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Abstract

This paper presents a new formalism for irregular pyramids based on combinatorial maps.

The combinatorial map formalism allows us to encode a planar graph thanks to two permu-

tations encoding the edges and the vertices of the graph.The combinatorial map formalism

encode explicitly the orientation of the planar graph. This last property is useful to describe

the partitions of an image which may be considered as a subset of the oriented plane IR

2

.

This new constraint allows us to design interesting properties for irregular pyramids. Fi-

nally the combinatorial formalism allows us to encode e�ciently the graph transformations

used in irregular pyramids.
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1 Introduction

The decomposition of an image into connected components, called the segmentation of

an image, is necessary when we want to take decisions from an image or more generally

when we want to analyze the di�erent objects that compose this image. Unfortunately,

this decomposition is not unique and the de�nition of a good segmentation often depends

of the application. Moreover, the same application may need to have several levels of

details in the decomposition of a same image. For example, a table in a living room may

be de�ned as a unique connected component, or as �ve components describing its foots

and its surface.

The multi-level representation of an image called pyramid [7, 11] allows us to de�ne

di�erent levels of representation of the same object. This concept introduced by Pavlidis[7]

allows one to manage the di�erent representation levels of a partition by linking each

connected component de�ned at one level with its decomposition in the next level. For

example, the �ve connected components describing a table at one level should be uni�ed

into one component at an upper level. The top of a pyramid is usually composed of

only one connected region describing the whole image while its base describes the lowest

level of representation available on the image. For example, given a grey-scale image, the

base of a pyramid can be composed of connected components having the same grey level.

Another usual way to de�ne the base of the pyramid consists to de�ne each pixel of the

input image as a basic region.

The �rst implementation of pyramids [12, 8, 14] shown in �gure 1 use a regular tes-

sellation of the image into a set of squares describing a balanced quadtree. Using such a

representation the di�erent regions are the nodes of a quadtree [15]. Thus a given region

can only be represented by its lowest including square or its biggest included one. Jolion,

Meer, and Montanvert [8, 9] have introduced the concept of irregular pyramids.
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Figure 1: A matrix pyramid and its associated quadtree

The rest of the paper is organized as follows: In Section 2 and 3 we give some de�nitions

and basic properties of graphs in the Combinatorial map formalism. In section 4 we

demonstrate some intermediate properties which will be used in section 5. This last

section includes the main results that will be used for irregular pyramids. Finally, in

Section 6 and 7 we de�ne respectively the Decimation Parameter and Contraction Kernel

notions in terms of Combinatorial maps.
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2 Combinatorial maps notions

A Topological map [17, 16, 18] is a partition of a surface by a set of topological spaces

called segments isomorph to the interval I = [0; 1] or to the circle S

1

. The following

de�nition of a Topological map has been given by Gareth [6]:

De�nition 1 Topological map

Given a non empty set E of topological spaces (called edges) each homeomorphic to

the closed interval I=[0,1] or the circle S

1

,together with a subset V � G = [

e2E

e (V is

called the set of vertices), such that if �e denotes e\V and e

�

= e� �e, then :

1. If e is homeomorphic to S

1

then j�ej = 1 ( and e is called a loop), while if e is

homeomorphic to I then �e consists of either one or both of the end points of e (and

e is a free edge or a segment respectively)

2. For all distinct e

1

, e

2

in E, e

�

1

\ e

�

2

= ;.

3. For any v in V, at most �nely many e in E satisfy v 2 �e

If the topological map is embedded in the Euclidean space IR

2

, it can be represented by

a planar graph ( see Figure 2-a). A planar graph, in its basic form does not include any

orientation concept. It is only composed of a set of vertices, with for each vertex a set of

incident edges. If we want to encode the orientation of the space, the planar map may be

e�ciently encoded with the Combinatorial map formalism.
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(a) A plane graph (b) decomposed along dual edges (c) combinatorial map

Figure 2: From a plane graph to a combinatorial map

Figure 2 and 3 demonstrates the derivation of a combinatorial map from a plane graph.

First edges are split where their dual edges cross (see Figure 2-b). That decomposes the

graph into connected parts of half-edges that surround each vertex. These half edges

are called darts and have their origin at the vertex they are attached to. The fact that

two half-edges (darts) stem from the same edge is recorded in the reverse permutation

�. A second permutation �, called the successor permutation, de�nes the (local)

arrangement of darts around a vertex. Counterclockwise ordering is assumed here (see

Figure 3). More formally, we have:
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De�nition 2 Combinatorial map

A combinatorial map G is the triplet G = (D; �; �), where D is a set called the set of

darts and �, � are two permutations de�ned on D such that � is an involution:

8d 2 D �

2

(d) = d

If the darts are encoded by positive and negative integers, the permutation � can be

implicitly encoded by �(d) = �d (see Figure 3). In the following, we will use alternatively

both notations, the notation �(d) = �d will be often use for practical results linked to

the implementation of our model. Indeed, if the permutation � is implicitly encoded,

the combinatorial map may be implemented by a basic array of integers encoding the

permutation �.

Edmonds [19] and Gareth [6] shown that each Topological map (i.e. a partition of

the space into segments) may be associated to a combinatorial map. The two following

de�nitions comes from an article of Gareth [6] and will be used in the following.

1 -1

2

-2

3

4

-4

5 -5

6

-6

-3

� = (1; 2;�4)(�2;�1; 3)(�3;�6;�5)(4; 5; 6)

Figure 3: The permutation �

De�nition 3 Group associated to a combinatorial map

Given a combinatorial map G = (D; �; �), the associated group G of G is the subgroup

generated by � and � within the symmetric group of all permutations on D.

De�nition 4 Morphism between combinatorial maps

Given two combinatorial maps G

1

= (D

1

; �

1

; �

1

), G

2

= (D

2

; �

2

; �

2

) and their asso-

ciated subgroups G

1

and G

2

. A morphism � : G

1

! G

2

is a pair of functions (�;  ),

� : G

1

! G

2

and  : D

1

! D

2

, where � is a group homomorphism such that :

�(�

1

) = �

2

�(�

1

) = �

2

and � respect the orientation:
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8d 2 D

1

(

 (�

1

(d)) = �

2

( (d))

 (�

1

(d)) = �

2

( (d))

(1)

If  is bijective � will be called an isomorphism.

In other words, we will say that we have a morphism � = (�;  ), between a combina-

torial map G

1

= (D

1

; �

1

; �

1

) and another one G

2

= (D

2

; �

2

; �

2

) if the function  from

D

1

to D

2

respect the orientation de�ned on both maps. Thus if  veri�es equation 1.

For example if D

1

and D

2

are two sets of darts, and if � is a bijective application

from D

1

to D

2

, we can show easily that the two combinatorial maps G

1

= (D

1

; �; �)

and G

2

= (D

2

; � � � � �

�1

; � � � � �

�1

) ,where � and � are de�ned on D

1

, are isomorph.

Thus, the labeling of darts is not fundamental since given a combinatorial map G we can

build other combinatorial maps based on a di�erent set of labels while preserving the

isomorphism with the combinatorial map G.

3 Graph notions in terms of combinatorial maps

A combinatorial map may be seen as a planar graph encoding explicitly the orientation

of edges around a given vertex. Thus all graph de�nitions used in irregular pyramids [10]

such as end vertices, self loops, or degrees may be retrieved easily (see de�nitions 5, 6

and 7). The symbols �

�

(d) and �

�

(d) stand, respectively, for the � and � orbits of the

dart d. More generally, if d is a dart and � a permutation we will denote the �-orbit of d

by �

�

(d). The cardinal of this orbit will be denoted j�

�

(d)j (see, for example, de�nition 7).

In the following, we will often use the same notations for orbits, and sets whenever

there are no ambiguities. For example, if d is a dart, and D a set of darts, we will

respectively note j�

�

(d)j and jDj the cardinal of the orbit of d and the cardinal of D

even if the two mathematical objects are di�erent. In the same way we will often note:

�

�

(d) \D the set of darts belonging simultaneously to the orbit of d and D. Finally, if

D is a set of darts and � a permutation we have :

� �(D) = f�(d) 2 D j d 2 Dg and

� �

�

(D) = fd 2 D j 9d

0

2 D and d 2 �

�

(d

0

)g

De�nition 5 End vertices

Given a dart d, we call the end vertices of the edge �

�

(d) = (d;�d) the orbits �

�

(d)

and �

�

(�d).

De�nition 6 Self loop

An edge �

�

(d) is called a self loop, i�: �d 2 �

�

(d)

De�nition 7 Degree

The vertex-degree of a dart d is equal to the cardinal of its �-orbit j�

�

(d)j.
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However, unlike planar graph the basic elements of a combinatorial map are not the

edges but the half edges called darts. Thus instead of considering that an edge is shared

by two vertices we will say that one dart belongs to one vertex. For example the vertex

associated to dart 6 in Figure 3 is equal to �

�

(6) = (6; 4; 5). This distinction allows us, for

example, to de�ne easily which of the extremity of an edge is pendant (see de�nitions 10

and 11). Moreover the orientation of darts around one vertex allows us to make a distinc-

tion between a self-loop (see de�nition 6) and a self-direct-loop (see de�nitions 8 and 9

and Figure 4).

(a) (c)(b)

�d

d

d

�d

d

�d

Figure 4: This �gure illustrates the concepts of self-loop (a), self-direct-loop (b) and pendant

dart (c)

De�nition 8 Dart self direct loop

A dart d is called a self direct loop, i�: �(d) = �d. Note that if d or �d is a self direct

loop, the edge �

�

(d) is a self loop. The reciprocity is false in general.

De�nition 9 Edge self direct loop

An edge �

�

(d) is called a self direct loop, i� one of its dart is a self direct loop.

De�nition 10 Pendant dart

A dart d is called a pendant (or dangling) dart i� d is a �xed point of permutation �,

i.e. i� �(d) = d. In this case the vertex �

�

(d) = (d) is called a pendant vertex.

De�nition 11 Pendant edge

An edge �

�

(d) is called a pendant (or dangling) edge i� d or �d are a pendant dart.

3.1 Paths, subgraph and connectedness

Each dart belonging to only one vertex it de�nes a natural orientation of the edge from

�

�

(d) to �

�

(�(d)). Thus the usual notion of path in non-oriented planar graph is here

replaced by oriented paths based on darts (see de�nition 12). The opposite of a path

may be simply computed by taking the opposite �(d) of each dart d of the path (see

proposition 1).

De�nition 12 Path

A path in a combinatorial map is a sequence of darts d

1

; : : : ; d

n

such that :
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1. 8i 2 f1; : : : ; n� 1g �

�

(�d

i

)\ fd

1

; : : : ; d

n

g = fd

i+1

g In other words, there is at most

one edge which \arrives" on each vertex of the path.

2. d

n

62 fd

1

; : : : ; d

n�1

g and d

n

6= �d

n�1

�

�

(d

1

) and �

�

(�d

n

) are called the end vertices of the path. The number of darts of the

path P is called its length and is denoted by jP j.

d

2

d

3

�d

1

d

1

Figure 5: A path of length 3

Proposition 1 Given a combinatorial map and a path P = d

1

; : : : ; d

n

in this map. The

opposite path �(P ) is de�ned by :

�(P ) = �d

n

; : : : ;�d

1

In the same way, a circuit is de�ned as an oriented non-empty path leaving and

reaching the same vertex (see de�nition 13).

De�nition 13 Circuit

Given a combinatorial map G and a path P = (d

1

; : : : ; d

n

), we will say that P is a

circuit i� �d

n

2 �

�

(d

1

).

Proposition 2 If a path P = (d

1

; : : : ; d

n

) is a circuit then :

�

�

(�d

n

) \ fd

1

; : : : ; d

n

g = fd

1

g

Proof:

We have by de�nition of a circuit, d

1

2 �

�

(�d

n

). Let us suppose that we have :

�

�

(�d

n

) \ fd

1

; : : : ; d

n

g = fd

1

; d

i

g with i � 2

by de�nition �d

i�1

belong to the orbit of d

i

. Thus we have :

fd

i

; d

1

g � �

�

(�d

i�1

) \ fd

1

; : : : ; d

n

g

6



Which is in contradiction with the de�nition of a path. 2

The connectedness of a combinatorial map may be de�ned in two equivalent ways.

The de�nition 14 is based on paths and de�nes a connected map as a combinatorial map

in which all vertices may be linked by a path. A less usual de�nition is given by Gareth et-

Al [6] who have shown that a combinatorial map is connected i� its associated group is

transitive (see de�nition 15 and proposition 3).

De�nition 14 Connected Combinatorial Map

A combinatorial map G = (D; �; �) is said to be connected i�:

8d; d

0

2 D 9P = (d

1

; : : : ; d

n

) j P is a path and d 2 �

�

(d

1

) and d

0

2 �

�

(d

n

)

De�nition 15 Transitive group If G is a group which operates on a set E, it is called

transitive i�:

8x; y 2 E; 9g 2 G j y = g(x)

Proposition 3 A combinatorial map is connected i� its associated subgroup is transitive.

3.2 Partition of a combinatorial map

Using combinatorial maps each vertex is implicitly de�ned by its set of darts. Thus a

vertex partition of a combinatorial map may be de�ned by encoding each vertex by one

of its dart (see de�nition 16). We say that a partition is minimal when each vertex is

encoded by only one of its dart (see de�nition 17). Finally two partitions may form the

same vertex partition with di�erent set of darts, such partitions are called equivalent (see

de�nition 18)

De�nition 16 Partition

Given a combinatorial map G = (D; �; �), D

1

; : : : ;D

n

� D is a vertex-partition of G

i�:

1. 8i 2 f1; : : : ; ng D

i

6= ;

All D

i

are non-empty.

2. 8d 2 D 9i 2 f1; : : : ; ng; 9d

0

2 D

i

j d 2 �

�

(d

0

)

Each vertex may be retrieved thanks to a dart in one D

i

.

3. 8i; k 2 f1; : : : ; ng

2

�

�

(D

i

) \ �

�

(D

k

) = ;

The set of darts of one vertex is included in only one D

i

.

Note that we do not have

S

n

i=1

D

i

= D. Condition 2, only requires that each vertex

has at least one of its darts in one D

i

.
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De�nition 17 Minimal partition

A partition D

1

; : : : ;D

n

of a combinatorial map G = (D; �; �) is minimal i�:

8i 2 f1; : : : ; ng 8d 2 D

i

�

�

(d) \D

i

= fdg

In other word, each vertex, is represented by only one dart.

De�nition 18 Equivalent partition

Two partitionsD

1

; : : : ;D

n

andD

0

1

; : : : ;D

0

n

of a same combinatorial map G = (D; �; �)

are said equivalent i�:

8i 2 f1; : : : ; ng �

�

(D

i

) = �

�

(D

0

i

)

In other words, two partitions are equivalent, if each D

i

encodes the same vertices,

with possibly di�erent darts.

4 Properties of Parts of Combinatorial Maps

This section is mainly based on the function p (see Lemma 1) which allows us to restrict

the permutation � of a combinatorial map to a given set of darts. A �rst application

of this function is the de�nition of a sub map ( see proposition 4 and de�nition 19).

Note that the notation � � p

D;D

0

(d) used in proposition 4 stands for �(p

D;D

0

(d)). More

generally, the sequence of mapping f(g(d)) will be denoted by f � g(d) in the following

for all dart d. Proposition 5 illustrates the validity of our submap de�nition by showing

the transitivity of the submap relationship: Given three combinatorial maps , G

1

, G

2

and

G

3

, if the combinatorial map G

2

is a submap of G

1

and if G

3

is a submap of G

2

then G

3

is also a submap of G

1

.

Lemma 1 The Restriction Operator

Given a combinatorial map G = (D; �; �) and D

0

� D the application :

p

D;D

0

 

D

0

! D

d 7! �

n�1

(d) with n =Minfp 2 IN

�

j �

p

(d) 2 D

0

g

is an injective function.

Proof:

p

D;D

0

is de�ned since if d

0

2 D

0

, n = j�

�

(d)j satis�es �

n

(d) 2 D

0

. Let us suppose

that we have two darts d

1

and d

2

in D' such that :p

D;D

0

(d

1

) = p

D;D

0

(d

2

) then :

9n

1

; n

2

2 IN

�

j �

n

1

(d

1

) = �

n

2

(d

2

)

if n

1

= n

2

we have d

1

= d

2

since � is bijective. Otherwise, let us suppose that n

1

> n

2

,

we have :

�

n

1

�n

2

(d

1

) = d

2

Thus, n

1

� n

2

is smaller than n

1

and �

n

1

�n

2

(d

1

) 2 D

0

. This contradicts the requirement

that n

1

is the minimum integer which veri�es this property. 2
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Proposition 4 Given a combinatorial map G = (D; �; �) and D

0

� D the application,

� � p

D;D

0

is a permutation.

Proof:

We have to show that � � p

D;D

0

is a bijective function on D

0

.

The function p

D;D

0

is injective, � is bijective, thus � � p

D;D

0

is injective. Moreover,

given a dart d in D

0

the set fn 2 IN

�

j �

�n

(d) 2 D

0

g is non-empty since it contains all

multiple of j�

�

(d)j. If n

1

is the minimum of this set, the dart d

0

= �

�n

1

(d) veri�es :

� � p

D;D

0

(d

0

) = d

Thus � � p

D;D

0

is bijective. Moreover, by de�nition, � � p

D;D

0

applies from D

0

to D

0

.

Therefore, it is a permutation on D

0

.

2

De�nition 19 Sub Combinatorial Map

Given a combinatorial map G = (D; �; �), G

0

= (D

0

; �

0

; �) is a submap of G i�:

1. D

0

� D

2. �

0

= � � p

D;D

0

This relation between G

0

and G will be denoted by G

0

� G.

Note that our de�nition of a sub combinatorial map is based on darts and not on ver-

tices. De�nition 20 provides a more usual de�nition. A vertex-induced sub combinatorial

map is de�ned by a set of vertices and the set of edges linking these vertices.

De�nition 20 Vertices Induced Sub combinatorial map

Given a combinatorial map G = (D; �; �) and a set of darts D

0

� D. The graph

G

0

= (D

00

; � � p

D;D

00

; �) with:

D

00

= fd 2 D j �

�

(d) � �

�

(D

0

)g

is a vertex induced sub-graph of G.

Lemma 2 Given a combinatorial map G = (D; �; �), D

0

� D, the submap G

0

=

(D

0

; �

0

= � � p

D;D

0

; �) and d 2 D

0

we have:

�

0�

(d) = (d) or

�

0�

(d) = (d; d

1

; : : : ; d

n

) = (�

0

(d); �

p

1

(d); : : : �

p

n�1

(d)) with

0 < p

1

< p

2

< : : : < p

n�1

< j�

�

(d)j

9



Proof:

We have by de�nition of the restriction operator (see Lemma 1):

�

0

(d) = �

p

1

(d) with p

1

=Minfn 2 IN

�

j �

n

(d) 2 D

0

g

Moreover: �

j�

�

(d)j

(d) = d 2 D

0

, thus p

1

� j�

�

(d)j. If p

1

= j�

�

(d)j, we have �

0�

(d) = (d).

Otherwise, let us suppose that the rank of �

0�

(d) is equal to n with n > 1. Furthermore,

we suppose that for all i < n� 1:

8j 2 f1; : : : ; ig d

j

= �

p

j

(d) with 0 < p

j�1

< p

j

< j�

�

(d)j

we have:

�

0i+1

(d) = �

0

(�

0i

(d)) = �

n

i

+p

i

(d) = �

p

i+1

(d) with n

i

=Minfn 2 IN

�

j �

n

(�

p

i

(d)) 2 D

0

g

We have, by hypothesis p

i

< j�

�

(d)j and �

j�

�

(d)j�p

i

(�

p

i

(d)) = d 2 D

0

. Thus:

j�

�

(d)j � p

i

2 fn 2 IN

�

j �

n

(�

p

i

(d)) 2 D

0

g

Thus: n

i

� j�

�

(d)j � p

i

.

If n

i

= j�

�

(d)j � p

i

, we have p

i+1

= j�

�

(d)j and �

0i+1

(d) = d. Thus the rank of �

0�

(d)

is equal to i which is forbidden by hypothesis since (i < n� 1). Thus:

0 < n

i

< j�

�

(d)j � p

i

Since p

i+1

= n

i

+ p

i

we have:

0 < p

i+1

< j�

�

(d)j

This recurrence will stop at step n where �

0n

(d) = d = �

p

n

(d) and p

n

= j�

�

(d)j. 2

Proposition 5 Given a combinatorial map G = (D; �; �) and D

2

� D

1

� D. If G

1

is

a sub combinatorial map deduced from G by D

1

and G

2

deduced from G

1

by D

2

.

G = (D; �; �) �! G

1

= (D

1

; � � p

D;D

1

; �) �! G

2

= (D

2

; � � p

D;D

1

� p

D

1

;D

2

; �)

We have:

G

2

= (D

2

; � � p

D;D

2

; �)

In other words, a sub-subcombinatorial map is a sub-combinatorial map.

Proof:

Let us note for simplicity �

1

= � � p

D;D

1

.

Let us consider d 2 D

2

�

1

� p

D

1

;D

2

(d) = �

n

1

1

(d) with n

1

=Minfn 2 IN

�

j �

n

1

(d) 2 D

2

g

We know, thanks to lemma 2 that:

9p

1

2 f0; : : : ; j�

�

(d)j � 1g j �

p

1

(d) = �

n

1

1

(d) 2 D

2

10



Let us suppose that:

9p < p

1

j �

p

(d) 2 D

2

We know, thanks to lemma 2 that:

9n < n

1

j �

n

1

(d) = �

p

(d) 2 D

2

This is impossible since n

1

is the minimal power of �

1

such that �

k

1

(d) 2 D

2

.

Therefore we cannot suppose the existence of p and we have:

p

1

=Minfp 2 IN

�

j �

p

(d) 2 D

2

g

) �

p

1

(d) = � � p

D;D

2

(d)

Finally:

8d 2 D

2

� � p

D;D

2

(d) = � � p

D;D

1

� p

D

1

;D

2

(d)

2

The de�nition of a submap allows us to consider a component of a partition not only

as a set of darts but also as a set of sub-maps. We may thus speak of the partition of

a map into connected components (see de�nition 21). In the same way, we may de�ne a

cutset (see de�nition 22) which splits a map into a set of connected components.

De�nition 21 Partition into Connected Components

Given a combinatorial map G = (D; �; �), and a partition D

1

; : : : ;D

n

. This partition

will be called a partition into connected components i�:

8i 2 f1; : : : ; ng

(

G

i

= (D

i

; � � p

D;D

i

; �) is connected

�

�

(D

i

) = �(�

�

(D

i

))

The second equality means that there is no edge which connects D

i

to D

j

.

De�nition 22 Cutset

Given a connected combinatorial map G = (D; �; �), C � D will be called a cutset of

G, i�:

1. G� C may be partitioned into connected components.

2. All subsets C' of D which produce an equivalent partition include C.

4.1 Dual Graphs

A face of a planar graph is de�ned by the set of edges which surround it. Using a

combinatorial map, one dart per edge is su�cient to encode a face, since for each dart

the involution � allows us to retrieve the other dart de�ning the edge. Moreover, the

ordered sequence of darts around a vertex encoded by permutation � induce an order

in the sequence of faces encountered when turning around a face. This order is encoded

thanks to the permutation ' = � � � [5] (see de�nition 23).

11



De�nition 23 Dual Combinatorial Map

Given a combinatorial map G = (D; �; �), the combinatorial map G = (D; '; �) is

called the dual of G. The permutation ' is de�ned by:

' = � � �

The orbits of ' encode the faces of G. Note that the function ' is a permutation, since it

is the composition of two permutations on the same set.

Using a clockwise orientation for permutation � all the faces of the combinatorial

map except one are counter-clockwise oriented. The clockwise oriented face is called

the in�nite face (see de�nition 24). Using the correspondence between the topological

and combinatorial maps, this face encodes the complementary in IR

2

of the union of the

combinatorial map faces.

De�nition 24 In�nite face

Given a combinatorial map G = (D; �; �), all the orbits of ' except one are clockwise

oriented. This orbit encodes the in�nite face of the graph and is denoted by f

1

'

.

For example, the wall of the house in Figure 6 is encoded by the orbit: '

�

(�4) =

(�4; 5;�3;�2). This face can be read in the combinatorial map by turning counter-

clockwise around the face or directly in the dual. In this last case the wall's face is

represented by one vertex. Moreover, the darts of the '

�

(�4) orbit link this vertex to the

vertices associated to faces adjacent to the wall. The in�nite face of this combinatorial

map is de�ned by the orbit '

�

(�1) = (�1; 2) which is clockwise oriented.

(b)(a)

1 -12 -2

3

4
5 -5

6 -6

-3

-2

2

6

3

5

-5

-1
1

-3-4-4

-6

4
f

1

'

� = (1; 2;�4)(�2;�1; 3)(�3;�6;�5)(4; 5; 6) ' = (�1; 2)(�4; 5;�3;�2)(�5; 6)(�6; 4; 1; 3)

Figure 6: A combinatorial map (a) and its dual (b)

Note that the dual graph is obtained by composing the permutation � with the per-

mutation � which is bijective. Thus a combinatorial map and its dual contain the same

information. This observation is con�rmed by proposition 6 which shows that the original

combinatorial map may be retrieved from its dual.

Proposition 6 The Dual operation is idempotent.

12



Proof:

If G = (D; �; �) is a combinatorial map we have:

G = (D; ' � �; �)

= (D; �; �)

= G

2

4.2 Dual Notions

We have seen in the previous section that the dual combinatorial map and the original one

are deduced from each other by a very simple and bijective transformation. Therefore, we

can expect that some properties true in the original combinatorial map remains true in

the dual one. The proposition 7 and Corollary 1 show that the connectivity is preserved

by the dual transformation.

Proposition 7 G and G have the same associated subgroup.

Proof:

The subgroup associated to G is generated by � and �. The permutation � being an

involution, the subgroup generated by � � � and � is equal to G (� � � � � = �). 2

Corollary 1 If G is connected G is connected.

Proof:

Both subgroups being identical, proposition 3 provides the result. 2

In the same way, many particular con�gurations such as self-loop, or pendant edges

remains particular con�gurations in the dual map. Indeed the proposition 8 shows that a

pendant dart in the original map is mapped into a self-direct loop in the dual combinatorial

map. The dual operation being idempotent a self-direct loop is mapped into a pendant

dart in the dual. The proposition 9 (see Figure 7) generalizes these results to self-loops

and bridges (see de�nition 25). All these dual notions are resumed in Table 1

Proposition 8 Given a combinatorial map G = (D; �; �) and a dart d 2 D:

� If d is a pendant dart in G, �d is a self direct loop in G.

� If d is a self direct loop in G, �d is a pendant dart in G.

Proof:

The dart d 2 D is a pendant dart in G i� �(d) = d. Since � = ' � � we have

'(�d) = d, thus �d is a self-direct-loop of G.

In the same way, if �(d) = �d we have '(�d) = �d. Thus �d is a pendant dart of

G. 2

13



d

�d

Figure 7: A bridge between two connected components

De�nition 25 Bridge

Given a combinatorial map G = (D; �; �) and a dart d 2 D, the edge �

�

(d) will be

called a bridge i� :

�d 2 '

�

(d)

Proposition 9 Given a combinatorial map G = (D; �; �), its dual G = (D; ' = ���; �),

and a dart d 2 D we have:

1. If d is a pendant dart, �

�

(d) is a bridge. Thus a pendant edge is also a bridge.

2. The edge �

�

(d) is a bridge in G i� it is a self loop in G.

3. The edge �

�

(d) is a pendant edge in G i� it is a self direct loop in G.

Proof:

First proposition: If d is a pendant dart, we have �(d) = d, thus '(�d) = d. Therefore

the darts d and �d belongs to the same orbits i.e. �d 2 '

�

(d).

Second proposition: This proposition may be immediately deduced from the de�ni-

tions of bridge and self loop.

Third proposition: The edge �

�

(d) is a pendant edge if one of its dart is a pendant dart.

Let us suppose that �(d) = d. Then we have '(�d) = d, d is a dart-self-direct-loop

in G, thus �

�

(d) is an edge-self-direct-loop in G. The second implication may be

shown in the same way.

2

5 Removal and Contraction operations

This section is devoted to the de�nition and the properties of the operations that will

be used in irregular pyramids. Given a combinatorial map a �rst useful operation is the

removal of an edge �

�

(d). The resulting combinatorial map may be de�ned as a sub

combinatorial map deduced from the original one by simply removing the darts d and

14



(D; �; �) (D; '; �)

vertex �

�

(d) orbit (' � �)

�

(d)

orbit (� � �)

�

(d) face '

�

(d)

self-loop �d 2 �

�

(d) bridge �d 2 '

�

(d)

bridge self-loop

self-direct-loop pendant dart

pendant dart self-direct-loop

Table 1: Correspondence between particular con�gurations in the original and dual com-

binatorial maps

�(d) from its set of darts (see de�nition 26). Note that using de�nition 26, bridges are

excluded from removal operations. This restriction allows us to preserve the number of

connected components of the original combinatorial map.

De�nition 26 Removal Operation

Given a combinatorial map G = (D; �; �) and d 2 D. If �

�

(d) is not a bridge, the

combinatorial map G

0

= G n �

�

(d) is the submap de�ned by:

� D

0

= D � �

�

(d) and

� �

0

= � � p

D;D

0

.

This operation will be denoted R

d

.

The formal de�nition of the removal operation may be written in terms of modi�cations

of permutation � (see proposition 10). Note that self-direct loops are excluded from

this proposition, in this case some simpler modi�cations of the combinatorial should be

performed (see proposition 13).

Proposition 10 Given a combinatorial map G = (D; �; �) and a dart d 2 D which is

neither a bridge nor a self-direct-loop, the submap Gn�

�

(d) = (D��

�

(d); �

0

; �) is de�ned

by:

8

>

<

>

:

8d

0

2 D � f�

�1

(d); �

�1

(�d)g �

0

(d

0

) = �(d

0

)

�

0

(�

�1

(d)) = �(d)

�

0

(�

�1

(�d)) = �(�d)

Proof:

Given d

0

2 D � f�

�1

(d); �

�1

(�d)g we have �(d

0

) 62 �

�

(d) thus:

�

0

(d) = � � p

D;D��

�

(d)

(d

0

) = �(d

0

)

Since �

�

(d) is neither a self direct loop nor a bridge, we have �

�1

(d) 62 �

�

(d) and

�(d) 6= �d. Thus:

�

0

(�

�1

(d)) = �

2

(�

�1

(d)) = �(d)

15



In the same way:

�

0

(�

�1

(�d)) = �

2

(�

�1

(�d)) = �(�d)

2

The removal operation is de�ned only for one edge. If several removal operations

have to be performed we have to check if the �nal combinatorial map depends or not of

the order in which the removal operations are performed. The proposition 11 and the

corollary 2 insure that the resulting combinatorial map is independent of the order of

removal operations. Note that this result is a necessary condition for the design of an

e�cient parallel algorithm.

Proposition 11 Commutativity of Removal operations Given a combinatorial map

G = (D; �; �) and two darts d

1

and d

2

in D, such that d

1

6= d

2

and G

0

= (D�fd

1

; d

2

g; ��

p

D;D�fd

1

;d

2

g

; �) is connected, we have:

R

d

1

�R

d

2

(G) = R

d

2

�R

d

1

(G)

Proof:

First, the removal of dart d

1

(resp. d

2

) in the subgraph G n �

�

(d

2

) (resp. G n �

�

(d

1

))

is de�ned, since G

0

is connected. Thus none of these darts will become a bridge.

The combinatorial mapR

d

2

(G) is a submap of G de�ned by (D�fd

2

g; ��p

D;D�fd

2

g

; �).

Moreover, the combinatorial map R

d

1

�R

d

2

(G) is a sub-map of R

d

2

(G) de�ned by:

R

d

1

�R

d

2

(G) = (D � fd

1

; d

2

g; � � p

D;D�fd

2

g

� p

D�fd

2

g;D�fd

1

;d

2

g

; �)

Thanks to proposition 5 we have:

R

d

1

�R

d

2

(G) = (D � fd

1

; d

2

g; � � p

D;D�fd

1

;d

2

g

; �)

This last formula being symmetric in d

1

and d

2

we have:

R

d

1

�R

d

2

(G) = R

d

2

�R

d

1

(G)

2

Corollary 2 Given a combinatorial map G = (D; �; �), a set of darts d

1

; : : : ; d

n

such

that:

(

8(i; j) 2 f1; : : : ; ng

2

; i 6= j d

i

6= d

j

and

G

0

= (D � fd

1

; : : : d

n

g; � � p

D;D�fd

1

;:::;d

n

g

; �) is connected

For any permutation � de�ned on d

1

; : : : ; d

n

we have:

R

d

1

� : : : �R

d

n

(G) = R

�(d

1

)

� : : : �R

�(d

n

)

(G)

In the following the removal of a set of darts D' will be denoted R

D

0

. The resulting

combinatorial map will be alternatively denoted R

D

0

(G) or G n �

�

(D

0

).
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Proof:

We can show easily from the hypothesis of this proposition that none of the darts

d

1

; : : : ; d

n

may becomes a bridge. Thus the removal operations are allowed in any order.

We can easily show, thanks to proposition 11, that this proposition is true for all

transposition which permute two consecutive darts d

i

, d

i+1

. Since all permutations may

be decomposed into a composition of such transposition, this property is true for all

permutation. 2

Given a partition of an image, the merge of two regions may be considered in two

di�erent ways: First we can consider that the merge of the two regions is performed by

removing one of their common boundaries. This operation is encoded in our combinatorial

map formalism by the edge removal. Secondly, we can also consider that the merge of

the two regions is performed by the identi�cation of the two regions and the removal of

one of their common boundaries. This dual point of view is encoded in our formalism

by the contraction operation (see de�nition 28 and �gure 9). Note that the identi�cation

operation may also be encoded thanks to de�nition 27 (see Figure 8).

De�nition 27 Dart identi�cation

Given a combinatorial map G = (D; �; �) and one dart d, in D.

The combinatorial map G

0

= (D; �

0

; �) is said obtained from G by the vertex d�identi�cation

i�:

8

>

<

>

:

8d 2 D � fd; �

�1

(�d)g �

0

(d) = �(d)

�

0

(d) = �d

�

0

(�

�1

(�d)) = �(d)

In Figure 8 dart identi�cation is illustrated by identifying dart 5 and dart �5 from Fig-

ure 3.

1 -1

2

-2

� = (1; 2;�4)(�2;�1; 3)(�3;�6; 6; 4; 5;�5)

-4

5

-5

-66

-3

3

4

1 -1

2

-2

-4

-3

3

4

-55

� = (1; 2;�4)(�2;�1; 3)(�3;�6;�5; 5; 6; 4)

Identi�cation of dart 5 Identi�cation of dart �5

6

-6

Figure 8: Dart identi�cation

De�nition 28 Contraction operation

Given a combinatorial map G = (D; �; �) and one dart d, in D which is not a self

loop. The contraction of dart d creates the graph:

G

0

= G=�

�

(d) = G n �

�

(d)
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This operation will be denoted C

d

.

Note that this operation is well de�ned since d is a self-loop in G i� it is a bridge in

G.

Remark 1 Note that, under the same hypothesis, we have:

G=�

�

(d) = G n �

�

(d)

Thus this two dual point of view on the merge of regions are performed by two dual

operations on the combinatorial map and its dual. Thus many particular cases of one

operation may be retrieved thanks to the particular cases the other. For example, since

bridges are forbidden for removal operation the dual of a bride, i.e. a self-loop, is forbid-

den for contraction. In the same way the decomposition in two cases (see proposition 10

and proposition 13) used for the description of the removal operation in terms of modi�-

cations of permutation � induces two cases for the equivalent description of contraction

operation.(see propositions 12 and 13).

Proposition 12 Given a combinatorial map G = (D; �; �) and a dart d 2 D which is

neither a pendant edge nor a self loop. The graph G=�

�

(d) = (D � �

�

(d); �

0

; �) may be

de�ned by:

8

>

<

>

:

8d

0

2 D � �

�1

(�

�

(d)) �

0

(d) = �(d)

�

0

(�

�1

(d)) = �(�d)

�

0

(�

�1

(�d)) = �(d)

Proof:

If d is is neither a pendant edge nor a self loop in G, it is neither a self-direct-loop nor

a bridge in G = (D; '; �) (see proposition 8). Thus G n �

�

(d) = (D � �

�

(d); '

0

; �) may

be de�ned by:

8

>

<

>

:

8d 2 D � f'

�1

(d); '

�1

(�d)g '

0

(d) = '(d)

'

0

('

�1

(d)) = '(d)

'

0

('

�1

(�d)) = '(�d)

Since G=�

�

(d) = (D � �

�

(d); �

0

; �) = G n �

�

(d) = (D � �

�

(d); '

0

� �; �). We have

�

0

= '

0

� �. Moreover, we have '

�1

= � � �

�1

. A simple substitution of this two last

equality in the equations de�ning G n �

�

(d) provides the result. 2

Tutte [18] also de�nes contractions and removal operations in the combinatorial map

formalism. However, Tutte de�nes these two operations on PreMaps which are not nec-

essarily oriented, and are thus too general for our purpose. Moreover, using Tutte's ap-

proach, the proposition 10 and 12 are taken as de�nitions. In this case the de�nitions 26

and 28 must become theorems.

Proposition 13 Study of some particular cases Given a combinatorial map G =

(D; �; �) and a dart d 2 D.

Removal operation: Let us consider G n �

�

(d) = (D � �

�

(d); �

0

; �)

1. If �(d) = �d and �(�d) = d (isolated)

18



1 -1

2

-2

� = (1; 2;�4)(�2;�1; 3)(�3;�6; 6; 4)

-4

-66

-3

3

4

Figure 9: Contraction of edge �

�

(5)

G n �

�

(d) = (D � �

�

(d); �; �)

t

d

�d

2. If �(d) = �d and �(�d) = x 62 �

�

(d) (self direct loop)

�

0

(�

�1

(d)) = �(�d) = x

t

d

x

�d

Contraction operation: Let us consider G=�

�

(d) = (D � �

�

(d); �

0

; �)

All the following properties are deduced from the removal operation in G

1. If �(d) = d and �(�d) = �d (pendant edge)

() '(�d) = d and '(d) = �d.

G n �

�

(d) = (D � �

�

(d); � � �; �)

) G=�

�

(d) = (D � �

�

(d); �; �)

t

t

d
�d

2. If �(d) = d and �(�d) = x 62 �

�

(d) (pendant edge)

() '(�d) = d and '(d) = x 62 �

�

(d).

'

0

('

�1

(�d)) = '(d) = x

) �

0

(�

�1

(�d)) = �(�d) = x

t

t
C

C

d
�d

x

Proof:

All the equations relative to the removal operation may easily be deduced from the

de�nition. The equations relative to the contraction are deduced from the one describing

the removal operation. 2
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Moreover, some properties true for one operation may be easily deduced for the other

thanks to the dual operation. For example, the commutativity of contraction operations

(see proposition 14) is easily deduced from the same property for the removal opera-

tion (see proposition 11). Inversely, the connectivity of a combinatorial map obtained

after a sequence of removal operation is deduced from the same property shown for the

contraction operation (see proposition 15 and corollary 3).

Proposition 14 Commutativity of Contractions

Given a combinatorial map G = (D; �; �), a set of darts d

1

; : : : ; d

n

such that:

(

8(i; j) 2 f1; : : : ; ng

2

; i 6= j d

i

6= d

j

C

d

1

� : : : �C

d

n

(G) is connected

For any permutation � de�ned on d

1

; : : : ; d

n

we have:

C

d

1

� : : : �C

d

n

(G) = C

�(d

1

)

� : : : �C

�(d

n

)

(G)

In the following, the contraction of a set of darts D

0

will be denoted C

D

0

Proof:

If C

d

1

� : : :�C

d

n

(G) is connected, its dual, R

d

1

� : : :�R

d

n

(G) is also connected. Thus

the hypothesis of corollary 2 are veri�ed. Moreover,

8

>

<

>

:

C

d

1

� : : : �C

d

n

(G) = R

d

1

� : : : �R

d

n

(G)

= R

�(d

1

)

� : : : �R

�(d

n

)

(G) (see corollary 2)

= C

�(d

1

)

� : : : �C

�(d

n

)

(G)

Thus:

C

d

1

� : : : �C

d

n

(G) = C

�(d

1

)

� : : : �C

�(d

n

)

(G)

2

Lemma 3 Link between the orbits of G and G=�

�

(d)

Given a combinatorial map G = (D; �; �) a dart d 2 D which is neither a self loop

nor a pendant edge and G

0

= G=�

�

(d) = (D � �

�

(d); �

0

; �) we have:

8d

0

2 D � �

�

(�

�

(d)) �

0�

(d

0

) = �

�

(d

0

)

Moreover, if j�

�

(d)j > 3 we have:

�

0�

(�(d)) = (�(d); : : : ; �

0

(�(d))

j�(d)j�2

; �(�d); : : : ; �

0

(�(�d))

j�(�d)j�2

)

Thus, in this last case:

8d

0

2 �

�

(�

�

(d))� �

�

(d) d

0

2 �

0�

(�(d))

Proof:

Note that we are in the hypothesis of proposition 12. The equations describing the

contraction in this case may thus be applied.
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First equality: The �rst equality is an equality between orbits, we have thus to show

that the two permutations � and �

0

are equal on �

�

(d

0

) and thus on �

0�

(d

0

). We

have:

�

�1

(�

�

(d)) � �

�

(�

�

(d))

) D � �

�

(�

�

(d)) � D � �

�1

(�

�

(d))

) 8d

0

2 D � �

�

(�

�

(d)) �

0

(d

0

) = �(d

0

)

Since d

0

2 D � �

�

(�

�

(d)), we have �

�

(d

0

) � D � �

�

(�

�

(d)). Thus �

�

(d

0

) = �

0�

(d

0

)

and both permutations are equal on �

�

(d

0

).

Second equality: Let us consider:

n

1

= j�

�

(d)j � 1

n

2

= j�

�

(�d)j � 1

n = n

1

+ n

2

And the serie d

0

; : : : ; d

n

such that: d

i

= �

0i

(�(d)).

We have:

d

0

= �

00

(�(d)) = �

0

(�(d)) = �(d) 6= �

�1

(d).

Thus:

d

1

= �

0

(d

0

) = �(d

0

) = �

2

(d) 6= �

�1

(d) since (j�

�

(d)j > 3)

Let us suppose that:

d

j

= �

j

(d) 6= �

�1

(d) for j in f1; : : : ; ig for a given i in f2; : : : ; n

1

� 2g.

Since d

i

6= �

�1

(d) we have

d

i+1

= �

0

(d

i

) = �(d

i

) = �

i+1

(d)

Moreover, i+ 1 < n

1

� 1, thus d

i+1

6= �

�1

(d). We have:

d

n

1

= �

0

(d

n

1

�1

)

= �

0

(�

n

1

�1

(d))

= �

0

(�

�1

(d))

= �(�d)

In the same way, We can show by recurrence that:

8k 2 fn

1

+ 1; n� 1g d

k

= �

k�n

1

(�d)

We have thus:

d

n

= �

0

(d

n�1

)

= �

0

(�

n

2

�1

(�d))

= �

0

(�

�1

(�d))

= �(d)

Thus d

n

= �

0n

(�(d)) = �(d) and n is the lowest integer which realizes this equality.

The orbits of �(d) is thus equal to (d

1

; : : : ; d

n

).

2
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Proposition 15 Connectivity of G=�

�

(d)

Given a combinatorial map G = (D; �; �) and a dart d 2 D which is not a self loop,

if G is connected G=�

�

(d) is connected.

Proof:

Let us consider two darts b

1

and b

2

in D � �

�

(d). Since G is connected, we have a

path P = d

1

; : : : ; d

n

in G such that:

b

1

2 �

�

(d

1

)

b

2

2 �

�

(�d

n

)

Let us consider three case:

case a) :8i 2 f1; : : : ; ngd

i

62 �

�

(�

�

(d))

d

2

d

1

d

4

d

3

d

�d

Figure 10: Case a

In this case, we have for all i:

�

0�

(d

i

) = �

�

(d

i

)

The orbits of the darts composing the path remains unchanged in G

0

, and we can

easily show that P remains a valid path in G

0

.

case b) 9!i 2 f1; : : : ; ng = d

i

2 �

�

(�

�

(d))

Let us suppose that:d

i

2 �

�

(d) (the same demonstration hold for d

i

2 �

�

(�d))

We have �d

i�1

2 �

�

(d

i

) = �

�

(d).

� If �

�

(d) is a pendant edge. It may be easily show, that in this case i 2

f2; : : : ; n � 1g and d

i

6= d. Thus, �d is the pendant dart of �

�

(d). Using

proposition 13 we have:

�

0�

(�d

i�1

) = �

�

(�d

i�1

)� fdg

Thus:

�

0�

(�d

i�1

) \ fd

1

; : : : ; d

n

g = �

�

(�d

i�1

) \ fd

1

; : : : ; d

n

g = fd

i

g

P remains a valid path in G

0

.
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d

2

d

1

d

4

d

3

d

�d

Figure 11: Case b

� If �

�

(d) is not a pendant edge

Since �

�

(d) is included in �

0�

(�(d)) (see Lemma 3), we have:

�

0�

(d

i

) = �

0�

(�d

i�1

) = �

0�

(�(d))

The dart d

i

being unique in P, we have for all k in f1; : : : ; ng d

k

62 �

�

(�d).

Thus

fd

1

; : : : ; d

n

g \ �

�

(�d) = ;

. Otherwise, we know, thanks to Lemma 3 that �

0�

(d) is composed of darts

belonging to �

�

(d) and �

�

(�d). Thus:

fd

i

g � �

0�

(�d

i�1

) \ fd

1

; : : : ; d

n

g � (�

�

(d) [ �

�

(�d)) \ fd

1

; : : : ; d

n

g = fd

i

g

Thus �

0�

(�d

i�1

) \ fd

1

; : : : ; d

n

g = fd

i

g. The other orbits being unchanged for

all other darts composing the path P, P remains a valid path in G

0

.

case c) 9!(i; j) 2 f1; : : : ; ng

2

i < j j fd

i

; d

j

g � �

�

(�

�

(d))

Let us suppose that:

d

i

2 �

�

(d)

d

j

2 �

�

(�d)

In this case �

�

(d) cannot be a pendant edge, and we can easily show thanks to

Lemma 3 that:

fd

1

; : : : ; d

n

g \ �

0�

(�(d)) = fd

1

; : : : ; d

n

g \ �

0�

(�d

i�1

) = fd

i

; d

j

g

If we consider the path P

0

= d

1

; : : : ; d

i�1

; d

j

; : : : ; d

n

we have:

fd

1

; : : : ; d

i�1

; d

j

; : : : ; d

n

g \ �

0�

(�(d)) = fd

j

g

Moreover:�d

i�1

2 �

�

(d

i

) = �

�

(d) thus, �

0�

(�d

i�1

) = �

0�

(�(d)). All the �-orbits of

darts �d

k

; d

k

2 P

0

being unchanged, P' is a valid path in G'.
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d

2

d

1

d

3

d

�d

d

4

d

5

d

6

Figure 12: Case c

Other cases: If we have more than 3 darts of P in �

�

(�

�

(d)) = �

�

(d) [ �

�

(�d) at least

2 belong to the same �-orbits. This is forbidden by the de�nition of a path.

2

Corollary 3 Connectivity of G n �

�

(d)

Given a combinatorial map G = (D; �; �) and a dart d 2 D which is not a bridge, if

G is connected G n �

�

(d) is connected.

Proof:

If d is not a bridge in G, it is not a self-loop in G. Thus the contraction operation is al-

lowed in the dual and G=�

�

(d) is connected. Thus, its dual is connected (see Corollary 1).

Moreover, we have:

G=�

�

(d) = G n �

�

(d)

Thus, G n �

�

(d) is connected. 2

6 Decimation parameters

In order to perform more than one contraction simultaneously or to avoid violating the

precondition of contraction (e.g. creating a self-loop!) we have to impose a constraint on

the set of darts to be contracted:

De�nition 29 independent vertex set

Given a combinatorial map G = (D; �; �), a set of darts D

0

� D will be called an

independent vertex set i�:

�(�

�

(D

0

)) \ �

�

(D

0

) = ;

The set D

0

will be called a maximum independent vertex set i�:

8d 2 D � �

�

(D

0

) 9d

0

2 �

�

(d) j � d

0

2 �

�

(D

0

)
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All vertices are de�ned by one dart of D

0

or are linked to one vertex de�ned by a dart in

D

0

.

De�nition 30 Decimation parameter

Given a combinatorial map G = (D; �; �), a set of darts D

0

� D will be called a

decimation parameter of G i� it is an independent vertex set and:

8d 2 D � �

�

(D

0

) 9!d

0

2 D

0

j � d

0

2 �

�

(d)

De�nition 31 Connecting Path Given a combinatorial map G = (D; �; �), a decima-

tion parameter D' of G and two darts b

1

and b

2

in �

�

(D

0

), CP(b

1

; b

2

) will be called a

connecting path i� it is a path and if it veri�es one of the following conditions:

1. CP(b

1

; b

2

) = d 2 D � �

�

(D

0

)

2. CP(b

1

; b

2

) = d

1

d

2

with:

jfd

1

; d

2

g \ �

�

(D

0

)j = 1

3. CP(b

1

; b

2

) = d

1

d

2

d

3

with:

jfd

1

; d

2

; d

3

g \ �

�

(D

0

)j = 2

Lemma 4 Given a combinatorial map without pendant edges G = (D; �; �), a decimation

parameter D

0

and a dart d 2 D, at least one of the two darts d, '(d) belongs to D�D

0

.

Proof:

Let us suppose that both darts d and '(d) belong to D

0

. Then we have:

� d 2 �

�

(d) � �

�

(D

0

) and

� d 2 �(�

�

(�(�(d))) = �(�

�

('(d))) � �(�

�

(D

0

)).

This is in contradiction with the de�nition of an independent vertex set. 2

Proposition 16 Given a combinatorial map G = (D; �; �), and a decimation parameter

D' of G any dart of D which is not a pendant dart belonging to �

�

(D

0

) belongs at least

to one connecting path.

Proof:

Given a dart d in D, we have to �nd a path which contains it. Let us decompose this

demonstration into three cases:

If d 2 D

0

We know thanks to Lemma 4 that '(d) 2 D � D

0

. Moreover, if d is not a

pendant dart, �('(d)) cannot belong to D

0

without violating the de�nition of a

decimation parameter. Thus P = d; '(d) is a path, d 2 D

0

and '(d) 2 D��

�

(D

0

).

Thus, P is a connecting path.

If d 2 �(D

0

) If d is not a pendant dart, we have '

�1

(d) 6= d. Therefore:
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� '

�1

(d) cannot belong to D

0

without violating the de�nition of a decimation

parameter.

� '

�1

(d) cannot belong to �(D

0

) without violating the de�nition of an indepen-

dent vertex set.

Thus '

�1

(d) belongs to D��

�

(D

0

). Moreover, by de�nition it exists a dart d

0

such

that: �d

0

2 �

�

('

�1

(d)). The series P = d

0

; '

�1

(d); d is a path and jP \�

�

(D

0

)j = 2.

The path P is thus a connecting path.

If d 2 D � �

�

(D

0

) Let us decompose this last case in three sub cases.

1. If �

�

(d) \D

0

6= ; and �

�

(�(d)) \ D

0

6= ;. The series P = d is a connecting

path by de�nition.

2. If �

�

(d) \D

0

= ; and �

�

(�(d)) \D

0

6= ;

Then d belongs to D � �

�

(D

0

). Therefore, it exists a dart d

0

2 D

0

such that

�(d

0

) 2 �

�

(d). Then we have: d

0

2 D

0

, d 62 �

�

(D

0

), thus P = d

0

; d is a

connecting path.

3. If �

�

(d) \D

0

= ; and �

�

(�(d)) \D

0

= ;

We can �nd, by de�nition of a decimation parameter, two darts d

0

and d

00

such

that:

� �(d

0

) 2 �(D

0

) \ �

�

(d) and

� �(d

00

) 2 �(D

0

) \ �

�

(�(d))

The path P = d

0

; d; d

00

is thus a connecting path.

2

Proposition 17 Given a combinatorial map G = (D; �; �), and a decimation parameter

D' of G, we have one and only one dart in D � �

�

(D

0

) for each connecting path.

The connecting path which contain a dart d in D � �

�

(D

0

) will be denoted CP (d).

Proof:

The existence of a connecting path for each dart in D � �

�

(D

0

) is given by proposi-

tion 16. The uniqueness is trivial from the de�nition. 2

Note that the pendant darts which belong to the decimation parameter are excluded

from proposition 16 since they cannot be part of a connecting path. If we contract all

the darts of the decimation parameters, the pendant darts will be simply removed (see

proposition 13). The de�nition of decimation parameters being devoted to the contrac-

tion operation these darts may be removed from the combinatorial map without loss of

information.

De�nition 32 Map without pendant edges

Given a combinatorial map G = (D; �; �) and a decimation parameter D

0

, the submap

without pendant edges will be de�ned by G

0

= (D

00

; � � p

D;D

00

; �) where:

D

00

= D � �

�

(fd 2 �

�

(D

0

) j �

�

(�d) = (�d)g)
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The submap without pendant edges is simply the same map in which we have removed

all pendant edges with one dart inD'. In order to simplify the notations, in the following,

we will assume that this operation has been performed and thus, that �

�

(D

0

) does not

have pendant edges.

De�nition 33 Reversal of connecting paths

Given a combinatorial map G = (D; �; �), and a decimation parameter D' of G, we

de�ne the involution �

C

which associates to each connecting path containing one dart d

of D � �

�

(D

0

) the connecting path which contain �d. We have thus:

8d 2 D � �

�

(D

0

) �

C

(CP (d)) = CP (�(d))

De�nition 34 Representative dart

Given a combinatorial map without pendant edges G = (D; �; �), and a decimation

parameter D

0

, the representative of a dart d denoted Rep(d) is equal to:

� d if d 62 D

0

and

� '(d) elsewhere.

Proposition 18 Given a combinatorial map without pendant edges G = (D; �; �), and

a decimation parameter D

0

, the application:

�

C

0

B

@

D � �

�

(D

0

) ! D � �

�

(D

0

)

d 7!

 

Rep(�(d)) if � �(d) 62 D

0

Rep('(�(d)) elsewhere

is a bijective function.

Proof:

We have by de�nition of the representative dart (see de�nition 34), �

C

(d) 62 D

0

for all

d in D� �

�

(D

0

). Let us suppose that �

C

(d) belongs to �(D

0

) for some d in D� �

�

(D

0

).

Then:

� If ��(d) 62 D

0

Then �

C

(d) = Rep(�(d)) 2 �(D

0

).

We cannot suppose that Rep(�(d)) = �(d), since in this case we have �

C

(d) =

�(d) 2 �(D

0

) which is in contradiction with the hypothesis.

Thus Rep(�(d)) = '(�(d)) 2 �(D

0

) and �(d) 2 D

0

. In this case, '(�(d)) =

�(��(d)) and ��(d) belong to the same �-orbit and have their opposite in D'.

This is forbidden by the de�nition of a decimation parameter.

� If ��(d) 2 D

0

Then �

C

(d) = Rep('(�(d)) 2 �(D

0

)

If Rep('(�(d)) = '(�(d)) 2 �(D

0

), then since ��(d) belongs to D

0

, we have

�

�

(��(d)) � �

�

(D

0

). Moreover, '(�(d)) = �(��(d)) 2 �

�

(��(d)). Thus:

'(�(d)) 2 �

�

(D

0

) \ �(D

0

)
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This is forbidden by de�nition of an independent vertex set.

Let us suppose that Rep('(�(d))) = '

2

(�(d)) 2 �(D

0

), In this case, the darts

�'(�(d)) and '

2

(�(d)) belong to the same �-orbit and have their opposite in D

0

.

Once again this is forbidden by the de�nition of a decimation parameter.

Thus we have for all d in D � �

�

(D

0

) �

C

(d) 2 D � �

�

(D

0

). Let us show that �

C

is

bijective.

Let us suppose that we have two darts d

1

and d

2

in D � �

�

(D

0

) such that �

C

(d

1

) =

�

C

(d

2

). Then, the di�erent cases involved by this last equality may be decomposed in

two \big" cases (The cases which are not mentioned in the following demonstration may

be simply retrieved by exchanging d

1

and d

2

).

1. If ��(d

1

) 62 D

0

and ��(d

2

) 62 D

0

Then we have:

(a) �(d

1

) = �(d

2

) or '(�(d

1

)) = '(�(d

2

)) or

(b) �(d

1

) = '(�(d

2

))

The �rst case is trivial since � and ' are bijective. The second case arise only when

�(d

2

) 2 D

0

. Moreover we have in this case d

1

= ��(d

2

), thus d

1

belongs to �(D

0

)

which is forbidden by hypothesis.

2. If ��(d

1

) 62 D

0

and ��(d

2

) 2 D

0

In this case we have:

(a) �(d

1

) = '(�(d

2

)) or '(d

1

) = '(�(d

2

)) or

(b) '(d

1

) = '

2

(�(d

2

)) or �(d

1

) = '

2

(�(d

2

))

The �rst case involve that d

1

is equal to �(d

2

) or ��(d

2

) which is impossible since d

1

belongs to D��

�

(D

0

) and ��(d

2

) to D

0

. In the same way, the second case involves

that d

1

is equal to '(�(d

2

)) or �'(�(d

2

)). This is impossible since, this case arise

only when '(�(d

2

)) belongs to D' and that d

1

belongs to D � �

�

(D

0

).

The function �

C

is injective and applies from a set to itself. This function is thus bijective

and de�nes a permutation on D � �

�

(D

0

) 2

Remark 2 Since we have one and only one dart of D��

�

(D

0

) for each connecting path,

the permutation �

C

may be seen has a permutation on the set of connecting paths thanks

to the following formula:

8d 2 D � �

�

(D

0

) �

C

(CP (d)) = CP (�

C

(d))

De�nition 35 Connecting path map

Given a combinatorial map without pendant edges G = (D; �; �), and a decimation

parameter D

0

, the set of connecting path D

C

, may be de�ned by:

D

C

= fCP (d); d 2 D � �

�

(D

0

)g

The map of connecting paths associated to the decimation parameter GD' is de�ned by:

GD

0

= (D

C

; �

C

; �

C

)

(see de�nition 33 and proposition 18).
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De�nition 36 Structure Preserving Contraction

Given a combinatorial map without pendant edges G = (D; �; �) and a decimation

parameter D

0

. A combinatorial map G

0

= (D

00

; �

0

; �

0

) will be called a structure preserving

contraction according to D' i� it is isomorph (see de�nition 4) to the graph of connecting

paths GD' associated to D'.

6.1 Link between connecting paths and contraction

Lemma 5 Given a combinatorial map G = (D; �; �), a decimation parameter D', and

the two successor permutations �

C

and �

0

of respectively, the connecting path map GD

0

and the contracted map G

0

= G n �

�

(D

0

) = (D � �

�

(D

0

); �

0

; �

0

) we have:

8d 2 D � �

�

(D) �

C

(d) = �

0

(d)

Proof:

Let us decompose demonstration in the four cases describing the di�erent values that

may be taken by �

C

(d).

1. If �

�

(�(d)) \D

0

= ; then we have

�

C

(d) = �(d).

In this case �

0

(d) = '

0

(�d) = '(�d) = �(d) since ('(�d) 62 �

�

(D

0

)).

2. If ��(d)) 62 D

0

and �(d) 2 D

0

then we have

�

C

(d) = '(�(d)) = '

2

(�d) 62 �

�

(D

0

) by de�nition of the permutation �

C

.

Thus �

0

(d) = '

0

(�d) = '

2

(�d). Indeed, '(�d) = �(d) belong to D'.

3. If ��(d)) 2 D

0

and '(�(d)) 62 D

0

then,

�

C

(d) = '(�(d)) = '

2

(�d)

�

0

(d) = '

0

(�d) = '

2

(�d) ('(�d) = �(d) 2 �(D

0

))

4. Finally, if ��(d)) 2 D

0

and '(�(d)) 2 D

0

then,

�

C

(d) = '

2

(�(d)) = '

3

(�d) 62 �

�

(D

0

)

Then we have:

(

'(�d) = �(d) 2 �(D

0

) and

'

2

(�d) = '(�(d)) 2 D

0

Thus: �

0

(d) = '(�d) = '

3

(�d)

2

Theorem 1 Given a combinatorial map G = (D; �; �) and a decimation parameter D'.

The contracted map G

0

= G n �

�

(D

0

) is a structure preserving contraction
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Proof:

Let us denote respectively, GD

0

and G

0

the connecting path map and the contracted

one. We have:

GD

0

= (D

C

; �

C

; �

C

)

G

0

= (D � �

�

(D

0

); �

0

; �)

Now, let us consider the application � = (�;  ) from GD

0

to G

0

such that:

� :

�

C

7! �

0

�

C

7! �

 

 

D

C

! D � �

�

(D

0

)

CP (d) 7! d

The function  is well de�ned and bijective since each connecting path have one and only

one dart in D � �

�

(D

0

) (see proposition 17).

Let us show that � is a morphism, thus that:

8CP (d) 2 D

C

(

 (�

C

(CP (d))) = �(d)

 (�

C

(CP (d))) = �

0

(d)

The �rst equality is trivial since, �

C

(CP (d)) = CP (�(d)) (see de�nition 33). Thus:

 (�

C

(CP (d))) =  (CP (�(d))) = �(d)

The second equality may be easily deduced from Lemma 5. Indeed, we have

8d 2 D � �

�

(D

0

) �

C

(d) = �

0

(d)

Thus:

 (�

C

(CP (d))) =  (CP (�

C

(d))) = �

C

(d) = �

0

(d)

2

7 Contraction Kernel

We will provide in this section a de�nition of a tree and a forest. These de�nitions will

be used to de�ne a contraction Kernel and the connecting serie map deduced from

it. Finally we will show that the connecting serie map is isomorph to a given contracted

map.

7.1 Tree and forest

As mentioned in section 5 a sequence of merge in a partition may be encoded by a

sequence of contractions of the combinatorial map encoding the partition. Since the

contraction operation is forbidden for self-loops the set of darts involve in such a sequence

of contractions will not contain a circuit (see de�nition 13). Thus the set of edges involve

in such a contraction may be encoded by a Tree (see de�nition 37).
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De�nition 37 Map tree

Given a combinatorial map G = (D; �; �), a set D' will be called a subtree of G i�

�

�

(D

0

) = D

0

and the submap:

G

T

= (D

0

; �

0

= � � p

D;D

0

; �)

has only one '

0

-orbit.

More generally, if we contract a set of vertices into a given set of surviving vertices, the

set of darts involve in such contractions may be encoded by a forest (see de�nition 38).

De�nition 38 Spanning Forest

Given a combinatorial map G = (D; �; �), the set F = (D

1

; : : : ;D

n

) of trees will be

called a spanning forest of G i� fD

1

; : : : ;D

n

g is a vertex partition of G.

7.2 Contraction Kernel

In the following we will focus on connected combinatorial map. If the combinatorial

map is not connected the following de�nitions and propositions may be applied on each

component of the combinatorial map. Moreover, the vertices of a combinatorial map

being implicitly de�ne by the darts which belong to their orbits, we must require that

at least on edge survive. In this last case the resulting graph is reduced to one vertex

with a self loop. The two previous restriction have been used in de�nition 39 to de�ne a

contraction kernel and the set of surviving darts.

De�nition 39 Contraction Kernel

Given a connected combinatorial map G = (D; �; �), the forest F = (D

1

; : : : ;D

n

) will

be called a contraction kernel i�:

SD = D �

n

[

i=1

D

i

6= ;

The set SD is called the set of surviving darts.

Lemma 6 Given a connected combinatorial map G = (D; �; �), and a contraction kernel

F = (D

1

; : : : ;D

n

) we have the following property:

8i 2 f1; : : : ; ng �

�

(D

i

) \ SD 6= ;

Proof:

Let us consider a dart d 2 D

i

and a dart d

0

2 SD. The combinatorial map G being

connected we have a path P = d

1

; : : : ; d

n

from �

�

(d) to �

�

(d

0

). Now let us consider d

i

such that:

i =Maxfj 2 f1; : : : ; ng j 8k 2 f1; : : : ; jgd

k

2 �

�

(D

i

)g

Note that the index i is at least equal to 1 since d

1

2 �

�

(d) � �

�

(D

i

).
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� Let us suppose that i < n

Using item 3 of de�nition 16 we have �

�

(d

i

) \

S

n

j=1;j 6=i

D

j

= ;. Thus d

i

2 D

i

or

d

i

2 SD. If d

i

belongs to D

i

, the tree D

i

being symmetric we have �(d

i

) 2 D

i

.

Thus d

i+1

2 �

�

(�(d

i

)) � �

�

(D

i

) which is in contradiction with the de�nition of d

i

,

thus we have d

i

2 SD. Since d

i

2 �

�

(D

i

) the lemma is demonstrated.

� If i = n Then we can show easily, with the same kind of demonstration, that d

n

2

SD\�

�

(D

i

) or d

n

2 D

i

. In this last case we have �(d

n

) 2 D

i

and d

0

2 �

�

(D

i

)\SD.

2

Proposition 19 Given a connected combinatorial map G = (D; �; �), and a contraction

kernel F = (D

1

; : : : ;D

n

) we have the following property:

8d 2 D '

�

(d) \ SD 6= ;

Proof:

The proposition is trivial if d 2 SD. Let us suppose that d belongs to a given D

i

2 F .

The tree D

i

being symmetric we have �(d) 2 D

i

. Using item 3 of de�nition 16 we have

�

�

(�(d)) \

S

n

j=1;j 6=i

D

j

= ;. Thus �(�(d)) 2 D

i

or �(�(d)) 2 SD . Written in terms of

permutation ' we obtain:

'(d) 2 D

i

or '(d) 2 SD

We can deduce from the above formula, that '

�

(d) intersect SD or is included in D

i

.

If '

�

(d) � D

i

we have '

�

(d) = D

i

since the tree D

i

has only one '-orbit. Using

Lemma 6 we have:

�

�

('

�

(d)) \ SD = �

�

(D

i

) \ SD 6= ;

We can thus consider d

0

in '

�

(d) such that �(d

0

) 2 SD. Then �(d

0

) 2 D

i

= '

�

(d) and

'(�(d

0

)) = �(d

0

) 2 SD. Thus '

�

(d) \ SD = '

�

(�(d

0

)) \ SD 6= ;. This is forbidden by

our hypothesis '

�

(d) � D

i

.

2

De�nition 40 Connecting series

Given a connected combinatorial map G = (D; �; �), a contraction kernel F = (D

1

; : : : ;D

n

)

and a dart d 2 SD, the connecting serie associated to d is equal to:

CS(d) = d; '(d); : : : ; '

n�1

(d) with n =Minfp 2 IN

�

j '

p

(d) 2 SDg

Remark 3 The connecting serie is de�ned for all dart d in SD since the set fp 2

IN

�

j '

p

(d) 2 SDg contains at least j'

�

(d)j.

Note that we do not talk of connecting paths, since the serie CS(d) is not always a

path according to de�nition 12 (see Figure 13). If CS(d) is a path it connects the vertex

�

�

(d) to the vertex �

�

('

n

(d)) where d and '

n

(d) belong to SD.
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12

4

-33

CS(1) = 1,2,3,-3,4

: suviving darts

: a tree

Figure 13: A connecting serie which is not a path

De�nition 41 Connecting series set

Given a connected combinatorial map G = (D; �; �) and a contraction kernel F , the

set of connecting serie will be denoted D

C

.

Proposition 20 Given a connected combinatorial map G and a contraction kernel F ,

the application:

CS

 

SD ! D

C

d 7! CS(d)

is bijective.

Proof:

This application is trivially surjective. Now let us consider two darts d and d

0

in SD

such that d 6= d

0

. Each serie contains one and only one dart in SD. Moreover, d 2 CS(d)

and d

0

2 CS(d

0

) involve d

0

62 CS(d) and d 62 CS(d

0

). Therefore CS(d) 6= CS(d

0

) 2

Proposition 21 Given a connected combinatorial map G = (D; �; �), and a contraction

kernel F = (D

1

; : : : ;D

n

) we have:

8d 2 D 9!d

0

2 SD j d 2 CS(d

0

)

Proof:

By de�nition, each connecting serie contains only one dart in SD, thus if d belongs to

SD, CS(d) exists and is unique.

Now let us consider d 2 D

i

for a given index i. According to proposition 19 we have:

'

�

(d) \ SD 6= ;. Let us consider:

d

0

2 '

�

(d) \ SD j d

0

= '

�n

(d) with n =Minfp 2 IN

�

j '

�p

(d) 2 SDg

we have obviously d 2 CS(d

0

). Let us suppose that we can �nd an other dart d

00

2 SD

such that d 2 CS(d

00

). Then d

00

= '

�p

(d) with p > n. Thus the serie CS(d

00

) =

d

00

; '(d

00

); : : : ; '

p�n

(d

00

) = d

0

; : : : ; d; : : : contains at least the two darts d and d

0

in SD,

which is forbidden by the de�nition of a connecting serie. 2
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7.3 Connecting serie map

De�nition 42 Reversal of Connecting series

Given a connected combinatorial map and a contraction kernel F , the opposite permu-

tation �

C

from D

C

to itself maps each connecting serie CS(d) with d 2 SD to CS(�(d)).

More formally,

�

C

 

D

C

! D

C

CS(d) 7! CS(�(d))

Remark 4 The function which associates to each dart its connecting serie and the per-

mutation � being bijective �

C

is bijective. It is thus a permutation on D

C

. Moreover,

�

C

� �

C

(CS(d)) = CS(� � �(d)) = CS(d)

�

C

is an involution.

Lemma 7 Given a connected combinatorial map and a contraction kernel F , the appli-

cation:

follow

 

SD ! SD

d 7! '

n

(d) with CS(d) = d; : : : ; '

n�1

(d)

is bijective.

Proof:

The connecting serie CS(d), and thus '

n

(d), is de�ned for all dart in SD. Now

let us suppose that we can �nd two darts d and d

0

such that follow(d) = follow(d

0

).

Then it exists two integers n, p, with n � p such that '

n

(d) = '

p

(d

0

). Thus we have

d

0

= '

n�p

(d) 2 SD. The integer n being the minimal integer di�erent from zero which

realizes this equality we have n = p and thus d = d

0

. 2

Proposition 22 Given a connected combinatorial map and a contraction kernel F , the

application:

'

C

 

D

C

! D

C

CS(d) = d; '(d); : : : ; '

n�1

(d) 7! CS('

n

(d))

is a permutation.

Proof:

'

C

(CS(d)) = CS(follow(d)) 2

De�nition 43 Connecting serie map

Given a connected combinatorial map G and a contraction kernel F , the connecting

serie map associated to G and F is denoted GC and is de�ned by GC = (D

C

; �

C

=

'

C

� �

C

; �

C

)
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7.4 Link between connecting series and contraction

Theorem 2 Given a connected combinatorial map G and a contraction kernel F , the

connecting serie map GC is isomorph to the contracted map G

0

= G= [

n

i=1

D

i

. More

formally:

GC

�

=

G= [

n

i=1

D

i

Proof:

We have:

GC = (D

C

; �

C

; �

C

)

G

0

= (D �

S

n

i=1

D

i

; �

0

; �) = (SD; �

0

; �)

Now, let us consider the application � = (�;CS) from G

0

to GC such that:

� :

�

0

7! �

C

� 7! �

C

Since the application CS is bijective (see proposition 20), � is bijective. Let us show that

it is a morphism, thus that:

8d 2 SD

(

CS(�(d)) = �

C

(CS(d))

CS(�

0

(d)) = �

C

(CS(d))

The �rst equality is given by the de�nition of the involution �

C

. Moreover we have:

�

C

(CS(d)) = '

C

� �

C

(CS(d))

= '

C

(CS(�(d)))

= CS(follow(�(d)))

The application CS being bijective, the second equality will be demonstrated i� we show

that �

0

(d) = follow(�(d)).

We have, by de�nition G

0

= G n

S

n

i=1

D

i

. Thus �

0

= '

0

� � with '

0

= ' � p

D;SD

.

Thus �

0

(d) = ' � p

D;SD

(�(d)) = '

n

(�(d)) with:

n =Minfp 2 IN

�

j '

p

(�(d)) 2 SDg (2)

Moreover, according to Lemma 7, we have follow(�(d)) = '

n

(�(d)) with n satisfying

equation 2. Thus:

�

0

(d) = follow(�(d))) CS(�

0

(d)) = �

C

(CS(d))

2

8 Conclusion

We have de�ned in this report the theorical framework needed to perform removal or

contraction operations on combinatorial maps. The contraction operation is then gener-

alized thanks to the de�nition of Decimation Parameter and Contraction Kernel. These

de�nitions allow us to design several contractions in parallel.
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The de�nition of a contraction kernel by labeled pyramids is under development. This

expected result together with the ones obtain in this report should allow us to study

interesting applications of our model such as: segmentation [3, 1, 2, 4], structural match-

ing [13] or integration of moving objects. Finally, the extension of our model to higher

dimensional spaces (3D) should be studied.

References

[1] J. P. Braquelaire and L. Brun. Image segmentation with topological maps and inter-

pixel representation. Journal of Visual Communication and Image representation,

9(1), 1998.

[2] L. Brun. Segmentation d'images couleur �a base Topologique. PhD thesis, Universit�e

Bordeaux I, 351 cours de la Lib�eration 33405 Talence, December 1996.

[3] L. Brun and J. P. Domenger. Incremental modi�cations on segmented image de�ned

by discrete maps. Technical report, RR-112696 LaBRI, may 1996. Submitted.

[4] L. Brun and J. P.and J.P. Braquelaire Domenger. Discrete maps : a framework for

region segmentation algorithms. In Workshop on Graph based representations, Lyon,

April 1997. to be published in Advances in Computing (Springer).

[5] R. Cori. Un code pour les graphes planaires et ses applications. PhD thesis, Universit�e

Paris VII, 1975.

[6] A. Jones Gareth and David Singerman. Theory of maps on orientable surfaces.

volume 3, pages 273{307. London Mathematical Society, 1978.

[7] S.L. Horowitz and T. Pavlidis. Picture segmentation by a tree traversal algorithm.

Journal of The Association for Computing Machinery, 23(2):368{388, April 1976.

[8] J. M. Jolion and P. Meer. Fast algorithm for blind noise variance estimation. IEEE

Trans. Pattern Mach. Intelligence, 12(2):216{223, Feb. 1990.

[9] J.M. Jolion and A. Montanvert. The adaptative pyramid : A framework for 2d image

analysis. 55(3):339{348, May 1992.

[10] Walter G. Kropatsch. Parallel graph contraction for dual irregular pyramids. Techni-

cal Report PRIP-TR-28, Institute f. Automation 183/2, Dept. for Pattern Recogni-

tion and Image Processing, TU Wien, Austria, Janury 1990. Also available through

http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/tr28.ps.gz.

[11] M.D. Levine. Vision in man and machine. Mc Graw-Hill Book Compagny, 1985.

[12] P. Meer. Stochastic image pyramids. Computer Vision Graphics Image Processing,

45:269{294, 1989.

36



[13] Jean-Gerard Pailloncy, Walter G. Kropatsch, and Jean-Michel Jolion. Object Match-

ing on Irregular Pyramid. In Anil K. Jain, Svetha Venkatesh, and Brian C. Lovell, ed-

itors, 14th International Conference on Pattern Recognition, volume II, pages 1721{

1723. IEEE Comp.Soc., 1998.

[14] T.Y. Phillips, A. Rosenfeld, and A. Sher. O(log n) bimodality analysis. Pattern

Recognit., 22(6):741{746, 1989.

[15] Hanan Samet. Algorithms for the conversion of quadtrees to rasters. 26(1):1{16,

April 1984.

[16] W. T. Tutte. New Directions in Graph Theory, chapter What is a map. Academic

Press, 1973.

[17] W.T. Tutte. A census of planar maps. Canad.J.Math., 15:249{271, 1963.

[18] W.T. Tutte. Graph Theory, volume 21. Addison-Wesley, encyclopedia of mathematics

and its applications edition, 1984.

[19] J.W.T. Youngs. Minimal imbeddings and the genus of a graph. Journal of Mathe-

matical Mechanic, 12:303{315, 1963.

37


