Irregular Pyramids with Combinatorial Maps
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Abstract. This paper presents a new formalism for irregular pyramids
based on combinatorial maps. Such pyramid consists of a stack of suc-
cessively reduced graph. Each smaller graph is deduced from the preced-
ing one by a set of edges which have to be contracted or removed. In
order to perform parallel contractions or removals, the set of edges to
be contracted or removed has to verify some properties. Such a set of
edges is called a Decimation Parameter. A combinatorial map encodes a
planar graph thanks to two permutations encoding the edges and their
orientation around the vertices. Combining the useful properties of both
combinatorial maps and irregular pyramids offers a potential alternative
for representing structures at multiple levels of abstraction.

1 Introduction

The multi-level representation of an image called pyramid [6, 13] allows us to
define a hierarchy in the different levels of representation of a same object. The
method has been introduced by Pavlidis [6] who use a pyramid to define several
partitions of a same image. Each connected component defined at one level is
linked with its decomposition in the next level. His method defines a hierarchy
between different partitions of the same image and is thus quite adapted to
segmentation purpose where the definition of a region depends on the semantical
context. For example, a face in an image may be considered as one region, or
as the union of several regions defining the different semantical parts of the face
such as the eyes and the hairs. The pyramids allow us to define a hierarchy
between these two representations of a face which represent the same object at
different levels.



The first implementation of pyramids [6] use a regular tessellation of the
image into a set of squares describing a balanced quadtree. Such a representation
called a regular pyramid restricts the way in which objects defined at a given level
are linked to their father in the next level. This restriction has been attenuated by
Meer, Jolion and Montanvert [7] which have introduced a new family of pyramids
called Irregular Pyramids. Kropatsch [9] has shown that irregular pyramids based
on a pair of dual graphs may encode any partition of an image.

There are, at least, two ways to represent plane graphs: a pair of dual
graphs [12, 8] or combinatorial maps [16, 1, 4]. In analogy to regular image
pyramids, dual graph contraction [8] has been used to build irregular graph
pyramids with the aim to preserve the high efficiency of the regular ancestors
while gaining further flexibility to adapt their structure to the data. Experiences
with connected component analysis [12], with universal segmentation [11], and
with topological analysis of line drawings [10] show the great potential of this
concept.

We have shown in [3] that an encoding of a planar map by a pair of dual
graphs with an implicit encoding of the orientation may be converted into a
combinatorial map encoding and conversely. Therefore, any object which may
be described by 2D-combinatorial maps may also be described by dual graphs.
However combinatorial maps present several advantages besides dual graphs
which justify their use within the irregular pyramid framework:

— The combinatorial maps allow to encode a graph and its dual within a unique
formalism. Moreover, the implementation also use a unique object to encode
both graphs.

— The encoding of the orientation of the plane which is implicit within the
dual graph formalism is explicit in the combinatorial map one.

— The combinatorial map formalism may be easily extended to higher dimen-
sions [14]. Thus using combinatorial maps pyramids, the same formalism
may be used to define 2D, 3D or 4D Irregular Pyramids.

The rest of the paper is organized as follows: in Sect. 2 we give some defi-
nitions and basic properties of combinatorial maps together with the definition
of the contraction and removal operations. In Sect. 3 we define the notion of
decimation parameter which allows us to perform several contractions simulta-
neously. Finally, we give some perspectives opened by our work in Sect. 4.

2 Definition and properties of Combinatorial maps

A combinatorial map [16] may be deduced from a planar graph by splitting each
edge into two half edges called darts (see Fig. 1). The relation between two darts
di and d» associated to the same edge is encoded by the permutation a which
maps d; to ds and vice-versa. The permutation « is thus an involution and its
orbits are denoted by a*(d), for a given dart d. These orbits encode the edges of
the graph. Moreover, each dart is associated to a unique vertex. The sequence of
darts encountered when turning around a vertex is encoded by the permutation



0. Using a counter-clockwise orientation, the orbit ¢*(d) encodes the set of darts
encountered when turning counter-clockwise around the vertex associated to the
dart d. A combinatorial map can thus be formally defined by:

Definition 1. Combinatorial map
A combinatorial map G is the triplet G = (D, o0,«a), where D is a set called
the set of darts and o, a are two permutations defined on D such that o is an
involution:
VdeD aoald)=d

Given a dart d, a(d) and o(d) will be respectively called the o and o-successors

of d.
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Fig. 1. Each dart of the combinatorial map is encoded by an integer. The permutation
a associates its opposite to each dart. The permutation o (see (a)) is encoded by an
array of integers (see (b)).

Note that, if the darts are encoded by positive and negative integers (see
Fig. 1), the involution « may be implicitly encoded by the sign:

VieD a(d) =—d

This convention is often used for practical implementation of connected com-
binatorial maps [1] where the combinatorial map is simply implemented by an
array of integers encoding the permutation o (see Fig. 1(b)).

The permutations o and « allow us to pass from one dart to the other within
a same connected component. Given a dart d, the set of darts of its connected



component is denoted by G.d where G is the group of permutations generated
by ¢ and a:

Definition 2. Group associated to a combinatorial map
Given a combinatorial map G = (D, 0, a), the associated group G of G is the

subgroup generated by o and a within the symmetric group of all permutations
on D.

It is clear that two different labellings of the darts gives the same graph.
This notion of proximity between combinatorial maps has been formalized by
Gareth [5]:

Definition 3. Morphism between combinatorial maps

Given two combinatorial maps G1 = (D1,01,01), G2 = (Ds,02,a2) and
their associated subgroups Gi and Go. A morphism ¢ : G1 — G2 is a pair of
functions (x,v), x : G1 = G2 and ¢ : D1 — D,, where x is a group homomor-
phism such that :

x(a1) = az
x(o1) = 02
and ¢ respects the orientation:
P(ar(d)) = az(¥(d))
e D o) oot @

If ¢ is bigective ¢ will be called an isomorphism.

Note that, if (), %) is an isomorphism (1) may be rewritten as:

01 (d) = $~" (an(16(d)))
vie Dy {01@ = (02 (t(d))) @)

For example if D; and D» are two sets of darts, and if 7 is a bijective
application from D; to D2, we can show that the two combinatorial maps G; =
(D1,0,a) and Gy = (Dy,mrocon ! moaon '), where o and « are defined on
D, are isomorphic.

Using the combinatorial map formalism, the dual of a combinatorial map
G = (D,o,a) is deduced from G by using ¢ = o o « instead of o:

Definition 4. Dual combinatorial map

Given a combinatorial map G = (D,o0,q), the combinatorial map G =
(D, p,q) is called the dual of G. The permutation ¢ is defined by:

p=0coa

The orbits of ¢ encode the faces of G.



The simplicity of the dual transformation avoids encoding explicitly the dual
combinatorial map. Therefore, each operation performed on a combinatorial map
will also modify its dual. This last point allows us to reduce the required memory
and the complexity of our algorithms.

The removal operation (see Definition 5) is often used to simplify a graph.
Using irregular pyramids, this operation may be performed to build the different
levels of the pyramid from an initial graph.

Definition 5. Removal Operation
Given a combinatorial map G = (D,0,a) and a dart d € D. If a*(d) is not
a bridge, the combinatorial map G' = (D', 0',a) = G\ a*(d) is defined by:

- D'=D\ a*(d) and
— o' is deduced from o by:

VdeD' o'(d)=0"(d) withn = Min{p e N* / o?(d) € a*(d)}

Note that the bridges are excluded from Definition 5 in order to keep the number
of connected components of combinatorial maps.

If combinatorial maps are used to encode a partition, the merge of two regions
may be seen in two ways: first, it may be performed by removing one of the com-
mon boundary segments between the two regions. This operation is performed
by the removal operation. In this case, each vertex of the combinatorial map is
associated to the intersection of at least three boundaries (see Fig. 1). Secondly,
the merge of the two regions may be performed by identifying the two regions
and removing one of the edges encoding their adjacency. In this case, each vertex
of the combinatorial map is associated to one region. This dual point of view on
the merge of region is performed by the contraction operation (see Definition 6)
which may be considered as the dual of the removal operation.

Definition 6. Contraction operation

Given a combinatorial map G = (D, o, a) and one dart d, in D which is not
a self-loop. The contraction of dart d creates the graph G/a*(d) defined by:

G/a*(d) =G\ a*(d)

The expression of Definitions 5 and 6 in terms of modifications of the per-
mutation o are given in [3].

Note that the contraction operation is well defined since d is a self-loop in G
iff it is a bridge in G. Thus, any sequence of removal or contraction operations
will preserve the number of connected components of the initial graph. This last
property is useful in the irregular pyramid framework which attempts to simplify
the initial planar map while preserving its essential structural properties such as
the number of connected components.



3 Decimation Parameters

In order to perform more than one contraction simultaneously, we have to in-
sure that the resulting combinatorial map is independent of the order of the
contractions. We have shown [4] that if the contracted combinatorial maps re-
main connected, the contraction or the removal of any two darts is independent
of the order of the operations

Thus if the contraction operations are allowed in a given order, they can be
performed in any order. The contraction operations are well defined if we do not
contract a self-loop. Using a Decimation Parameter (see Definition 8), the set of
darts to be contracted form an Independent Vertex Set (see Fig. 2):

Definition 7. Independent Vertex Set
Given a combinatorial map G = (D,o,q), a set of darts D' C D will be
called an Independent Vertex Set iff:

a(c* (D)) Nne* (D) =10
The set D' will be called a maximum Independent Vertex Set iff:
Vie D—o*(D') 3d €o*(d) | a(d)ea* (D)

All vertices are defined by one dart of D' or are linked to one vertex defined by
a dart in D'.

Intuitively, the definition of an Independent Vertex Set consists to select a
set of vertices called the set of surviving vertices and a set of edges such that the
surviving vertices are not connected in the induced sub combinatorial map [3].
Then the selected edges connect a surviving vertex to a non surviving one. These
edges become the edges to be contracted in the Decimation Parameter definition:

Definition 8. Decimation Parameter
Given a combinatorial map G = (D, 0,a), a Decimation Parameter is a set
of darts D' such that D' is an Independent Vertex Set of G and:

Vie D—-o*(D') 3NdeD | ald)eoc*(d)
The set D — a*(D') is the set of surviving darts and is denoted SD.

The definition of a Decimation Parameter, insures that the edges between
surviving vertices are not contracted and that exactly one of multiple edges
incident to a non surviving vertex is contracted. For example, the maximum
Independent Vertex Set displayed in Fig. 2(a) does not satisfy the requirements
of a Decimation Parameter since it contains a non-surviving vertex connected
to two edges to be contracted. Fig. 2(b) sastisfies both requirements of an In-
dependent Vertex Set and a Decimation Parameter. Thus, using the definition
of a Decimation Parameter, no self-loops can be contracted and the contraction
operations can be performed simultaneously.



(a) (b)

Fig. 2. A mazimal Independent Vertez Set (a) and a Decimation Parameter (b). The
set of contracted edges D’ is represented by black arrows. The surviving vertices are
represented in black and have at least one dart in D'.

Definition 9 defines a class of elementary paths called connecting paths which
connect two surviving vertices. According to Definition 9, these paths contain
exactly one dart which is not contracted. Therefore, the connecting paths may
be denoted by CP(d) where d is the surviving dart of the path.

Definition 9. Connecting Path

Given a combinatorial map G = (D, 0,a), a Decimation Parameter D' of G
and two darts by and by in o*(D'), CP(by,by) will be called a connecting path iff
it is a path and if it verifies one of the following conditions:

1. The vertices o*(b1) and o*(bs) are adjacent:
by

CP(by,by) =d € SD =D — a*(D')

In this case the dart d is a surviving dart.
2. The vertices 0*(b1) and o*(b2) are separated by one non surviving vertex:

b1
d1 da
CP(by,bs) = dvds  with: |{dy,ds} NSD| = 1\.> Ol @7

In this case the non surviving vertex will be removed by the contraction of dy
or dy . Therefore, one of these dart must survive and the other be contracted.
3. The vertices o*(b1) and o*(bs) are separated by two non surviving vertices:

CP(bl,bQ) = d1d2d3 with : |{d1,d2,d3} n 8D| =1

d2
d3

d1 //bz

b1



In this case the two non surviving vertices will be removed by the contraction
of di and ds. The dart d> linking two non surviving vertices can not be
contracted and is thus a surviving dart.

The set of surviving darts SD being symmetric by a, CP(d) and CP(a(d))
are defined simultaneously for any dart d in SD. We can therefore, define the
a-successor of a connecting path C'P(d), denoted ac(CP(d)), as CP(a(d)):

Definition 10. a-Successor of Connecting Paths

Given a combinatorial map G = (D,o,a), and a Decimation Parameter
D’ of G, we define the involution ac which associates to each connecting path
containing one dart d of SD the connecting path which contains a(d):

Vde SD  ac(CP(d)) = CP(a(d))

We have shown in [4] that given a dart d in D, the sequence of darts
d,p(d),p?(d) contains at least one non-contracted dart in SD. The first dart
of this sequence which is not contracted is called the representative dart Rep(d)
of d:

Definition 11. Representative Dart
Given a combinatorial map G = (D,o,a) and a Decimation Parameter D',
the representative dart Rep(d) of any dart d in D is defined by:

Rep(d) = ¢'(d) with i= Min{j€{0,1,2} | ¢’(d) € SD}
and is a non contracted dart belonging to SD

Using the function Rep, we can define the o-successor of each connecting path
by:

Proposition 1. Given a combinatorial map G = (D,o,a) and a Decimation
Parameter D', the application:

oc(CP(d)) = CP(Rep(o(d)))
defines a permutation on the set of connecting paths.

The proof of this proposition may be found in [4].

If we denote by D¢ the set of connecting paths defined by a Decimation
Parameter D', the involution ac and the permutation o¢ define a combinatorial
map on the set of connecting paths:

Definition 12. Connecting Path Map
Given a combinatorial map G = (D, 0,a), and a Decimation Parameter D',
the set of connecting path D¢, may be defined by:

De = {CP(d),d € SD}

The map of connecting paths associated to the Decimation Parameter Go is
defined by:
GC = (DC;UC;C“C)

(see Definition 10 and Proposition 1).



Since each connecting path is uniquely defined by one dart in SD, we can
consider C'P as a bijective application which associates to each dart in SD its
associated connecting path. Then, if G' = (8D,0’,a’) denotes the contracted
combinatorial map G/a*(D'), and if x denote the application:

G = Gce
X| o~ ac
o' oc

where G’ and G respectively denote the group of permutations associated to
G' and G¢ (see Definition 3).

The application (x, CP) is an isomorphism between the contracted map G’
and the connecting path map G¢ (see proof in [4]). Then, the permutations o’
and o/ may be respectively deduced form the permutation oo and a¢ as follow

(see (2)):

Vd € D—a*(D') {a'(d) = CP~'(ac(CP(d))) = CP~'(CP(a(d)) = a(d)

o'(d) = CP~(0c(CP(d))) = CP~HCP(Rep(o(d)))) = Rep(o(d))

Therefore, the contracted combinatorial map G' = G/a*(D') may be con-
structed from G, by leaving the permutation o unchanged and by computing for
each surviving dart the value Rep(o(d)) i.e. by searching the minimal integer j
in {0,1,2} such that ¢/ (o(d)) belongs to SD. If this operation is performed in
parallel on each surviving dart, the contracted combinatorial map may be built
in constant time.

4 Conclusion and Perspectives

We have defined in this article the theorical framework needed to perform re-
moval or contraction operations on combinatorial maps. The contraction opera-
tion is then generalized thanks to the definition of Decimation Parameter. These
definitions allow us to design several contractions in parallel.

The definition of a contraction kernel by labeled pyramids is under devel-
opment. This expected result together with the ones resumed in this article
should allow us to study interesting applications of our model such as: segmen-
tation [1, 2], efficient structural matching [15] or integration of moving objects.
Finally, the extension of our model to higher dimensional spaces (3D) should be
studied.
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