Contraction Kernels and Combinatorial Maps

Luc Brun' and Walter Kropatsch**

t Laboratoire d’Etudes et de Recherche en Informatique
[.LU.T. de Reims 51.059 Reims - France
and
1 Institute for Computer-aided Automation
Pattern Recognition and Image Processing Group
Vienna Univ. of Technology- Austria

T brun@leri.univ-reims.fr, { krw@prip.tuwien.ac.at

Abstract

Graph pyramids are made of a stack of successively reduced graphs embedded
in the plane. Such pyramids overcome the main limitations of their regular
ancestors. The graphs used in the pyramid may be region adjacency graphs, dual
graphs or combinatorial maps. Compared to the usual graph data structures,
combinatorial maps offer an explicit encoding of the orientation of edges around
vertices. Fach combinatorial map in the pyramid is generated from the one
below by a set of edges to be contracted. This contraction process is controlled
by kernels that can be combined in many ways. We show in this paper, that
kernels producing a slow reduction rate can be combined to speed up reduction.
Or, conversely, kernels decompose into smaller kernels that generate a more
gradual reduction. We also propose one sequential and one parallel algorithm
to compute the contracted combinatorial maps defined by kernels.

1. Introduction

Regular image pyramids have been introduced 1981/82 [6] as a stack of images
with decreasing resolutions. Since then, regular pyramids have been widely used
in image segmentation [6] and image analysis [14]. However, the rigidity of reg-
ular pyramids induce several drawbacks such as the shift-dependence problem
and the limited number of regions encoded at a given level of the pyramid [1].
Irregular pyramids overcome these negative properties while keeping the main
advantages of their regular ancestors [12]. These pyramids are defined as a stack
of successively reduced graphs. Each graph is build from the graph below by
selecting a set of vertices named surviving vertices and mapping each non sur-
viving vertex to a surviving one [12]. Therefore each non surviving vertex is the

* This Work was supported by the Austrian Science Foundation under P14445-MAT.

child of some surviving one which is the father of all the non surviving vertices
mapped to it. Given one vertex defined in one graph of the pyramid, its set of
children in the base level graph is called its receptive field.

If the initial graph is defined from the regular grid, we may associate one pixel
to each vertex and link vertices according to the adjacency relationships de-
fined on the regular grid. Using an initial planar grid (like 4-neighborhood)
the initial graph and its reduced versions are planar. Then, the receptive field
of any vertex in the pyramid defines one connected region of the associated
image. Therefore, each graph of the pyramid encodes a partition of the initial
image. The edges of the reduced graphs encode adjacency relationships between
regions. According to the data structure used to encode graphs and the reduc-
tion operation, edges may encode coarse informations such as the existence
of some common boundary between two regions, or finer ones such as multi-
ple boundaries or surrounding relationships. Note that, these finer topological
relationships are required by some applications [10].

Using region adjacency graphs two surviving vertices are linked by an edge if
they have at least two adjacent children [12]. Such graph pyramids have been
successively applied to image segmentation [12] and image analysis [13]. How-
ever, the above decimation process does not allow to encode multiple bound-
aries between regions nor to discriminate two adjacent regions from one region
surrounding the other. Moreover, the set of edges incident to one vertex is not
ordered according to the orientation of the plane.

The reduction operation may also be encoded by edge contraction [8]. This
operation contracts one edge and its two end points into a single vertex. The
contraction of a graph reduces the number of vertices while maintaining the
connections to other vertices. As a consequence some redundant edges such
as self-loops or double edges may occur. These redundant edges may be char-
acterized in the dual of the contracted graph. The removal of such edges is
called a dual decimation step. The resulting graph encodes multiple bound-
aries between regions. Moreover, edges encoding the adjacency between one
region and a surrounding one may be characterized in the dual graph. The
reduction operation is thus performed in two steps: a first decimation process
which identifies vertices and then a dual decimation stage which removes re-
dundant edges. Experiences with connected component analysis [10] and with
universal segmentation [9] show the great potential of this concept. However,
since decimation and dual decimation require respectively features of the initial
and dual graphs, both graphs must be encoded and maintained [8]. Therefore,
any contraction operation in the initial graph must be followed by a removal
operation in its dual. In the same way, during the dual decimation stage, any

removal in the initial graph must be followed by a contraction operation in
its dual. Moreover, the orientation of edges around one vertex is not, explicitly
encoded by the data structure [4].

The remaining of the paper is as follows: In section 2. we present the combina-
torial map model together with its main properties. In section 3. we introduce
the notion of decimation parameters within the combinatorial map framework.
Decimation parameters allow to map each vertex of the combinatorial map on
one processor and to perform the decimation process on a parallel machine but
provide only a slow decimation rate. The more general notion of contraction
kernel is also introduced in Section 3. Such kernels provide a better control of
the decimation rate. Moreover, the contracted combinatorial map defined by a
contraction kernel may be computed on highly parallel machines. One sequen-
tial and one parallel algorithm computing the contracted combinatorial map
are provided in Section 4.

2. Combinatorial Maps

A combinatorial map [7] may be seen as a planar graph encoding explicitly the
orientation of edges around a given vertex. Fig. 1 demonstrates the derivation
of a combinatorial map from a plane graph. First edges are split into two
half edges called darts, each dart having its origin at the vertex it is attached
to. The fact that two half-edges (darts) stem from the same edge is recorded
in the reverse permutation «. A second permutation o, called the successor
permutation, defines the (local) arrangement of darts around a vertex. Each
orbit of ¢ is associated to one vertex and encodes the set of darts encountered
when turning counterclockwise around this vertex(see Fig. 1).

a=(1,-1)(2,-2)(3,-3)(4,—4)(5,—5)(6, —6)

o=(1,2,-4)(-2,-1,3)(-3,—6,—5)(5,6,4)

Fig. 1. One planar graph encoded by a combinatorial map

The symbols a*(d) and o*(d) stand, respectively, for the a and o orbits of the

dart d. More generally, if d is a dart and 7 a permutation we will denote the
m-orbit of d by 7*(d).

A combinatorial map G is the triplet G = (D, 0,), where D is the set of darts
and o, a are two permutations defined on D such that « is an involution:

VieD o2(d)=d

Given two combinatorial maps G; = (D1,01,a1) and Gs = (D2, 02,a2) an
application ¢ from D; to D, defines a morphism [7] between Gy and G iff:

Plon (d)) = an(b(d)
vie D {wal (@) = 02 (4(d)) @

If +) is bijective, it defines an isomorphism and equation 1 is equivalent to:

e, {10 =V ealvld) o)

o1(d) =9~ o2 (¥(d)))
Using combinatorial maps, contraction and removal operations may be defined
in order to preserve the orientation of darts around each vertex [4]. Given these
two basic operations decimation and dual decimation parameters may be de-
fined in order to produce a stack of successively reduced combinatorial maps [5].
The expected advantages of combinatorial maps within the irregular pyramid
framework are:

1. Combinatorial maps encode multiple boundaries between regions. More-
over, edges encoding surrounding relationships may also be characterized.

2. Combinatorial maps explicitly encode the orientation of darts around one
vertex. This information is not encoded by region adjacency graphs nor
explicitely available in dual graph data structures.

3. Given a combinatorial map G defined by one set of darts D, and the per-
mutations ¢ and «, its dual G is defined on the same set of darts by the
permutations ¢ = ¢ o a and «. The simplicity and the efficiency of this
transformation allows us to avoid an explicit encoding of the dual graph [4].
Therefore, only one data structure has to be encoded and maintained along
the pyramid [5].

4. The combinatorial map formalism may be extended to higher dimensions [11].
The definition of a partition of the 3D discrete grid using combinatorial
maps is an active research field [2].

3. Decimation Parameters and Contraction Kernels

Decimation and dual decimation processes induce both contraction and re-
moval operations. These operations may be defined [4] in order to preserve the

orientation of the initial combinatorial map. Therefore, if the combinatorial
map encodes a partition, two vertices linked by an edge, encode two adjacent
regions. Then, the order defined on the darts of the contracted vertex encodes
the set of regions encountered when turning counterclockwise around the union
of the two regions.

In order to preserve the number of connected components of the initial com-
binatorial map, bridges and self-loops must be excluded from removal and
contraction operations [4] respectively. Since the contraction operation is not
defined for self-loops, several contraction operations may be performed simulta-
neously only if we ensure that no self loops may be contracted. This constraint
may be solved by using a decimation parameter [5](see Fig. 2(a)). Given a com-
binatorial map G = (D, o,), a decimation parameter is a set of darts D' such
that:

1. a(c*(D"))No*(D') = 0 and:
2.VleD—o*(D) IdeD | ad)eo(d)

The set D —a*(D') is the set of surviving darts and is denoted SD. Intuitively,
the definition of a decimation parameter consists to select a set of surviving
vertices o*(D') and a set of edges a*(D') to be contracted. Constraint 1 insures
that two surviving vertices are not connected in the induced sub combinatorial
map [4]. Constraint 2 insures that exactly one of multiple edges incident to a
non surviving vertex is contracted. Note that each vertex survives or is adjacent
to a surviving vertex. Therefore, a decimation parameter may be understood as
a maximal independent vertex set [12] in which we have specified the contracted
edges.

Since each non surviving vertex has to be adjacent to a surviving one, the
definition of a decimation parameter may be interpreted as the construction
of a spanning forest each tree having depth one. Such kernels are a particular
case of a more general object named contraction kernel [3] (see Fig. 2(b)):

Definition 1. Contraction Kernel Given a connected combinatorial map
G = (D,o,a), the set K C D will be called a contraction kernel iff it is a forest
of G not including all darts of G: SD =D — K # ().

The set SD is called the set of surviving darts.

The definition of a contraction kernel generalizes the one of decimation pa-
rameters. Since the set of darts to be contracted forms a forest of the initial
combinatorial map, no self loop may be contracted and the contraction oper-
ation is well defined. Note that the forest K is not required to be a spanning
one. This last point allows to apply contractions on some parts of the initial

(a) (b)

Fig. 2. A decimation parameter (a) and a contraction kernel (b). The set of contracted
edges is represented by black arrows. Surviving vertices are represented by filled circles.
The receptive field of each surviving vertez is surrounded by dashed lines

combinatorial map leaving the other parts unchanged. More generally, the set
of childs of a given vertex defined in the contracted combinatorial map may
now vary from a single vertex to a tree with any height. Moreover, since the
vertices of the graph are implicitly defined by their darts we must require that
at least one dart survives

Given an initial combinatorial map G contracted by a contraction kernel K3
into a reduced combinatorial map G = Gy/K;, any contraction kernel Ko
defined on G is called a successor of K. This relation is denoted K; < Ko.
Moreover, given two contraction kernels K; and K, both defined on Gy, we
say that K> includes K; iff the set of darts of K is included in the one of
K. This relation is denoted K; C Ks. The successive applications of two
successive kernels K1 and K5 on a combinatorial map Go defines a contracted
combinatorial map Gy = (Go/K1)/K>. We have shown [3] that the union of
the darts of K; and K5 defines a new contraction kernel K3 = K; U K5 of
Go. Applied on Gy, this kernel provides the same contracted combinatorial
map than the successive applications of K; and K>. Conversely, given two
contraction kernels K; and K3 of GGy such that Ky C K3, the set of darts of
K5 which are not in K defines a contraction kernel K5 of Gi = Go/K; such
that Gl/KQ = Go/K3 (see proof in [3])

Therefore, the successive application of small kernels defined by decimation
parameters may be replaced by a bigger contraction controlled by a contraction
kernel. Conversely, one contraction kernel may be decomposed into smaller
kernels in order to define some intermediate contracted combinatorial maps.
Such results provide a better flexibility in the design of contraction kernels and
allow us to adapt more efficiently the decimation rate to the data.

4. Computation of the contracted combinatorial map

Given an initial combinatorial map G = (D, 0, «) and a contraction kernel K,
the set of darts of the contracted combinatorial map G' = G/K is equal to
SD = D — K (see definition 1). Surviving darts may be connected in G by
connecting walks:

Definition 2. Connecting walk
Given a connected combinatorial map G = (D, 0, «), a contraction kernel K
and a dart d € SD, the connecting walk associated to d is equal to:

CW(d) = d, p(d), ..., "\ (d) with n = Min{p € N* | ¢?(d) € SD}

Note that only the first dart of each connecting walk survives. Each connecting
walk CW (d) connects the surviving darts d and ¢™(d) by a sequence of non
surviving darts. Moreover, the set of connecting walks defines a partition of the
initial set of darts D [3]. We have thus:

D= || cw(d) (3)
aeSD

Where | | denotes an union of disjoint sets.

If Dk denotes the set of connecting walks defined on G by the contraction
kernel K, the following applications define permutations on Dg(see proof
in [3]):

Dk — Dk Dk — Dk
o (CW (d) = CW (a(d)) *¥¥ (CW(d) =d,...,o"L(d) » CW (" (d))

Since ag and gk define two permutations on Dk, 0 = @ 0 ak is a per-
mutation as the composition of two permutations. The two permutations ax
and ok structure the set of connecting walks D into a combinatorial map
Gk = (Dk,oK,ak) [3]. Moreover, since each connecting walk contains only
one surviving dart, we can consider CW as a bijective application from SD
to Dk. If G' = (§D,0’,a’) denotes the contracted combinatorial map, CW
defines an isomorphism between G' and Gk (see proof in [3]). Therefore (see
equation 2):

Vd e SD o/ (d) = CW Hac(CW(d)) = CW HCW (a(d)))) = a(d)
In the same way, we obtain for any dart d in SD
o'(d) = CW " (0c(CW (d))) = OW ¢k 0 ax(CW(d)) = ¢"(a(d)) (4)
with n = Min{p € N* | p?(a(d)) € SD}

Note that, ¢" 1 (a(d)) is the last dart of CW (a(d)). Therefore, the permu-
tation o remains unchanged in the contracted combinatorial map while the
permutation ¢’ maps each surviving dart d to the y-successor of the last dart
of CW (a(d)). Therefore, the computation of the o-successor of a dart d in the
contracted combinatorial map requires to traverse CW (a(d)). Sequential algo-
rithm 1 computes the o-successor of all the surviving darts in the contracted
combinatorial map. Since the set of connecting walks forms a partition of D
(see equation 3), Algorithm 1 has to traverse |D| darts. Its complexity is thus
equal to O(|DYJ).

dart contracted_sigma(G = (D,0,a), K)

{
For each d€ SD=D - K
do
d = p(a(d)) =o(d) // Second dart of C'W (a(d))
while(d' € K) // computation of C'W (a(d))
d' = ¢(d)
o(dy=d
done
}

Algorithm 1: Computation of the permutation o' of the contracted combinatorial
map G' = (8D, d’,)

The basic idea of a parallel implementation of the algorithm contracted_sigma
is to compute concurrently for each dart d, the first surviving dart encountered
when traversing the ¢-orbit of d from d. The result of this parallel computation
is stored in an array survive initialized to survive[d] = d for each dart (see
Algorithm 2, lines 3 to 4). We have thus:

survive[d] = ¢1(d) with ¢ = Min{p € IN | ¢?(d) € SD}
= " 1(d) with n = Min{p € N* | o?~1(d) € SD}
Moreover, using equation 4:
o'(d) = ¢"(a(d) = ¢" " (p(a(d))) = "' (o(d))
with n = Min{p € IN* | p?(a(d)) € SD} = Min{p € IN* | p?"}(o(d)) € SD}.
Therefore, (see Algorithm 2, lines 9 to 10):
o'(d) = "' (o(d)) = survive|o(d)]

Vd € D {

dart parallel_contracted_sigma(G = (D,o,a), K)
{
for each d in D do in parallel
survive[d] = d
for each d in D do in parallel
while (survive[d] € K)
surviveld] = survive[p(d)]

O 0 N O O b W N =

for each d in 8D do in parallel
a'(d) = survive[o(d)]

= e
= O
—~

Algorithm 2: Parallel computation of the permutation o'(d)

The parallel complexity of algorithm 2 is determined by the number of elemen-
tary steps performed in the second loop(lines 5 to 7). This number is equal to
the cyclic distance between d and its associated surviving dart . If we denote by
D the maximum of these distances, the parallel algorithm will terminate after
D steps. Therefore, worst case parallel complexity of our algorithm is linear in
the cyclic max-distance between surviving darts.

5. Conclusion

We have defined in this article the notion of contraction kernel which extends
the one of decimation parameter [5] and allows to perform several contractions
simultaneously. We have shown that any sequence of successive contraction
kernels is equivalent to the application of one equivalent kernel. In the same
way one contraction kernel with a high decimation rate may decomposed into
several ones with smaller decimation rate. This notion of equivalent kernels
provides a better flexibility in the design of kernels which allows to better fit
the pyramid structure to the data.

This article also provides the main theoretical results required to compute
the reduced combinatorial map defined by a contraction kernel. This results
are then used to design two sequential and parallel algorithms computing the
contracted combinatorial map.

References

[1]
[2]

M. Bister, J. Cornelis, and A. Rosenfeld, A critical view of pyramid segmenta-
tion algorithms, Pattern Recognit Letter., 11(9), pp. 605-617, Sept. 1990.

J. P. Braquelaire, P. Desbarats, J.-P. Domenger, and C. Wiithrich, A topological
structuring for aggregates of 3d discrete objects, In W. G. Kropatsch and J.-M.
Jolion (eds.), 2"* TAPR-TC-15 Workshop on Graph-based Representations, vol-
ume 126, pp. 145-154, Haindorf, Austria, May 1999. Osterreichische Computer
Gesellschaft.

L. Brun and W. Kropatsch, Pyramids with combinatorial maps, Technical Re-
port PRIP-TR-057, PRIP, TU Wien, 1999.

L. Brun and W. G. Kropatsch, Dual contraction of combinatorial maps, In
W. G. Kropatsch and J.-M. Jolion (eds.), 2"¢ IAPR-TC-15 Workshop on Graph-
based Representations, volume 126, pp. 145-154, Haindorf, Austria, May 1999.
Osterreichische Computer Gesellschaft.

L. Brun and W. G. Kropatsch, Irregular pyramids with combinatorial maps,
In A. Amin, F. J. Ferri, P. Pudil, and F. J. Inesta (eds.), Advances in Pattern
Recognition, Joint TAPR International Workshops SSPR’2000 and SPR’2000,
volume Vol. 1451 of Lecture Notes in Computer Science, pp. 256-265, Alicante,
Spain, August 2000. Springer, Berlin Heidelberg, New York.

P. Burt, T.-H. Hong, and A. Rosenfeld, Segmentation and estimation of image
region properties through cooperative hierarchial computation, IEEE Transac-
tions on Sustems, Man and Cybernetics, 11(12), pp. 802-809, December 1981.

A. J. Gareth and D. Singerman, Theory of maps on orientable surfaces, vol-
ume 3, pp. 273-307. London Mathematical Society, 1978.

W. G. Kropatsch, Building Irregular Pyramids by Dual Graph Contraction,
IEE-Proc. Vision, Image and Signal Processing, Vol. 142(No. 6), pp. pp. 366
374, December 1995.

W. G. Kropatsch and S. BenYacoub, Universal Segmentation with PR Ramids,
In A. Pinz (ed.), Pattern Recognition 1996, Proc. of 20th OAGM Workshop, pp.

171-182. OCG-Schriftenreihe, Osterr. Arbeitsgemeinschaft fiir Mustererkennung,
R. Oldenburg, 1996, Band 90.

W. G. Kropatsch and H. Macho, Finding the structure of connected compo-
nents using dual irregular pyramids, In Cinquiéme Colloque DGCI, pp. 147-158.
LLAICI, Université d’Auvergne, ISBN 2-87663-040-0, September 1995.

P. Lienhardt, Subdivisions of n-dimensional spaces and n-dimensional general-
ized maps, In Annual ACM Symposium on Computational Geometry, all, vol-
ume 5, 1989.

A. Montanvert, P. Meer, and A. Rosenfeld, Hierarchical image analysis using
irregular tessellations, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(4), pp. 307-316, APRIL 1991.

P. F. M. Nacken, Top-down image analysis by cost minimisation in hierarchical
graph structures, Technical Report BS-R9416, CWI, Amsterdam, 1994.

A. Rosenfeld (ed.), Multiresolution Image Processing and Analysis, Springer
Verlag, Berlin, 1984.

