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Abstract. The qualitative structure of images is much like the quali-
tative structure of landscapes. 'Critical points’ of a landscape are the
summits, the immits, and the saddle points. These points are connected
through special curves on the surface of the landscape. The new approach
computes this basic qualitative structure of an image or a landscape
from the neighborhood structure of a sampled grid by a process called
monotonic dual graph contraction (MDGC). The vertices of the graphs
store information about gray level or height as attributes. Edges repre-
sent surface curves connecting the vertices. MDGC successively removes
non-extrema from the original graphs while it preserves the connectivity
between extrema and the connectivity level, a new property expressing
the least height difference when moving from one extremum to another
extremum. Since the graph represents a surface it is planar and the dual
graph is well defined. MDGC performs simplifications such that in one
graph all local maxima survive and in the dual all local minima survive.
Hence we call them ’mazimum graph’and ’minimum graph’ respectively.
The focus in this paper is on the description of the neighborhood and
the hierarchy of the local extrema of height. Monotonic properties of the
gray level image are preserved during the contraction process. The im-
plementation of the approach is described and experimental results are
discussed.

1 Introduction

In this paper the structure of images from the monotonic contraction of a pair of
dual graphs is described. This method provides an interpretation of properties
like neighborhoods and hierarchies of features. As application the sampling grid
of the pixels in a two-dimensional digital gray level image is replaced by a pair
of dual graphs adapted to the image’s critical points. If the gray levels are inter-
preted as heights, the image can be regarded as a digital terrain model (DTM).

* The authors gratefully acknowledge the assistence of Roland Glantz in the prepa-
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Koenderink[Koe84,Kv97] defined the qualitative structure of a digital terrain in
terms of: summits as the local maxima, of height, immits as the local minima of
height, topological curves as lines which connect summits or immits with each
other, and saddle points on topological curves.

In our approach the structure is computed in two steps: First, the image is
transformed into an attributed graph, where the vertices represent pixels, the
edges represent neighborhoods of pixels, and the vertex and edge attributes are
gray levels. In the main step, this graph is contracted until it consists of (a)
vertices which represent summits and faces which represent immits; (b) these
extrema are connected by curves on the surface passing through a saddle.

The proposed approach has several merits: for reasons of speed the contrac-
tion is performed in parallel in both the graph and in the corresponding dual
graph. Furthermore, this dual graph contraction is based on a theory with well-
known properties [Kro95]. As novelty, the dual graph contraction performed in
this paper preserves monotonic properties like height differences of critical points
and, additionally, it results in a compact representation of the structure.

The structuring of gray level images can also be achieved by other ap-
proaches. Hereby, watershed transformations are in the center of efficient ap-
proaches [MR98]. The monotonic dual graph contraction (MDGC) within this
paper differ from those in several points:

1. MDGC computes a dual pair of contracted graphs which describe the neigh-
borhood and the hierarchy of the summits and immits.

2. Watersheds are represented by a set of pixels. MDGC computes a compact
representation of a DTM, where the summits and immits are represented by
vertices and the topological curves are represented by paths.

3. Watershed transformations have to take into account the plateaus (more
precisely the behavior of water flow in the interior of a plateau) and this
requirement must be fulfilled by additional effort. This need not to be done
in MDGC.

4. Due to the attributes an explicit height information of the summits and
immits is provided within MDGC.

The remainder of the paper is organized as follows: In Section 2 the basic
concepts of MDGC are defined in detail. The algorithm MDGC and the proper-
ties are discussed, too. The implementation of MDGC is described in Section 3.
Afterwards, experimental results are presented in Section 4. We conclude in
Section 5 with an outlook for future work.

2 Monotonic Dual Graph Contraction

Our application, the computation of the image structure, relies on the contrac-
tion of a pair of dual graphs (G, G). In the following the pair of dual graphs and
the dual graph contraction are defined. Afterwards, the monotony preserving
property is provided and the correctness is proved. The basic concepts from the
field of graph theory are adopted from [TS92].
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Fig. 1. (a) The gray levels of the pixels. (b) The maximum graph of the marked sub-
image (inside the black border), where the vertices are represented as circles. The
numbers in the vertices and at the edges indicate the vertex values and the edge values
of the maximum graph. The numbers in the middle of the square regions are the
attributes of the vertices of the minimum graph.

The array of image pixels (Fig. 1(a)) is represented by an attributed graph,
where the vertices and the edges contain additional information [ECS98]. Each
pixel of the image is represented by a vertex of the graph. A vertex is adorned
with an attribute ((-), which is in our application the gray level of the corre-
sponding pixel (short: vertez value). Vertices are connected by an edge if their
corresponding pixels are neighbors®. Analogously, the edges have attributes £(-)
(short: edge values). Their definition is motivated by the problem of how to get,
e.g., from one summit to another summit on a topological curve, without de-
scending into deep valleys. We are looking for a path, the smallest edge value
of which is maximal with respect to the smallest edge values along the alterna-
tive paths [GEK99b]. This edge value is called maz-connectivity level. We first
introduce formally the dual maximum and minimum graphs, and then define for
each the corresponding connectivity level.

Definition 1 (Maximum Graph, Minimum Graph). A MAXIMUM GRAPH
G = (V,(, E,€) consists of a vertex set V, a mapping C for the vertex values, an
edge set E, and a mapping & for the edge values if the following constraint on
the attributes are satified:

Ve =(z,y) € E min{((z),((y)} = £(e)

! 4-neighborhood is used to make the graph planar.



The MINIMUM GRAPH G = (V,(, E,£) is the dual graph of G which consists
of a vertex set V, a mapping C for the vertex values, an edge set E, and a

mapping € for the edge values if the following constraint on the attributes are
satified:

Ve=(7.9) € E max{((7),(®)} < £()
The background vertez of V is denoted as U -

The duality in the above definition holds for the structure of the graphs but not
for the attribute values. In our application an image with pixels P and integer
gray levels L is given (Fig. 1): The maximum graph G = (V,(, E,£) consists of
a vertex set V' (bijectively mapped to P), a mapping ¢ : V' — L, an edge set
E (vertices are connected if their corresponding pixels are 4-neighbors), and a
mapping £ : E — L. Initially &(e) = &(v,w) = min{{(v),(w)} is chosen. The

minimum graph G = (V,(, E, §) is the dual graph of G which consists of

— a vertex set V (bijectively mapped to the faces of G),

— a mapping C of the vertices to the smallest edge value of the edges surround-
ing the face,

— an edge set E (dual vertices are connected if their faces share a common
boundary segment),

— and a mapping £ : E — L with £(g) = &(e) for all dual edges € € E.

For an illustration of dual edges see Fig. 3. Summarizing, a vertex value of the
maximum graph stores the maximum value of its receptive field, and a vertex
value of the minimum graph stores the minimum value of its receptive field.
Notice, the concepts of maximum and minimum graphs enable one to encode
any features and not only gray levels.

Definition 2 (Max-Connectivity Level). Given a mazimum graph G =
(V,(,E ). Let C(v,w) be the set of all paths between a pair of distinct ver-
tices (v,w), v € V and w € V. The MAX-CONNECTIVITY LEVEL mazC L(v,w)
is the heighest point one has to descend when moving from v to w:

maxCL(v,w) = max{min{{(e) € C(v,w)}|C(v,w)}.
Analogously, a min-connectivity level is defined for minimum graphs.

Definition 3 (Min-Connectivity Level). Given a minimum graph G =
(V,(,E,€). Let C(T,w) be the set of all paths between a pair of distinct ver-
tices (U,W), D€V and W € V. The MIN-CONNECTIVITY LEVEL minCL(T,W) of
the pair of distinct vertices (U,w) is the lowest height which has to be climbed
when moving from T to W:

minCL(T,w) = min{max{{(e € C(v,w)}|C(v,w)}.



In the following the basic operations for the contraction of graphs are defined
in three steps: First, the dual graph contraction for planar graphs (Section 2.1).
Then, the monotonic contraction operations for edges and vertices of maximum
and minimum graphs (Section 2.2). Third, the approach MDGC for the mono-
tonic dual graph contraction (Section 2.3).

2.1 Dual Graph Contraction

The operation of dual graph contraction is defined for an embedded, planar

graph G and the dual graph G of G. It is controlled by the following decimation
parameters [Kro95]:

Definition 4 (Decimation Parameter, Contraction Kernel). Given a
graph G. A subgraph D of G is a DECIMATION PARAMETER of G, if and only if
D is a spanning forest of G. The connected components (trees) of D are called
CONTRACTION KERNELS. The roots of the trees are called SURVIVING VERTICES.
All other nodes of the trees are called NON-SURVIVING VERTICES. If G has a
background vertex vy, then vo must survive.

In the subsequent operation every contraction kernel of D shrinks to a single
vertex, the root, within G (Figures 2(a) and 2(b)), while all other connections
are preserved [Kro95]. Notice that the contraction of an edge requires the deletion
of its dual edge.

Definition 5 (Dual Graph Contraction). Given an embedded pair of dual
graphs (G,G) and decimation parameters D, for the contraction of edges in G

and Dy for the contraction of faces in G. DUAL GRAPH CONTRACTION (DGC)
consists of two phases:

1. DUAL EDGE CONTRACTION described by a function
C.: (G,G) = C.[(G,G),D.] = (G',G") ,and
2. DUAL FACE CONTRACTION C} : (G',G') — C;[(G',G"), Ds] = (G",G").

Figures 2(c) and 2(d) demonstrate an example of the DGC: The contraction
kernels for the first phase and the results are shown. During the contraction a
non-surviving vertex is identified with a surviving vertex which is the root of
the contraction kernel. Note, the dual edge contraction deletes dual edges in G
and G (Fig. 2(b) and 3). Afterwards the second phase can be executed in order
to remove degenerated faces. Degenerated faces are, e.g., cycles of length less
than three. DGC has been shown to preserve the connectivity, the structure and
the planarity of the graphs [Kro95]. Applications for the DGC are described in
[GEK99a].

In the following we define the generation of decimation parameters for a
maximum graph and for the corresponding minimum graph. Decimation pa-
rameters are based on the decision whether an edge of a maximum graph is
max-contractible or not. An edge of a minimum graph must be min-contractible
for the monotonic dual graph contraction.
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Fig. 2. Part (a) shows an embedded graph (vertices = ’o’, edges = -’) and its dual
graph (vertices = 'w’, edges = ’-’), where the vertex representing the background region
and all its incident edges are omitted for sake of simplicity. The contraction kernels are
marked (’o’ are non-surviving vertices and '—’ point at the surviving vertices). Part
(b) shows the result of the contraction. The parts (c) and (d) depict a contraction of
the dual graph ("0’ are non-surviving vertices and '=>’ point at the surviving vertices).



2.2 Monotonic Contraction Operations for Maximum and Minimum

Graphs

Definition 6 (Max-contractible, Min-contractible). Given a mazimum
graph G = (V,(, E, ) and a minimum graph G = (V,(,E,€). Lete = (v,w) € E
and € = (U,w) € E be edges, v and U being non-surviving vertices, v not being
the background face, and w and w being surviving vertices.

The edge e is MAX-CONTRACTIBLE, if and only if

((v) < &(e) < ((w).

The edge € is MIN-CONTRACTIBLE, if and only if

(@) > &) > ((w).

As final step of the contraction of an edge within a maximum graph or a min-
imum graph the edge values of the edges incident to the surviving vertex are
updated as follows:

Definition 7 (Max-dual Contraction, Min-dual Contraction). Given a

mazimum graph G = (V,(,E,{). A MAX-DUAL CONTRACTION of a maz-
contractible edge e = (v,w) € E with surviving vertex w and non-surviving
vertex v is a contraction of e, e.g. any edge ' = (x,v),e' # e, becomes a new

edge (z,w), and the attributes of the surviving elements remain unchanged. Anal-
ogously is defined: Given a minimum graph G = (V,(,E, ). A MIN-DUAL CON-
TRACTION of a min-contractible edge € = (0, W) € E with surviving vertex w and
non-surviving vertex v not being the background face is a contraction of €, e.g.
any edge €' = (T,),e’ # € becomes a new edge (T,w), and the attributes of the
surviving elements remain unchanged.

2.3 Monotonic Dual Graph Contraction

All the above defined local operations consider edges and vertices of maximum
and minimum graphs. Finally, the approach MDGC can be formalized as follows:

Definition 8 (Monotonic Dual Graph Contraction). Given a mazimum
graph G = (V,(, E,€) and the corresponding minimum graph G = (V,(, E, ).
The MONOTONIC DUAL GRAPH CONTRACTION consists of two phases:

1. MAX-DUAL CONTRACTION of (G, G) with maz-contractible edges of the max-
imum graph G as selected decimation parameters, and

2. MIN-DUAL CONTRACTION of (G, G) with min-contractible edges of the min-
imum graph G as selected decimation parameters.

The following property ensures the correctness of MDGC:



Fig. 3. Min-dual contraction of &, = (U,w): the bold path B(?) \ {e.} C C(v,w)
preserves the max-connectivity level mazCL(v,w).

Proposition 1. The min-dual contraction preserves the maz-connectivity lev-
els.

Proof: Given a maximum graph G = (V,(, E,£) and a corresponding minimum
graph G = (V,(,E,§). Note that G is the dual graph to G. We show that
the min-dual contraction of an edge &; = (v,w) € E in G preserves the max-

connectivity levels mazCL(v,w) in G (see Fig. 3): The contraction of &; in G
goes along with the deletion of its dual edge e, = (v,w) from G. It suffices to
prove, that the max-connectivity level maxCL(v,w) is not decreased if edge e,
is removed. In other words we have to show that mazCL(v,w) > £(e,) for the

edge e, which is also a (short) path between v and w. Since the face T is not the
background face it is surrounded by a closed path B(7) (’boundary’) containing

edge e,. Let us consider the edge values of the alternative path B(7)\{e,} which
is also a path from v to w. In Fig. 3 this path is depicted bold.

Initially, the edge values £(ep) = £(eg) around a face are never smaller than
the face value (cf. the initialization of the maximum and minimum graphs and
Fig. 1). This property is not destroyed by min-dual contraction, since a min-
contractible edge is always contracted into the face with the smaller value. It
is also not destroyed by max-dual contraction, since the edge values may only
increase during update.

Since MDGC preserves the property that faces cannot receive attributes
higher than their bounding edges we have &(eg) > ((v) for all edges ep €
B@®) \ {e.}, and also maxzCL(v,w) > ((v). Furthermore, & must be min-

contractible, and consequently, ((v) is also an upper bound for £(e;) = £(er),
QED. O

A similar proof yields that the max-dual contraction of an edge in the maxi-
mum graph preserves the min-connectivity levels in the corresponding minimum
graph.



3 Implementation of MDGC

The algorithm of MDGC has a simple structure: as input a gray level image is
taken and as output a structure consisting of summits and immits is computed.
Both contractions, the monotonic and the dual monotonic, are applied to the
maximum graph and the minimum graph until no further contraction is possible.
Note, both the min-dual contractions and the max-dual contractions can be
performed in parallel [Kro95]. The method converges in a logarithmic number
of steps since the length of the paths between extrema shrinks by a factor of at
least two at every (parallel) step.

The implementation of MDGC is based on LEDA [MN99, Library of Effi-
cient Data Structures and Algorithms] and a tool for the dual contraction of
graphs [KBBS98]. In contrast to this tool within MDGC the contraction is not
executed with the graphs, merely trees which contain the contraction kernels are
constructed as follows: The non-surviving edges together with their correspond-
ing edges in the dual are marked. Before contraction, each graph vertex points
at a tree consisting of a single tree vertex. The contraction of an edge e is now
expressed by the linking of the two trees belonging to the end vertices of edge e.
The root of the new tree is set to the tree vertex the surviving graph vertex is
pointing at. At each step of the contraction process, the set of surviving graph
vertices comprises all graph vertices to point at a tree root. A surviving edge,
however, is represented by the corresponding bridge, i.e. an edge of the graph,
which has not been marked yet. The surviving vertices connected by a surviving
edge are identified via the roots of the trees, the end vertices of the corresponding
bridge are pointing at. The trees are represented by a collection of trees using
the LEDA data structure dynamic_trees, where each operation takes O(log® n)
amortized expected time, n being the number of vertices. Working with this
collection of trees is faster than executing a contraction in a (dual) graph, since
edges and vertices need not to be removed in the graph and its dual. Finally as
graphic output, the trees are drawn representing the contracted graph and its
dual as demonstrated in the following section.

4 Experimental Results

The algorithm MDGC is applied to a test image containing two sole immits
(center and bottom) and a pair of nested immits on the upper left (Fig. 1(a)).
As a result we expect two sole loops and a pair of nested loops on the upper left
in the contracted final graph (Fig. 4). This result will reflect the neighborhood
and hierarchy of the local extrema of height. A part of the initial maximum
graph is shown in Fig. 1(b).

Fig. 4 shows the computed topological curves, when neither the maximum
graph nor the minimum graph is contractible anymore. The line segments repre-
sent the edges of the trees. Here the tree roots are identified with the surviving
vertices.

The union of all non-surviving edges of the contraction trees and all bridges
(Fig. 4) describe the watersheds. Fig. 5 depicts the contracted final graph and



Fig. 4. Topological curves computed by MDGC (surviving vertices = ’o’, non-surviving

edges pointing at the surviving vertex = '—’, bridge = 'wmm’).
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Fig. 5. Contracted maximum graph (vertices = ’o’, undirected (curved) edges = '—)

and the surviving vertices '0° of the minimum graph (displayed without edges). The
vertex labels refer to Fig. 1(b).



the vertices of its dual. Comparing the final maximum graph (Fig. 5) with the
gray level image (Fig. 1(a)), we summarize the following results:

1. Each edge of the final maximum graph represents either a topological curve
bordering an immit or a topological curve connecting two immits.

2. The two nested immits close to the upper left corner of the image are repre-
sented by two nested cycles in the final maximum graph.

3. The cycles from the previous item are loops, because there exists a single
saddle point on each of the topological curves bordering the immits.

4. The fact that the immit on the bottom is almost replenished, is reflected by
the small differences of the corresponding attributes in the final graph.

5 Conclusions

In this paper we have proposed a new approach to the computation of extrema
within attributed graphs. For the representation the class of minimum and max-
imum graphs has been defined. The approach MDGC has been applied to the
structure of gray level images. The structure is represented by a pair of dual
graphs. It is compact since each vertex of the contracted graphs represents either
a summit or an immit. The edges of the graphs represent contracted topologi-
cal curves. The graph contains also the information about the local extrema of
height on the topological curves.

Our approach outperforms watershed approaches since the neighborhood and
the hierarchy of the summits and immits is computed, and additionally, informa-
tion about topological curves is provided through the attributes of the graphs.
We believe that MDGC is a powerful technique which has been applied to the
segmentation of gray level images, and additionally, that image structuring meth-
ods based on watersheds can profit from. An important topic of future research
is the use of real data (images).

The current approach does not cope with noise. A single outlier, e.g. a wrong
local maximum or minimum, may appear in the final representation. Further-
more, even small differences in the attribute values result in many unnecessary
and spurious vertices. Hence, a future goal will be to extend the present ap-
proach with a concept of “importance” for a given vertex (summit or immit)
which can be related to the relative differences within a local neighborhood. A
similar criterion has been used in the scale-space approach of Lindeberg [Lin94].

A drawback of our concept goes back to the fact, that the saddles in the digi-
tal elevation model are not represented as vertices. We cannot properly describe
saddles, which lead to more than two summits, if one follows the ascending crest
lines (see Fig. 6). Fig. 6 also makes clear, that the final graph is not unique. The
bent edge might as well be situated at the left side. Our future work will aim at
the proper representation of the saddles. For this purpose we will have a closer
look at the contraction kernels.



Fig. 6. The gray levels of the pixels (left) and the final graph representing the image
(right).
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