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a b s t r a c t

The problem of point-set registration often arises in Pattern Recognition whenever one needs to match
information available in images, such as feature locations, landmarks, or points representing a surface of
an object. It is a challenging task and a widely explored topic in stereo vision, image alignment, medical
imaging, and other fields. Many of those problems have been addressed using graph theory by taking
advantage of the structural information available in graphs. In this paper, graph centralities are explored
in the point-set registration problem for the first time. We propose a variant of the Coherent Point Drift
(CPD) by integrating the degree, betweenness, closeness, eigenvector, and pagerank centralities. The
centrality values bring topological information used during the computation of correspondence between
points. We analyse the performance on several datasets and our results indicate that the registration can
converge faster when the centrality is combined with the spatial information in the traditional
probabilistic framework. Our novel contribution introduces the social network centralities as a good
source of prior information for the registration problem and it demonstrates how one can take
advantage of such information.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Point-set registration is a widely explored topic in Pattern
Recognition. It is an essential piece in feature matching [1], stereo
vision [2], tracking [3], medical imaging [4] and many other
applications. Intuitively, the problem consists of retrieving the
transformation and computing the correspondence between two
or more point-sets on their own coordinate systems.

Registration approaches are classified into either rigid or non-
rigid methods. Rigid registration only considers rigid transforma-
tions whilst non-rigid registration allows more involved tasks
once it can account for anisotropic scaling, skews, and complex
deformations (e.g. articulations, morphing). There are several
surveys reviewing algorithms for both rigid and non-rigid regis-
tration techniques [5–10]. Despite the extensive number of
approaches available in the literature, the two popular techniques
are worth mentioning: the Iterative Closest Point (ICP) [11] and the
Coherent Point Drift (CPD) [12]. They have been investigated and
extended by several authors [13] and in this paper, we focus on the
CPD algorithm.

One way to formulate the registration problem is via graph
theory [14–20]. Graph-based approaches provide structural infor-
mation in which edges describe relationships between entities
(e.g. components of an object). When there is no need to recover
the spatial transformation or such information is not available, the
correspondence problem is reduced to the Graph Matching (GM)
problem [21].

Many fields of science take advantage of graph representations.
In particular, the field of Social Network Analysis (SNA) has
employed the concept of centrality for many years [22–26]. The
notion of centrality tries to capture the measure of importance
within a network (graph). Although well-known, such a concept
has not been broadly explored outside SNA. By using centralities,
one can state that a certain node is more relevant than another or
that it is possible to rank the nodes according to their importance.
In this paper, we bring the so-called graph centralities into the
registration of point-sets and use this topological information on
the pursuit of the correct registration between points. We propose
to integrate the centrality measures during the computation of
correspondence. Thus, not only the spatial information is taken
into account but also the significance of nodes according to each
centrality measure.

The flavor of centrality has already been applied in computer
vision before, especially when approaches emerged from the
spectral graph theory [14,27–30]. Nonetheless, to the best of our
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knowledge, our approach is the first one to explicitly adopt
centralities during the registration of point-sets in computer
vision. The techniques which use similar concepts often explore
eigenvectors of some proximity matrix encoding the location
[27,28] or the orientation of points. Some centralities (e.g. eigen-
vector and pagerank) work directly on the eigenvectors of the
adjacency matrix.

Our results indicate that when a graph centrality is combined
with the spatial information of points, one can obtain a faster
decay of the alignment error and a good registration can be
obtained in fewer iterations when compared with the original
algorithm. We have evaluated 495 datasets and discuss the results
accordingly. On our best results, we were able to converge with
three times less iterations than CPD. Thus, graph centralities can
be used as a good source of prior information in computer vision.
Also, exploiting topological information can bring us more benefits
instead of solely relying on the spatial one. Thus, one could extend
those ideas to other vision tasks as well. The contributions of this
paper are the following:

� It introduces the centrality concept originated in the Social
Sciences into the point-set registration problem.

� It shows how one can integrate topological information by
using such measures instead of trusting only spatial informa-
tion of unstructured point-sets. We call this variant as Graph-
based Point Drift (GPD).

� We bring up the importance of edges in a graph. Many
researches neglect the role of the edges and we discuss how
fundamental this aspect is for the improvement of the results.

� It evaluates the performance of five centrality variants along
with the original algorithm. GPD can converge in less iterations
by using the centralities.

The remainder of this paper is organized as follows: Section 2
provides a review on point-set registration algorithms focusing on
those whose methodologies are closely related to ours. The role
of the edges is discussed in Section 3. Section 4 introduces the
concept of graph centrality and overviews the earlier usages of
centrality ideas in computer vision. Our main methodology is
disclosed in Section 5. We address the graph creation out of
unstructured point-sets1 and explain the introduction of central-
ities into the CPD algorithm. Our experiments are discussed in
Section 6 when we provide the results obtained for the registra-
tion of 2D and 3D point-sets under both rigid and non-rigid
transformations. Finally, our conclusions and future work are
presented in Section 7.

2. Point-set registration approaches

Given two point-sets, X and Y, our task is to retrieve the
transformation that best maps Y onto X and to estimate the
correspondence between points in both sets. More specifically,
there are several types of transformations that can be assumed:
rigid, similarity, affine, and non-rigid. Our approach is based on
the work of Myronenko and Song [12] and is also closely related to
the spectral method proposed by Carcassoni and Hancock [30].
In this section, we review some approaches akin to our work.

2.1. Expectation maximization methods

Many researchers decouple the registration problem into
the estimation of transformation and correspondence. It is often
referred to an alternate optimization scheme, i.e. the transforma-
tion between point-sets is fixed while the correspondence
between points is estimated. Later, the correspondence is fixed
and the transformation is obtained [12,15–17,30–32].

Cross and Hancock [15] developed a framework based on the
Expectation Maximization (EM) algorithm as a dual step optimiza-
tion. Previous works [33,34] estimated the affine and Euclidean
parameters of point-sets and could be considered as one of the
first ones to introduce structural constraints into correspondence.
Authors employed the Delaunay [35] triangulation to build the
graph and to constrain the correspondences matches based on the
edges of the graph. They define a structure called the superclique
as the sets of nodes connected to a central node. This structure is
later used in the computation of the probability associated with
the match. It is required to have a dictionary of possible mappings
and this is clearly the bottleneck of their approach. The matching
algorithm estimates the geometric transformations and corre-
spondences by jointly maximizing the likelihood over the space
of matches and transformations using the EM algorithm.

2.2. Spectral-based methods

One of the first usages of spectral methods in graph matching
was conducted by Umeyama [14] who performed an eigendecom-
position of the graph adjacency matrix in order to obtain the
permutation matrix P. Such a matrix represents the correspon-
dence between graphs. The solution created by Scott and Higgins
[27] and later refined by Shapiro and Brady [28] was also based on
a proximity matrix between points (Section 4.4). Carcassoni and
Hancock [30] defined a point-proximity matrix H which can be
constructed in many different ways. For instance, it could be based
on a Gaussian weighting function similar to [27,28], or on a
sigmoid or an Euclidean function. They use the eigenvectors of H
in order to compute the probability of assignment between points
along with the EM algorithm. In their experiments, they out-
performed Shapiro and Brady [28].

Jain and Zhang [36] dealt with the shape correspondence
problem by embedding the shapes into the spectral domain. They
encode the spatial coordinates of each point-set using a Gaussian
kernel with geodesic distances to create two affinity matrices.
Once they find the spectral embedding of those matrices, they
perform an iterative alignment and obtain the correspondence by
finding the best matching according to the ℓ-2 distance. In their
experiments, they outperformed the previous approaches
[14,28,30].

Other approaches using spectral theory include the work of
Mateus et al. [32] that tackled the shape matching problem by
exploiting the Laplacian matrix (Section 4.4).

2.3. Other methods

More Recently, Zhou and De la Torre [19,20] exploited the
problem of point correspondence via graph matching. They first
proposed the Factorized Graph Matching (FGM) [19] and later the
Deformable Graph Matching (DGM) [20]. The latter creates an
affinity matrix K encoding the similarity of both nodes and edges
as well as the pairwise geometry of points. They factorize the
matrix K into matrices that preserve local structure of each graph.
This factorization decouples the structures of the graph by repla-
cing K with six smaller matrices. They alternate the optimization
of the correspondence (using the path-following algorithm) and

1 Points containing only spatial coordinates without any topological linkage to
each other.
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the geometric transformation (with an optimization scheme
similar to ICP).

Torresani et al. [37] also propose a dual decomposition scheme
for the problem of correspondence. The scenario is now the
correspondence of sparse features extracted from images and
their solution minimizes an energy function based on several
terms: feature appearance, compatibility of correspondence, and
spatial coherence.

3. The role of the edges

The centrality concept tries to measure the importance of a
node within a network. The importance is quantified via the
existing relationships in the graph and the meaning of who is
central and who is not is solely established by the edges in the
graph. Thus, the edges play an essential role on the computation of
centrality. Considering that we only have points embedded in a d-
dimensional space, it is necessary to build the so-called data
graph, i.e. a graph created based on the spatial information of
points.

The data graph can be obtained in a variety of ways. The most
frequent choice is the Delaunay triangulation which is based on
the condition that no other point should lie inside the circumcircle
of any triangle. It is the dual of the Voronoi diagram partitioning
the embedding space into regions closest to the point set. We
adopt the Delaunay triangulation in order to understand its impact
on the results. However, we are aware that it is not an optimal
strategy for our task and we are working on developing more
suitable alternatives to it. Some of the problems we face when
using the Delaunay triangulation are the following:

� The possibility of unstable point configurations. The same set of
points might generate several different graphs (Fig. 1a and b).

� If we consider the noisy scenario, this strategy might assign
many edges to a node which is actually noise. For instance, in
Fig. 1c, the addition of one noisy point caused an abrupt change
of topology compared with the graphs in Fig. 1a and b.

Points in computer vision often arise from measurements of
an object and it would be more meaningful to use a data graph
technique which could take that into account. As aforementioned,
there are point configurations where the Delaunay triangulation is
ambiguous: if more than three points are located on the circum-
circle of a triangle, then any triangulation of the circle can be
chosen as part of the Delaunay triangulation. This weak config-
uration gives also rise to instabilities: any perturbation of the
points on the circumcircle can create another graph.

Several studies have investigated the stability of Delaunay
triangulation, such as in the work of Boissonnat et al. [38]. There
are several alternatives for constructing graphs such as Reeb

graphs [39], Gabriel Graph, and Minimum Spanning Tree. Outliers
could be understood as those points that do not belong to the
surface of an object but are present in the point-set. The location
of an outlier with respect to the real data might be crucial in such a
way that many edges can be assigned to it and therefore they will
possess high centrality values (Fig. 1c), which is clearly not the
desired behaviour. One natural solution for the outlier problem in
the data graph is to fit some models to the point-set, e.g. conic
fitting or a regression in order to abstract primitive structures
instead of using only the Euclidean distance for pairing up nodes.

Lian and Zhang [40] propose to represent shapes using a fan-
shaped structure by solving the Traveling Salesman Problem [41].
Their approach is restricted to simple polygons without holes and
it results in a set of connected triangles. Later, they proposed an
alternative for graph creation based on the Minimum Spanning
Tree (MST) and Star Graph to be able to apply Dynamic Program-
ming (DP) in order to find the best embedding of the point-sets
[42]. Other approaches [43] focus on aesthetic aspects of point-
sets. In the conclusions section, we will discuss some research
directions that we are currently developing in order to address
some of the previously mentioned problems.

4. Graph centrality

The idea of centrality was born in the Social Sciences when
Bavelas [44,45] analysed group processes in human communica-
tion. It was later when Freeman [22] examined the studies of
different researchers that the concept of centrality was in fact
clarified. Freeman illustrates some distinct conceptual properties
using a star graph2 in order to explain the notion behind centrality.
For instance, the central node of such graph not only possesses the
highest degree among the others, but it also lies on the geodesic
path between any two nodes3. Given the fact that it has the
minimum distance to any node, it is considered to be closest to
them. Those ideas compose the core of the degree, betweenness,
and closeness centralities.

Concepts initially applied in social networks are being brought
into other fields that are not necessarily human-related such as
virtual network [46], power-grid [47], image saliency [48], and
resistor network [49,50]. Nevertheless, we did not find many
works in computer vision taking advantage of centralities. In this
section, we review five of the most important centrality measure-
ments: Degree, Betweenness, Closeness, Eigenvector, and

Fig. 1. Unstable configurations (a, b) and the impact of noise in the Delaunay triangulation (c).

2 A star graph St is a tree of depth one where the central node is the root of
the tree.

3 The geodesic of any pair of nodes si; skASt is the shortest path between them.
In a star graph, the shortest path between two non-adjacent nodes includes the
central node.
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Pagerank. For the remainder of this paper, we shall introduce the
following notations:

� X;Y are point-sets whose dimensions are N and M.
� X ;Y are nodes of the data graphs created of X and Y which

preserve the point coordinates and contain edges describing
relationship between nodes.

� xn is the nth point AX or the nth node AX , for 1rnrN.
� ym is the mth point AY or the mth node AY, for 1rmrM.
� A is the adjacency matrix of X .
� vðxnÞ is a function v : X-R which calculates the centrality

value of the given node xn.� bðxnÞ; cðxnÞ;dðxnÞ; eðxnÞ, and rðxnÞ are different centrality func-
tions that stand for the betweenness, closeness, degree, eigen-
vector, and pagerank centralities of the node xn respectively. In
our equations, we use vðxnÞ as a generalization of those
centrality functions.

4.1. Node degree – dðxnÞ

Node degree is one of the most well known centrality mea-
surements not only due to its simplicity but also due to its
widespread usage in many graph theoretical problems. The degree
of a point dðxnÞ measures how many nodes are connected to xn,
in other words, how many edges are incident to this point. This
concept is further broaden into in-degree and out-degree for a
directed graph related to the edges that arrive in xn and edges that
exit from it.

The degree xn can be computed as the sum of elements in the
row (or column) n of A:

dðxnÞ ¼ ∑
N

k ¼ 1
An;k ¼ ∑

N

k ¼ 1
Ak;n: ð1Þ

Nevertheless, the importance of a node with respect to the degree
centrality is not really clear as it depends on the average degree of
the graph. For instance, a degree 8 might be considered high in a
graph whose average degree is 2, but it is low in a graph whose
average degree is 30. Hence, to overcome this, one could simply
normalize dðxnÞ:

dðxnÞ ¼ dðxnÞ
max fdðxkÞ : 1rkrNg; ð2Þ

where the maximum degree value of the graph would now be
equal to 1. Alternatively, Freeman [22] suggests that this normal-
ization should occur with respect to the highest difference
between centrality values within the graph.

In computer vision, the node degree has been explored in
several manners such as in the abstraction of rectangular lattice
defining a 4-neighborhood until more specialized usages such as
in segmentation. However, the work of Pal et al. [48] treated the
degree of a node as centrality, i.e. measuring the importance of the
nodes in a graph. In their work, they aimed at extracting visual
saliency of images. They were motivated by studies reporting that
objects whose locations differ significantly from their surrounding
are considered as salient by means of drawing attention. Thus,
they decided to design networks that model such saliency (called
Visual Saliency Networks) by encoding salient regions as central
nodes using the degree centrality.

4.2. Betweenness centrality – bðxnÞ

The communication between two non-adjacent nodes depends
totally on the path between them, i.e. the nodes that lie between
them [51]. The main idea of betweenness centrality defined by
Freeman [52] is that vertices that lie on the geodesic path of many

other vertices will possess great control over the information flow
due to the fact that they reside between others.

The betweenness centrality bðxnÞ of a node xn is calculated as
follows:

bðxnÞ ¼ ∑
sana tAV

γnðxs; xtÞ
γðxs; xtÞ

; ð3Þ

where γðxs; xtÞ is the number of geodesic paths between nodes xs

and xt and γnðxs; xtÞ is the number of those geodesics passing
through xn. The computation of the betweenness centrality
requires the calculation of the geodesic paths to all vertices in
the graph. It is important to mention that there is another measure
of betweenness centrality based on random walks defined by
Newman [53]. Nevertheless, in this paper, we will only refer to
Freeman's betweenness.

Li et al. [54] used betweenness centrality for scene image
categorization. They build a social network of images of one class
(e.g. kitchen) and calculate the betweenness of a certain image of
this class with respect to the network. In this way, this is not an
image-to-image measure, but an image-to-class measure estimat-
ing the overall connectivity to the class to which this image
belongs to. Their results were superior to the methods in the
state-of-the-art on three datasets.

Mantrach et al. [55] proposed the so-called Sum-over-Path
(SoP) covariance measure which is a similarity measure between
nodes in a graph that considers two nodes as highly correlated if
they co-occur frequently on the same (shortest) paths between
nodes in the graph. Thus, they define the SoP betweenness
measure whose concept estimates the expected number of times
a node occurs on a path and they compare their betweenness
measure with both Freeman's and Newman's. A SoP formulation
for string edit distance has been proposed by García-Díez et al.
[56] and the Sum-over-Forests (SoF) index was later proposed by
Senelle et al. [57] with the same inspiration that large forests
would occur with lower probability and short forests would occur
with high probability in a graph.

4.3. Closeness centrality – cðxnÞ

The closeness centrality is a measure that evaluates how close a
certain node is to all the other nodes in the graph. It was initially
proposed in [45,58–60]. As defined by Sabidussi [60], the closeness
centrality cðxnÞ of a node xn can be computed as follows:

cðxnÞ ¼ ∑
xk AX \fxng

1
dðxn; xkÞ

; ð4Þ

where dðxn; xkÞ is the shortest distance between vertices xn and xk.
Roughly speaking, when computing the distance between two
nodes, we are able to define how far those nodes are. Therefore, by
inverting it, we intuitively obtain the measure of how close
they are.

When analyzing shapes, de Sousa et al. [61] described a shape
by the histogram of the centrality values using an 8-connected
neighborhood graph. A desired behaviour would expect that
similar shapes should have similar histograms with respect to
their centrality values. They have evaluated the robustness of each
individual centrality by randomly removing nodes of the graph
and calculating the new histogram after this topological change in
the graph. The results indicated that the closeness centrality was
the most robust centrality against that type of noise for the shape
matching task.

4.4. Eigenvector centrality – eðxnÞ

The eigenvector centrality of graph X corresponds to the
eigenvector w¼ ðw1;w2;…;wNÞT associated with the highest
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eigenvalue λ of the adjacency matrix A [24]. The study of
eigenvalues and eigenvectors of the adjacency matrix and the
Laplacian matrix of a graph has received a vast contribution from
many authors [62–64] in mathematics and spectral graph theory.
In computer vision, it has important results in image segmentation
such as in the famous work of graph-cuts by Shi and Malik [65]
and other segmentation methods exploring the Laplacian matrix
[66].

The idea of eigenvectors of some matrix describing relationship
between points was already exploited in point-set registration.
In fact, one of the earlier works employing eigenvector analysis
(although not in a graph) was conducted by Scott and Higgins [27]
and later refined by Shapiro and Brady [28]. Both approaches
apply a Singular Value Decomposition (SVD) of a matrix
Hi;j ¼ expð�r2ij=2σ

2Þ which uses the squared distance (rij2) between
nodes i and j to define the proximity of nodes. Shapiro and Brady
[28] handled some limitations of the original work such as coping
with large rotations and translations in the image plane. The
eigenvector analysis employed by them occurred over the matrix
H (proximity) while the so-called eigenvector centrality occurs
directly on the adjacency matrix of the graph. However, for point-
set registration, it is not uncommon to define a proximity matrix
between points. The recent work of Zhou and De la Torre [19,20]
(described in Section 2.3) factorizes a proximity matrix for the
graph matching problem.

Leordeanu and Hebert [29] propose a solution to the registra-
tion problem by exploring the principal Eigenvector of an associa-
tion matrix M. The interpretation of the eigenvector by the authors
relates to the confidence of a certain assignment. For each
correspondence element a¼ ði; i0ÞAM, the eigenvector xnðaÞ stands
for the confidence of a.

4.5. Pagerank centrality – rðxnÞ

PageRank [67] is an algorithm for measuring the importance of
a web page. According to [24], the Pagerank centrality rðxnÞ is a
variant of the eigenvector centrality and it can be determined by
the following equation:

w¼ 1�d
N

� 1þdAw; ð5Þ

where w¼ ðrðx1Þ; rðx2Þ; �⋯; rðxnÞÞT is the PageRank vector, while
rðxnÞ stands for the PageRank of node xn and N is the total number
of nodes, d is a damping factor with d¼0.85, 1 is a column vector,
and A is a modified adjacency matrix (for details on the computa-
tion see [24]).

In pattern recognition, Gomo [68] proposed an algorithm
inspired on PageRank for image denoising which explores the
topological structure of the similarity between image pixels.

4.6. Remarks

Many other centrality measures have been proposed in the past
years and are not covered in this paper. For instance, Mukherjee
et al. [69] used the eccentricity4 of graph as a measure of
importance for modeling human action recognition. This concept
could be considered as a centrality and it was also used by
Kropatsch et al. [71] in the analysis and matching of binary shapes.

Another meaningful property of a graph is the Laplacian matrix
which is commonly defined as L¼D�A, where D is a diagonal
matrix with the degree of the nodes and A is the adjacency matrix.
This Laplacian matrix has important results in spectral graph
theory and it is closely related to the commute time [72]. In fact,

it can be computed using the pseudoinverse of the Laplacian
matrix of the graph. The commute time is a distance measure
between nodes in a graph using the idea of average number of
steps a randomwalker would take to reach a node j starting from a
node i and to return back to the origin. It has a relation to the
resistance distance proposed by Klein and Randi [49] in their study
of resistive electrical network. This concept has been explored in
computer vision by Qiu and Hancock [66,73] on the problems of
image segmentation and clustering.

5. Coherent point drift (CPD) framework

The coherent point drift (CPD) addresses the point-set registra-
tion problem with an iterative approach that aligns one point-set
towards the other until convergence. It considers the points in one
set (e.g. Y) as Gaussian Mixture Model (GMM) centroids in which
the correspondence and the transformation are estimated via
Expectation Maximization. For instance, points in Y are considered
as GMM centroids with the following probability density function:

pðxÞ ¼ ∑
Mþ1

m ¼ 1
PðmÞpðxjmÞ; ð6Þ

where PðmÞ ¼ 1=M is a uniform probability for the GMM centroids
and the authors also introduce pðxjMþ1Þ ¼ 1=N to account for
outliers. Expanding Eq. (6) with a linear combination using
parameter 0rwr1, they end up in the form

pðxÞ ¼w
1
N
þð1�wÞ ∑

M

m ¼ 1
PðmÞpðx mÞ:

�� ð7Þ

During the computation of probabilities pðxjmÞ and PðmjxnÞ,
CPD considers the spatial coordinates associated with the points.
In this work, we introduce the centrality values along with the
spatial clues. Finally, the original CPD probability function is
defined as

PcðmjxnÞ ¼
exp �1

2 J
xn �T ðym ;θÞ

σ J2
� �

∑M
k ¼ 1 exp �1

2 J
xn �T ðyk ;θÞ

σ J2
� �

þc
ð8Þ

where c¼ ð2πσ2ÞD=2ðw=ð1�wÞÞM=N and θ and σ are the parameters
estimated by EM. We use the subscript c in PcðmjxnÞ to differentiate
from our proposed probability estimation in the next section.

5.1. Centrality-based probability estimation

Given a point-set X and its associated graph X , we shall refer
to x as a point belonging to both X and X , hence, assuming a
bijection X2X. A straightforward way to bring the aforemen-
tioned centralities into the estimation of correspondences would
consist of computing the probability PðmjxnÞ associated with the
centrality values of nodes. So, the probability of ym being matched
to xn only according to the centrality could be defined as

PðmjxnÞ ¼
hc
m exp � JvðymÞ�vðxnÞ J 2

2ϕ2

� �

∑M
k ¼ 1h

c
k exp � JvðykÞ�vðxnÞ J 2

2ϕ2

� �; ð9Þ

in which hmc stands for the histogram bin associated with the
centrality vðymÞ of node ym indicating how many nodes were
found in that graph whose centrality is the same as ym. Intuitively,
the nodes xAX whose centrality values are closer to the centrality
of ym would have a higher probability of being matched. In fact,
our Eq. (9) is very similar to the one proposed by Carcassoni and
Hancock [30, Eq. 16]. However, they employ the eigenvectors of a
proximity matrix H with different weighting functions. If we apply
the eigenvector centrality as vðxnÞ for our Eq. (9), we are

4 The eccentricity is the maximum geodesic between a node to all the other
nodes in a graph [70].
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computing the difference between the elements of the eigenvector
of the adjacency matrix, not of a proximity matrix created with a
specific weighting function.

Fig. 2a shows the centrality values obtained when calculating the
closeness centrality cðxnÞ of X . Blue nodes represent low centrality
values while pink nodes represent more central ones. In order to
illustrate the idea, we estimate the probability of a node being
matched within the graph ðX ¼ YÞ. Fig. 2b indicates the node xn

which we would like to match according to Eq. (9). Fig. 2c shows the
probability of each node ymAY being matched to xn. We can see that
many nodes are assigned the colour blue, meaning that they have
lower chance of being matched to xn due to the fact that their
centrality value differs significantly. The intuition of Eq. (9) is to
combine a Gaussian distribution with the one estimated by the
histogram to enhance the probability of nodes whose values are closer
to the one we would like to match. Fig. 3a shows the histogram of the
centrality distribution in Fig. 2a while the final probability is displayed
in Fig. 3b. The colour scheme displays the importance of the node
according to the closeness centrality. The unimodal Gaussian is
centered at the centrality value of xn and ϕ is the variance of the
centralities in X which controls how strong the influence of the
Gaussian is.

It is clear that Eq. (9) by itself would not be able to successfully
register both sets without integrating spatial information. There are
many nodes with similar centralities which turns the matching
process into a difficult task if we rely only on the centrality

information. However, having such information helps us prune
nodes that do not represent good matches as in a role of a prior.
Finally, we propose to combine both centrality information along
with spatial coordinates. We define the spatial contribution as
Sðx;mÞ ¼ Jx�ym J2=2σ2 and the centrality contribution as
Cðx;mÞ ¼ JvðxÞ�vðymÞJ2=2ϕ2, where σ2 is the variance associated
with the locations of the points and ϕ2 the variance associated with
the centrality values. We combine both terms in Eq. (10) and in this
approach one could add a free parameter (κ) to control the
importance of each term via linear combination. In our current
configuration, however, both terms contribute equally to the results.
We discuss more about the impact of a free parameter κ in the
experiments:

ψ ðx;mÞ ¼ �ðSðx;mÞþCðx;mÞÞ; ð10Þ

The probability pðxjmÞ takes the form of

pðxjmÞ ¼ hc
m expðψ ðx;mÞÞ
ð2πσ2ÞD=2

; ð11Þ

After some operations, Eq. (12) summarizes the probability
function which considers both the spatial information of points
and how central they are in the graph:

PgðmjxnÞ ¼
hcm expðψ ðxn;mÞÞ

∑M
k ¼ 1h

c
k expðψ ðxn; kÞÞþc

ð12Þ

Fig. 2. (a) Graph X built using the Delaunay triangulation colour-coded using the closeness centrality. The pinkish the node is, the more central it is. (b) Node xn chosen for
calculating the probability of being matched with respect to the centrality of the others. (c) Probability PgðmjxnÞ of xn being matched as in Eq. (9). Finally, ∑N

n ¼ 1PgðmjxnÞ¼1.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. (a) The histogram of the closeness centrality of Fig. 2a overlapped with a Gaussian distribution centered at xn . (b) The probability PðmjxnÞ as computed in Eq. (9).
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where c¼ ð2πσ2ÞD=2ðw=ð1�wÞÞM=N (as in Eq. (8)) and each cen-
trality vðxnÞ can be applied in order to compute the probabilities.
We evaluate the performance of them in the experiments. We use
the subscript g in PgðmjxnÞ to differentiate with the probability
PcðmjxnÞ originally estimated by CPD.

Our Eq. (12) states that the centrality value introduced will
either reward or penalize the connection between ym and xn based
on the centrality.

5.2. Relation between GPD and CPD

In order to better understand the relation between our
centrality-based probability estimation and the original CPD
computation, we have the following proposition:

Proposition 1. Let Xn, X be graphs associated with a point-set X
and Yn, Y be graphs associated with a point-set Y. Xn and Yn are
complete graphs ðKtÞ with t nodes. Similarly, X , Y are disconnected
graphs ðKt Þ with t nodes and 0 edges. Then, the probabilities
computed in Eq. (12) are the same for all graphs:

PgðmjxnÞ ¼ PgðmjxnÞ ¼ PcðmjxnÞ ð13Þ
where ymAYn, xnAXn, ymAY , xnAX , and finally ymAY, xnAX.

Proposition 1 states that when using a Kt or Kt , the GPD
probability of m given xn are the same for the complete graph, for
the disconnected graph, and for CPD where no graph approach is
used. In order to prove Proposition 1, we need to show that for a
complete graph Kt of t nodes, all nodes have the same centrality
value, and therefore we state Proposition 2.

Proposition 2. Let Kt be a complete graph with t nodes and
tðt�1Þ=2 edges. Then, vðxkÞ ¼ vðxlÞ8fxk;xlgAKt .

We will only provide the proof for the eigenvector centrality
inspired by Brouwer and Haemers [74]. Therefore, Proposition 1
holds true for any centrality measurement that preserves the same
value for nodes when using a Kt graph.

Proof of Proposition 2 (based on [74]). Let J be a 1 matrix of
order t, the rank of J is 1 with spectrum t1, 0t�1. The adjacency
matrix A of Kt is A¼ J�I, where I is the identity matrix. Consider-
ing that the spectrum of I is 1n, the spectrum of Kt is ðn�1Þ1 and
ð�1Þn�1. In order to fulfill Aw¼ λw for eigenvalue λ¼ n�1, the
eigenvector w associated with it needs to be a 1-vector. Therefore,
for a Kt graph, the centrality eðxpÞ ¼ 1; for 1rprt. □

Considering all centrality types that respect Proposition 2, we
can now prove Proposition 1.

Proof of Proposition 1. Due to the fact that Xn and Yn are
complete graphs, then

vðxkÞ ¼ vðxiÞ; for all fxk; xigAXn ð14Þ
and

hci ¼ t; for any iAXn ð15Þ
without loss of generality, the same holds for Yn. Hence, by
plugging those previous values into Eq. (12),

PgðmjxnÞ ¼
t exp �1

2 J
xn �T ðym ;θÞ

σ J2
� �

expð0Þ
∑M

k ¼ 1t exp �1
2 J

xn �T ðyk ;θÞ
σ J2

� �
expð0Þþc

ð16Þ

and we arrive that

PgðmjxnÞ ¼
exp �1

2 J
xn �T ðym ;θÞ

σ J2
� �

∑M
k ¼ 1exp �1

2 J
xn �T ðyk ;θÞ

σ J2
� �

þc
ð17Þ

showing that Eq. (17) is equivalent to Eq. (8).

Graphs X and Y are disconnected graphs. Thus, the content
inside the exponential function would automatically be zero5 and
the same results would be obtained. □

Proposition 1 indicates that neither a completely disconnected
graph Kt (just a point-set) nor a complete graph Kt improves CPD.
Thus, any improvement in the actual algorithm only occurs when
the graph is neither empty nor complete but when the edges play
the important role of resembling the actual structure of the object
being matched. We brought the importance of edges in Section 3.

5.3. Optimization

CPD reparametrizes the GMM centroids using parameters θ
and σ2 which are estimated by minimizing the negative log-
likelihood function:

Eðθ;σ2Þ ¼ � ∑
M

n ¼ 1
log ∑

M

m ¼ 1
PðmÞpðxjmÞ ð18Þ

and they solve the transformation T for the rigid, affine, and non-
rigid cases separately. For details on the final estimation of those
parameters, refer to [12].

6. Experiments

In order to understand the impact of a graph centrality on the
registration of point-sets, we need to perform different types of
experiments. We will split the experiments in two parts. On the
first part, we try to observe the behaviour of centralities on three
distinct scenarios: (i) similarity transformation with no noise,
(ii) affine transformation with missing points, and (iii) non-rigid
transformation with the addition of noise and missing points. On
the second part, we evaluate 495 point-sets with different char-
acteristics: the sampling function, the distributions applied for
drawing points, etc. The aim of the second part is to isolate certain
properties of the point-sets which could help one to understand
the behaviour of the individual centrality. Therefore, to some
extent, one could predict which centrality is advantageous giving
some knowledge about the point-set.

Similarity transformation: Fig. 5 shows the similarity registra-
tion of the fish6 dataset with 91 points. The first row displays the
alignment at the 3rd iteration, second row at the 6th, and the third
row at the 9th iteration. Closeness and eigenvector variants
obtained good results at the 6th iteration, which are better than
CPD at the 9th iteration. Closeness converges at the 9th iteration
while CPD still needs more iterations to finish the registration. We
consider the alignment error as the ℓ2 norm between the original
point set X and the point set Y after the recovered transformation:
JX�T ðYÞJ . Fig. 4a shows the alignment error with respect to the
number of iterations. The faster the curve decay, the faster the
registration. The curve should approach zero in the ideal case.
Observing the curves, the GPD variants using closeness and
eigenvector centralities obtained the quickest decay, while the
degree, betweenness, and pagerank decayed slowly compared
with them, although they are still faster than CPD for this example.
This indicates that topological information might help the algo-
rithm converge faster. We should investigate this behaviour in a
bigger amount of data for the second part of the experiment.

5 Assuming that the centrality of disconnected nodes is either zero or a
constant but not infinity, e.g. Freeman [22] considers the distance between
disconnected nodes as infinity, hence, we could consider that the closeness
cðxnÞ ¼∑1=1-0: Freeman [52] also defines the betweenness of disconnected
nodes as 0.

6 http://sites.google.com/site/myronenko/research/cpd
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Affine transformation: The second scenario of the first part
considered a 3D face dataset with 392 points under affine
transformation with different missing points (for each set). It is
also possible to notice, in Fig. 4b, that the alignment error of some
centralities decayed faster than CPD. At iteration 10, many cen-
tralities had lower error than CPD, while CPD reaches this error
around iteration 20, showing that for this example, centralities are
still able to decrease the error faster. This is a more challenging
example than the fish one not only due to the higher number of
dimensions but also due to the missing points.

Non-rigid transformation: Finally, the last scenario (Fig. 6) con-
sists of the fish dataset under non-rigid registration. In this
scenario, we also add outliers and remove real points from both
datasets. This type of transformation is particularly challenging
for all algorithms and the decay is presented in Fig. 4c. Among all
centrality algorithms, the closeness centrality was the one with
the best performance in terms of error decay and accuracy of the
alignment. The degree centrality failed to converge and incorrectly

matched the dorsal fin of one fish to the caudal fin of the other.
Such deformation would not be possible in the rigid case, but it is
allowed in the non-rigid case. Nevertheless, the cause for failure
of the degree centrality is due to the fact that the prior given
provides wrong information. Centralities are based on graph and
the way graph is built plays an essential role for the success of the
registration. As already mentioned (Fig. 1c), when the Delaunay
triangulation assigns many edges to a noisy point, this node
becomes more central and, therefore, jeopardizes the registration
if it is, in fact, noise.

Discussion: Those three distinct examples provide some intui-
tion for the behaviour of centralities. The success and quality of the
registration is associated with several aspects: (i) the type of
centrality used, (ii) the data graph construction, and (iii) the
peculiarity of each point-set. In this paper we only apply the
Delaunay triangulation. Hence, we should expect that sets with
noisy and missing points will not have significant better perfor-
mance, or even worse, as the prior might be wrong due to the

Fig. 4. Landmark errors of the (a) 2D fish dataset under similarity transformation, the (b) 3D face dataset with missing points under affine transformation and the (c) fish
dataset with missing points and added noise.

Fig. 5. Registration of the fish point-set under similarity transformation. The first row shows results at the 3rd iteration , second row at 6th iteration, and third row at 9th
iteration. We can observe that closeness and eigenvector centralities converged faster than CPD.

S. de Sousa, W.G. Kropatsch / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: S. de Sousa, W.G. Kropatsch, Graph-based point drift: Graph centrality on the registration of point-sets,
Pattern Recognition (2014), http://dx.doi.org/10.1016/j.patcog.2014.06.011i

http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1016/j.patcog.2014.06.011


triangulation, it can cause failure in the convergence. However,
there are still some questions which can be raised and are
essential to understand the remaining results of the registration:

1. What is the data graph construction technique which can best
cope with noise in point-sets?

2. Is the noise in the triangulation process the only reason for the
poor performance of the centrality in the third example?

3. If no noise is present, is the centrality always able to converge
faster than CPD for any point-set?

4. What are the properties of point-sets which can be successfully
addressed by the centralities?

The first question could be considered as an open research
question. Although there are many options for data graph con-
struction7, there is still no clear answer to such question due to the
fact that the concept of noise in a point-set is context dependent.
We referred to noise in the fish example because we knew that
true points were sampled from an object's surface and they should
lie on the silhouette. If no information about the point-set is given
and the algorithm is asked to create a graph which is robust to
noise, it will be a challenging task to decide what noise actually is
in order to be able to reduce its impact. We will be moving
towards that question on our future work: characterizing noise in
point-sets and minimizing its impact on the data graph.

In order to answer the remaining questions, we perform
extensive experiments in the noise free scenario once we already
know that noise will not improve the results of the centralities. We
fixed two aspects of the process: the data graph construction
(Delaunay) and the noise scenario. Therefore, we can vary the class
of point-sets and evaluate which properties cause impact on the
results. We provide five different classes of point-sets that share
similar properties. For each class, there are 99 distinct point-sets
and we aim to evaluate whether the registration behaves similarly
for each class and algorithms used, considering that those other

two parameters are fixed (noise and data graph). Fig. 7 shows
samples of those five classes: (i) Clusters, (i) Random, (iii) Gaussian
sampling, (iv) Contour, and (v) Grid sampling. The images of the
Kimia-99 dataset [75] were used to generate the contour and the
different sampling images. The databases, our results, and the
video demonstrating the registration process are available online.8

Table 1 shows the number of iterations each algorithm took to
converge on those 495 point-sets. It contains the average and
standard deviation per class and algorithm. The results are
calculated only on the registrations that succeeded to converge.
The convergence of each algorithm is displayed in Table 2. On the
first class, which are clusters, all centralities obtained a faster
decay than CPD. In fact, the closeness centrality was on average
2.66 times faster than CPD. Among the 99 sets of this class, the
best result was approximately 3 times faster than CPD. We
measure the speed of registration by the number of iterations
the algorithm took to converge. When analyzing the standard
deviation for both degree and eigenvector centralities for this
class, it is noticeable that they are really high compared with the
other algorithms. Also, degree and eigenvector were the only ones
not able to converge on all databases of this class.

For the random class, all centralities obtained faster convergence
than CPD, but the degree was this time the only algorithm which did
not converge on all sets. Eigenvector and closeness centralities were
the fastest ones, more than 2 times faster than CPD on average. The
eigenvector algorithm was quite stable for this sort of data once its
standard deviation is quite low compared with the previous class. The
next class consists of an object contour. We extracted the contour of
images from the Kimia dataset in order to create the contour-based
point-set. Closeness centrality was again the fastest algorithm to
converge. The degree and the eigenvector were unable to totally
converge and this time the average convergence time for the degree is
higher than CPD.

Finally, we sample the object using a grid-based strategy.
Notice that inside the object, all nodes will have the same node
degree, while they will differ on the boundaries. This was the only

Fig. 6. Registration of two 2D point sets under non-rigid transformation with outliers and missing points. First row shows results at the 10th iteration, second row at 20th
iteration, and third row at 50th iteration. It is still possible to observe that closeness centrality has similar results as CPD, while the degree completely fails to converge,
betweenness and page rank obtained high error.

7 Possibilities include the Gabriel Graph, Travel Salesman Problem formulation,
Euclidean Minimum Spanning Tree. 8 http://prip.tuwien.ac.at/gpd
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case in which no centrality was able to converge 100%. If one, for
instance, creates the data graph using an 8-connected neighbor-
hood, all points inside the object are likely to be matched, based
on only the degree. Therefore, when the point-set is grid sampled,
it is better to rely on CPD which considers only the spatial
information once the prior becomes non-informative. It is impor-
tant to mention that one could add a free parameter κ (e.g.
κSþð1�κÞC) into Eq. (10) and balance the importance of each
term S and C in the equation (spatial vs. topological information).
Thus, it would be possible to obtain either better or equal results
to CPD by cross validating κ. In our experiments, we decided not to
add such a free parameter to avoid the results being dependent on
how well κ was tuned. For instance, in the last grid experiment,
one could set κ¼1 and turn off the contribution of the centralities
ðCÞ. In fact, by letting both terms equally contribute, we can better
understand when the centrality term causes a positive or a
negative impact and whether such a behaviour can be reproduced
in other sets under the same conditions. So, by isolating certain
properties of the point-sets, we now have a good indication of
when the centralities can improve the registration process.

We plot the distribution of centrality values in Fig. 8 in order to
understand why the centralities had poor convergence perfor-
mance on the last experiment. Due to the grid sampling, many
points have the same centrality value (depicted by the same
colour). For instance, all points inside the object in the degree
image have the same centrality value (e.g. 8 for an 8-connected
neighborhood). When sampling using the degree, the distribution
will have a high peak in 8 and smaller peaks for the points in the
boundary. Eigenvector and closeness centralities have most dis-
criminative distributions under grid sampling, although there are
many nodes with similar centrality values, which are concentric
inside the shape. Such property would explain why the eigenvec-
tor centrality and closeness were the winners in the last experi-
ment, although all centralities suffered from the same
convergence problem. Therefore, when performing registration
of grid sampled points, centralities can still produce good results
but it is clear that the impact on the registration should be reduced
via κ.

Computational complexity: The computational cost of the overall
method can be decomposed into several parts. There is the cost
associated with the data graph construction, considering that the
input is a point-set. In this case, the complexity is bounded by the
technique applied, such as Delaunay triangulation and Minimum
Spanning Tree. If the input is already a graph, this step is not
required. The bottleneck of our approach is the centrality computa-
tion, which varies from the simple degree calculation (OðjV jþjEjÞ)
to the most complex centrality estimation. For instance, considering
that it is required to know the shortest path between all points in
the graph, the solution can be achieved by the Floyd–Warshall
algorithm in which complexity is OðjV j3Þ or with Johnson's algo-
rithm on a sparse graph whose complexity is OðjV j2 log jV jþjV jjEjÞ.

Fig. 7. Sample point-sets of 495 database used. Each image represents one sample of each class.

Table 1
Convergence speed for registering the 495 datasets. Each cell shows the average and standard deviation for the number of iterations until the algorithm converged.
The fastest algorithm in average is highlighted in bold.

Database B (μ7σ) C (μ7σ) D (μ7σ) E (μ7σ) P (μ7σ) CPD (μ7σ)

Cluster 42.7274.36 22.7271.26 53.67719.89 41.95717.15 49.8477.16 60.5673.91
Random 19.9471.94 15.2071.21 30.46715.97 14.5670.96 21.7171.89 37.2573.90
Gaussian 36.7279.33 22.0873.37 50.45720.47 37.20718.22 45.98713.42 51.54713.82
Contour 23.8273.74 17.6873.66 28.4975.03 20.4978.99 22.7873.99 26.3974.27
Grid 32.60718.39 26.31717.28 31.23721.08 24.71713.41 47.12729.72 34.29713.05

Table 2
Convergence on 495 point-sets under similarity transformation. Centralities D and
E did not converge on all classes. On grid class, no centrality converged 100%.

Dataset B (%) C (%) D (%) E (%) P (%) CPD (%)

Clusters 100 100 81 86 100 100
Random 100 100 55 100 100 100
Gaussian 100 100 75 86 100 100
Contour 100 100 90 95 100 100
Grid 95 69 35 77 68 100
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7. Conclusions and future work

Point-set registration is a challenging problem in Computer
Vision. In this paper, we introduced the graph centralities from the
Social Network field into the registration problem. We added the
topological contribution given by the centralities into the Coherent
Point Drift algorithm. We performed extensive experiments and
highlighted the important aspects for the successful centrality-
based registration. The first aspect is the data graph creation
which plays a major role. In this work, we only used the Delaunay
triangulation but in the future we will be developing a centrality
oriented technique for connecting unstructured points. This tech-
nique should cope with noise by reducing its impact. We fixed the
noise and data graph parameters and varied properties of point-
sets to understand the centrality behaviour. In the future, we will
vary the data graph approach and the amount of noise in order to
delineate which technique is able to move us one step further:
faster convergence under the presence of noise.

Our main contribution and conclusions consist of bringing
the centralities into the registration problem and showing how
well they can perform and in which conditions they improve the
registration results. Among all centralities, we observed that the
closeness was the one which produced the best results. We also
would like to study further the aggregation of centralities in order
to combine them. For instance, we noticed through our experi-
ments that eigenvector centrality has high discriminability in the
grid example and it was also the fastest one in the random
scenario. By combining them, one centrality could contribute in
a different manner and cope with the weakness of the other. It is
noticeable that the degree obtained poor results on all experi-
ments and we would like to study each strength and weakness of
individual centrality measures for vision tasks and to determine
how can they be combined to improve the results.
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