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Abstract

In line image understanding a minimal line property preserving (MLPP) graph of the image compliments
the structural information in geometric graph representations like the run graph. With such a graph
and its dual it is possible to efficiently detect topological features like loops and holes and to make
use of relations like containment. We present a new rule based method on dual graph contraction for
transforming the run graph and its dual into MLPP graphs. A parallelO(log(longest curve)) algorithm
is presented and results given.
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1. Introduction

The goal of line image analysis is to convert paper or microfilm based line images
into an electronic form for easier manipulation, processing, and searching. The
high scanning resolutions used during conversion result in very large images for
which efficient processing methods and storage are necessary. If algorithms to
manipulate and process the line images are to be efficient and have low time and
space complexities they can not work directly on theO(n2 ) iconic representation of
the image. Instead a base representation of the line image that losslessly compress
its geometric structure and topology so that algorithms can efficiently access it is
needed. We propose and give an efficient method of computing a new combined
representation which meets these requirements.

The run graph [10] is a geometric graph where the nodes are either node areas or
touching point nodes which are connected by edges which are edge areas. The run
graph, like other encodings based on maximal rectangles, is information preserving.
It provides the local topology of each image element and we can compute its dual
graph to obtain the global topology of the image. In addition, the runs underlying
the nodes and edges provide the spatial extent or shape of the image. The run
graph uses simple local definitions to encode an image geometrically. The local
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nature of these definitions results in extraneous, in terms of line properties, nodes
and edges.

We present a new algorithm based on Dual Graph Contraction (DGC) to transform
the run graph into its Minimum Line Property Preserving (MLPP) topological
form which, when implemented in parallel, requires O(log(curvelength)) steps.
A MLPP graph of a line image compliments the structural information in geometric
graph representations like the run graph. With such a graph and its dual it is possible
to efficiently detect topological features like loops and holes and to make use of
relations like containment.

In Section 2 we review representations for line drawings in terms of their topolog-
ical and geometrical encoding ability and describe a geometric graph representa-
tion, the run graph, which provides a compact structural base representation for line
drawings. Section 3 summarizes dual graph contraction (DGC) and Section 3.1
presents contraction kernel rules for transforming planar graphs and their duals
into their minimal line property preserving (MLPP) form. Section 3.4 shows that
the algorithmic time complexity of the new method isO(log(longest curve))when
implemented in parallel. Section 4 summarizes our results and provides some ex-
amples of computing the MLPP versions of real line images from their run graphs.

2. Run Graph Encoding

In a run length or interval encoding [1] of an image, maximal sequences of black
pixels in a column or row are stored. These 1 · l rectangles form an information pre-
serving and compressed representation of the image. Both different size rectangles
and maximal squares have been used to extend this representation, the later being
another representation of the Medial Axis Transform. The advantages of these
representations are that they are inexpensive to compute, information preserving,
and compressed. Unfortunately it is difficult to extract structural or topological
information from this representation without re-encoding it.

Definition 1. (Run). A maximal sequence of black pixels in either the horizontal
(i.e., horizontal run) or the vertical (i.e., vertical run) direction. Runs can be
encoded compactly by four values: a binary direction value indicating either a
horizontal or vertical run, two integers the start row and start column of the run,
and a single integer for the length of the run. Instead of the length which is a relative
value, the end row (end column) for vertical (horizontal) runs can be stored. �

Definition 2. (Adjacent Run). Two runs p and q are adjacent if they are both
of the same orientation direction(p) = direction(q) and if for horizontal runs the
condition (p.start row = q.start row+ 1) ∧ (p.end column ≥ q.start column) ∧
(p.start column ≤ q.end column)or for vertical runs the condition (p.start column
= q.start column + 1) ∧ (p.end row ≥ q.start row) ∧ (p.start row ≤ q.end row)
is true. �
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A simple re-encoding of the run length representation is the Line Adjacency Graph
(LAG) [11] in which vertical columns of pixels are encoded into runs, each run is
considered a node, and adjacent runs are connected by edges. This simple graph re-
encoding as shown in Fig. 1a does provide access to the local topological structure
of the image, but the shape of an object is only available by examining each of its
nodes.

(a) LAG. (b) VSG. (c) (M)RG.

Figure 1. Graph encodings for line images, dark and light runs indicate nodes and edge respectively

2.1. Vertical Simple Graph

In the LAG every vertical run is a node of the graph and graph edges serve only to
connect adjacent runs. Boatto [2] reformulate the LAG using Definitions 3 – 5 to
obtain the Vertical Simple Graph (VSG) representation of Fig. 1b.

Definition 3. (Crossing Point Node). A crossing point node (see Fig. 2a) is a run
adjacent to more than one run on a side. �

Definition 4. (Extreme Point Node). An extreme point node (see Fig. 2b) is a run
adjacent to only one other run. �

Definition 5. (Line Edge). A run adjacent to only one run on each side is a line
edge. �

Using Definitions 3 – 5 the LAG can be reformulated as a VSG in which each
node is a either a crossing node or an extreme node and the edges between nodes
consist of line edge runs. The definitions of extreme and crossing point nodes can
be extended from single runs to sets of adjacent runs to create extreme and crossing
areas. Still the VSG is built up entirely of vertical runs and when a line is horizontal
it will be encoded inefficiently as a series of many vertical runs. To remedy this
problem graphs built of mixed horizontal and vertical runs can be constructed [10].



358 M. Burge and W. G. Kropatsch

2.2. Mixed Run Graph

The mixed run graph representation is built from both vertical runs (e.g., the VSG
and LAG) and horizontal runs. It is conceptually a merging of vertical and hor-
izontal simple graphs as can be seen in Fig. 1c. The following definitions for
constructing the run graph are based upon the extensions of Monagan [10] to the
formulation by Boatto [2] of the run graph. First maximal vertical and horizon-
tal runs are found, then by applying Definitions 7 – 13 adjacent horizontal runs
become an edge and vertical runs become either a node or an edge. Nodes are
always encoded by vertical runs, whereas edges are encoded by either horizontal
or vertical runs depending upon there slope. See Fig. 3 for an example of a run
graph encoding.

Definition 6. (Predecessor and Successor). The runp is the predecessor of q and
q is the successor of p if they are adjacent and for horizontal runs (q.start row =
p.start row+ 1) and for vertical runs (q.start column = p.start column + 1). �

Definition 7. (Regular and Singular). A run is regular if it has one predecessor
and one successor, otherwise it is singular. �

Definition 8. (Conjugate). Runs are conjugate if they cross (i.e., have exactly one
pixel in common). �

Definition 9. (Short Vertical Runs). A vertical run is a short vertical run if it is
regular and not longer than all its conjugates. �

Definition 10. (Short Horizontal Runs). A horizontal run is a short horizontal
run if it is regular and shorter than all its conjugates. �

Definition 11. (Edge Area). An edge area is a maximal sequence of adjacent short
horizontal runs or short vertical runs. �

Definition 12. (Node Area). A node area is a maximal sequence of adjacent
horizontal runs and sub-runs which belong to neither vertical nor horizontal short
runs. �

Definition 13. (Touching Point Node). A touching point node (see Fig. 2c) ensures
that eight-connectivity is maintained. It is created when a horizontal and a vertical
run only touch at a diagonal. �

1 We will refer to the mixed run graph representation as simply the run graph representation from here
on.



A Minimal Line Property Preserving Representation of Line Images 359

(a) Crossing. (b) Extreme. (c) Touching.

Figure 2. Types of run graph nodes

(a) Curves. (b) Lines.

Figure 3. Line images encoded as run graphs

2.3. Run Graph Extensions

We extend the run graph to eliminate some artifact nodes and edges. Often in the run
graph, diagonal lines and lines with spur pixels are divided into a number of small
node-edge-node sequences some of which can be removed by using Definition 14.

Definition 14. (Artifact Node Area). If a node area has exactly one predecessor
and exactly one successor edge and both of these edges have similarly oriented
short runs then it is labeled as an artifact node area (e.g., Fig. 4a) and merged
with the adjacent edge areas to form a single edge. �

In addition using Definition 15 we can eliminate artifact edge areas which arise
when extreme point nodes are separated from crossing point nodes by a single
vertical short run. (e.g., Fig. 4b).

Definition 15. (Artifact Edge Area). If an edge consisting of a exactly one run
connects an extreme point node and a crossing point node then it is labeled as an
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artifact edge area (e.g., Fig. 4b) and it is merged with the two adjacent node areas
to form a single node. �

(a) Artifact node area. (b) Artifact edge area.

Figure 4. Artifact areas eliminated by Definitions 14, 15

Definitions 14 and 15 are purposely limited since the information available in the
run graph representation is relatively local. Additional processing of the run graph
to remove artifacts requires making assumptions about the domain of the image and
consequently reduce its usefulness as a general base representation for document
images. If such processing is to be done, it should occur at a later stage and make
use of both domain knowledge and global information to adapt the definitions.
Note in all figures Definition 14 has been applied but Definition 15 has not.

Definition 16. (Artifact Edge Area (Extended)). If an edge area consisting of
less then n runs connects an extreme point node and a crossing point node then
it is labeled as an artifact edge area and it is merged with the two adjacent node
areas to form a single node. �

3. Dual Graph Contraction

Dual graph contraction is the basic process [13] that builds an irregular graph
pyramid by successively contracting the dual image graph of one level into the
smaller dual image graph of the next level. Since dual image graphs are typically
defined by the neighbor relation of image pixels we present the transformation in
such terms even though the actual implementation starts at the run graph level. It
is based on the operation of edge contraction as explained in Definition 17.
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neighborhood graph face graph

Gi〈Vi ,Ei〉 dual←→ Ḡi〈V̄i , Ēi〉
↓↓ dual edge contraction−→ ↓

edge contracted

G∗〈Si,Ei \ Ni,i+1〉 dual←→ Ḡ∗〈V̄i , Ēi \Ni,i+1〉
↓ ←− dual face contraction ↓↓

dually contracted eliminates deg(v̄) < 3

Gi+1〈Vi+1, Ei+1〉 dual←→ Gi+1〈Vi+1, Ei+1〉

Figure 5. Dual Graph Contraction (Gi+1, Gi+1) = C[(Gi,Gi ), 〈Si ,Ni,i+1〉]

Definition 17. (Edge contraction). Given an edge, e, between two vertices, p and
q, let Eq be the edges adjacent to vertex q and Ep those adjacent to vertex p. If
p (q) is selected as the surviving vertex then contracting e results in the removal
of vertex q (p) and the addition to vertex p (q) of the edges Eq (Ep). �

Dual graph contraction [12] contracts a graph, Gi = 〈Vi,Ei〉, according to a con-
traction kernel, Ni,i+1 ⊂ Ei , while preserving (at least) its connectivity, planarity,
and topology.

It can be divided (e.g., Fig. 5) into two parallel and simultaneous steps [5]:

– Dual edge contraction:
The contraction kernel Ni,i+1 defines the subset of edges ofGi to contract and
the direction of contraction is given by selecting a surviving vertex for each
contraction this forms a subgraph 〈Si,Ni,i+1〉 which must be a spanning forest
of Gi . The edges are contracted into the surviving vertices Si , and their duals
are removed from Ei .

– Dual face contraction:
Faces in the dual graph of degree 1 and 2 are contracted to remove unnecessary
multi-edges and self-loops.

3.1. Curve Labeling Rules

In general the lines of a line drawing represent curves connecting end points and
junctions. The discrete sampling resulting from digitizing the image splits these
curves into small curve segments which must be correctly reconnected during
contraction. As in the regular curve pyramid [6], Curves and cells are related by
several cell classes (Fig. 6) and to simplify comparison with previous methods [8]
we use a grid graph base where each pixel cell is a node with edges between each
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2 2
0

0-cell contains no curve, an empty cell

Label Examples Explanation

2-cell

1-cell a curve ends in this cell it enters the cell at a

particular boundary segments

a single curve enters and exits the cell at two

particular boundary segments

*-cell a cell where curves meet

1-edge curve segment intersects edge

0-edge no curve segment intersects edge

Figure 6. Curve labels for vertices and edges

of its 4-adjacent pixel cells as in Fig. 7a.

We assume that the pixel grid overlays a set of curves where the cell classes are
consistent (i.e., if a curve crosses a boundary segment then both cells adjacent to
this segment are in the correct class) and that all curves are distinguishable in the
base (i.e., there is no more than one curve in each cell of the base except in *-cells).
We initialize the algorithm by assigning all cells in the base (i.e., the squares in
Fig.7a) one of the four cell-classes using the following simple algorithm. If a curve
crosses an edge, then the edge receives an attribute 1 otherwise 0 and all pixel cells
sum the attributes of their incident edges. Sums of 0, 1, and 2 correspond to
0-cell, 1-cell, and 2-cells respectively, while cells with a sum greater than 2 are
*-cells. In the dual irregular pyramids the cells where the curves are represented
are contracted and not the dual graph as was done in [7].

3.2. Selecting the Contraction Kernels

As introduced by Kropatsch [4] the graph transformation starts at a pixel based
grid graph. In developing real world document image analysis methods we can
not use a pixel based grid graph as the base since it would require four times more
space then the already O(N2) iconic representation and would lead to O(N2)

time algorithms. By using the run graph representation directly as the base for
the transformation we reduce our memory requirements and allow arbitrarily thick
curves and objects while still obtaining the advantages of the transform.

A 0-cell is inserted for each face of the run graph and an edge between it and each
vertex of the face is created. All other cell values of a vertex can be computed
directly from their degree using Equation 1 before applying the rules of Tables 1a
to select the contraction kernel.
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(a) Original

(c) Contraction

(b) Contraction

(d) Final

Figure 7. Three step contraction preserving line connectivity

cell value =
{
d(v) if d(v) < 3
* otherwise

(1)

d(v) = degree(v)− |adjacent 0-cells|

The rules are derived from those in [4] but differ in that we now allow *-cells
to merge with 0-cells and 2-cells since the geometrical position of the junction is
inherited from the base graph. Due to this change faces in the dual graph surrounded
by either one (i.e., a self-loop) or two parallel marked edges may appear and must
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(a) Line Image. (b) Run Graph.

(c) Input Graph. (d) Contraction. (e) MLPP Graph.

Figure 8. DCG starting from a run graph base

Table 1. Selecting the contraction kernel for 〈S,N〉

Rule ( S ,N) Becomes

R12 1
1−→ 2 1

R10 1 −→ 0 1

R22 2
1−→ 2 2

R20 2 −→ 0 2

R00 0 −→ 0 0

R*2 ∗ 1−→ 2 *

R*0 ∗ −→ 0 *

(a) Selection rules

0 1 2 *

0 R00 R10 R20 R*0

1 R10 C2 R12 C1

2 R20 R12 R22 R*2

* R*0 C1 R*2 C3

(b) Recursive Application

be excluded from dual face contraction so that no line segments are lost in the
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final graph. 1-cells and *-cells must always survive and the bridges of connecting
paths inherit their attributes to the new edge. Random selection, as in adaptive
pyramids [3], applies whenever the given rules do not determine the contraction
kernels completely. The rules (Table 1a) are selected in the order presented below:

1. A 1-cell can merge with an adjacent 2-cell (R12) or 0-cell (R10).

2. A *-cell can merge with an adjacent (connected by a 1-edge) 2-cell (R*2) or
with any adjacent 0-cell (R*0).

3. A 2-cell can merge with two adjacent (connected by 1-edges) 2-cells (R22) or
with any adjacent 0-cell (R20).

4. A 0-cell can merge with any adjacent 0-cell and remains a 0-cell (R00).

3.3. Properties Preserved

The rules are applied recursively, as shown in Table 1, to dually contract the graphs
until no further contraction is possible. The resulting graph has the following
properties: there are no 0-cells and no 2-cells present, the number of 1-cells and the
number of *-cells is the same as in the base graph. This results in a topologically
correct and minimal description for all possible planar configurations of curves
regardless of how complicated their layout is. All curves have been contracted to
minimal length and those which were separate in the base remain distinct. The
connectivity information of the base is preserved and all empty space has been
removed. Any further deletions would remove either a line end point (state C2,
Table 1b) or crossing point (states C1 and C3, Table 1b) and hence destroy the line
topology.

3.4. Computational Complexity

One iteration of dual graph contraction reduces the length of the curves in terms of
the number of edges by at least a factor of two since surviving vertices on the curves
are not allowed to be neighbors. After n iterations the curve has been reduced by
a factor of 2n. No further contraction is possible when all curves between curve
ends and junctions have become a single edge. Hence the number of iterations
needed until convergence is O(log(longest curve)).
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4. Results and Conclusions

Table 2. Statistics of the MLPP graph for the above image

Contr. V R12 R22 R*2 E
Input 1953 2172

1 1953 92 358 329 2172
2 1174 3 10 117 1391
3 1044 0 0 1 1261

Result 1043 1260

The MLPP graph, Fig. 8e, of a staircase section, Fig. 8a, of a cadastral map
is computed from its run graph representation, Fig. 8b, which exhibits many
topologically extraneous nodes and edges. In the contraction kernel, Fig. 8d,
edges arising from rule R12 are shown as dotted lines, rule R22 as dashed lines,
and rule R*2 as thick solid lines. The run graph and dual graph contraction
have both been implemented in C++ using the LEDA [9] library, see [5] for de-
tails of the implementation and the IAPR Technical Committee 15 software page
www.prip.tuwien.ac.at/TC15/software.html for dual graph contraction soft-
ware.

Tables 2 and 3 give an example of computing the MLPP on two real world line
images. Computing the MLPP graph for the 6251 x 4416 pixel line image shown
in Table 2 on a Sparc 20 with 64 Megabytes of memory took 28.88 seconds for the
run graph and 12.35 seconds for the selection and dual graph contraction.
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Table 3. Statistics of the MLPP graph for on the above image

Contr. V R12 R22 R*2 E

Input 2522 2672
1 2522 214 501 325 2672
2 1482 7 22 83 1482
3 1370 1 9 15 1370
4 1345 0 2 3 1345
5 1340 0 1 1 1340

Result 1338 1412

The run graph provides a compact, structural representation for line image under-
standing, but because of its geometric nature, it does not succinctly describe the
topology of a line drawing. Our new algorithm based on DGC transforms the run
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graph into its MLPP topological form and when implemented in parallel requires
O(log(longest curve)) time.
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