ≤ n − 2

d
d

Fig. 5. 2D Example: The left 0-cell is not removable, while the right 0-cell is removable.
On the right β1 ◦ β2 ◦ β1 ◦ β2 (d) loops back, which is not the case on the left.

For the next step, we need to simplify the (n − 2)-cells, which is accomplished
by an appropriate definition of βn−2. Further we also need to simplify the (n − 3)-
cells via βn−3 and so on. All of these steps are alike and follow the same definition.
For this we need to define when an i-cell is removable. This is only fulfilled if
the i-cell has two incident (i + 1)- cells. [4]

Ri (d) :⇔ ∀d′ ∈ 〈βi+2, . . . βn〉 (d) : d′ = βi+1 ◦ βi+2 ◦ βi+1 ◦ βi+2 (d′)

With this removability criterion illustrated in Fig. 5 we can define:

βi (d) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αi (d) if ¬Ri (αi (d))
αi ◦ βi+1 ◦ αi (d) elif ¬Ri (αi ◦ βi+1 ◦ αi (d))
αi ◦ βi+1 ◦ αi ◦ βi+1 ◦ αi (d) elif ¬Ri (αi ◦ βi+1 ◦ αi ◦ βi+1 ◦ αi (d))
. . .

(αi ◦ βi+1)
k ◦ αi (d) elif ¬Ri

(
(αi ◦ βi+1)

k ◦ αi (d)
)

The implicit nGmap (D,D′, α0, . . . , αn−3, βn−2, βn−1, βn) has simplified n-
cells and (n − 1)-cells, but still has non-simplified i-cells for i < n − 1. This
pattern continues until finally the implicit nGmap (D,D′, β0, . . . , βn) represents
the complete reduction of the image.

5.4 Finding Seed-Darts

To build the Construction of (D,D′, β0, . . . , βn) we need one seed-dart for each
connected component, since the orbit 〈β0, . . . , βn〉 of one dart in a connected
component cannot reach another connected component. If we know, like in our
example-case, the image shows only one connected component, a single seed-dart
suffices to create the nGmap for the whole image.

To find a suitable seed-dart we look for a dart d that is not removable at all:

∀i ∈ {0, . . . , n − 1} : ¬Ri (d)

Implicit Encoding and Simplification/Reduction of nGmaps 121

5.5 Construction

During the Construction, i.e. the traversal of the orbit of the seed darts, we
create an explicit nGmap. Every encountered implicit dart is associated with
an explicit dart. As explicit nGmap we used nGmaps from the CGAL [2]. This
explicit nGmap can now be used for further processing, simulations etc.

Optionally, if a bounded nGmap is demanded, the n-cell of the OOBL can
be removed. Notice how thanks to the OOBL there were no special cases dealing
with the border of the image.

5.6 Limitations

In certain cases the algorithm fails to detect every i-cell. In 3D we found two
such cases:

– If a region of one label is completely surrounded by another region, then the
2-cell separating them will erroneously get removed fully. However, this does
not occur in plant tissue, as biological cells neither float nor contain each
other.

– If two regions are touching and the 2-cell between them is surrounded by a
ring-shaped third region, the 2-cell does not get recognized and the first two
regions appear disconnected in the resulting 3Gmap. Sadly, this configuration
is common in our CT scans.

6 Results

Since the reduction happens implicitly, only the final nGmap needs to be explic-
itly processed. This means memory is only used for the Construction of the final
nGmap. This minimizes the necessary memory.

Furthermore, processing only the required minimum of darts allows the algo-
rithm to be fast. For example, a 5123 labeled image of a leaf cross-section takes
about 5 min to be processed on VSC4 (without multi-threading). A 4003 syn-
thetic image (203 checkerboard pattern) takes about 4 min.

In future work, the algorithm needs further refinement to mitigate limitations
mentioned in Sect. 5.6. Furthermore, the process could be parallelized to further
speed up computations. Finally, in-depth performance profiling and comparison
to other approaches should be conducted.

Acknowledgments. This project was supported by the Vienna Science and Technol-
ogy Fund (WWTF), project LS19-013. The computational results presented have been
achieved in part using the Vienna Scientific Cluster (VSC).

References

1. Damiand, G.: Topological model for 3d image representation: definition and incre-
mental extraction algorithm. Comput. Vis. Image Underst. 109, 260–289 (2008).
https://doi.org/10.1016/j.cviu.2007.09.007

https://doi.org/10.1016/j.cviu.2007.09.007

122 F. Bogner et al.

2. Damiand, G.: Generalized maps. In: CGAL User and Reference Manual. CGAL Edi-
torial Board, 5.4 (edn.) (2022). https://doc.cgal.org/5.4/Manual/packages.html#
PkgGeneralizedMaps

3. Damiand, G., Lienhardt, P.: Combinatorial Maps Efficient Data Structures for Com-
puter Graphics and Image Processing. A K Peters/Crc Press (2014)

4. Illetschko, T.: Minimal combinatorial maps for analyzing 3d data. Technical Report
PRIP-TR-110, PRIP, TU Wien (2006). https://www.prip.tuwien.ac.at/pripfiles/
trs/tr110.pdf

https://doc.cgal.org/5.4/Manual/packages.html#PkgGeneralizedMaps
https://doc.cgal.org/5.4/Manual/packages.html#PkgGeneralizedMaps
https://www.prip.tuwien.ac.at/pripfiles/trs/tr110.pdf
https://www.prip.tuwien.ac.at/pripfiles/trs/tr110.pdf

