Guided Relinking of Graph Pyramids *

R. Glantz and W. G. Kropatsch

Institute for Computer Aided Automation
Pattern Recognition and Image Processing Group
Vienna University of Technology
Favoritenstr. 9, 183/2, A-1040 Vienna, Austria
e-mail: {glz,krw}@prip.tuwien.ac.at

Abstract. In this paper we propose a new method to relink graph pyra-
mids by local relinking operations in an iterated parallel way. By rep-
resenting graph pyramids as bases of valuated matroids, the goal of the
relinking is expressed by a valuation on the corresponding matroid. This
valuation guides the local relinking operations. The valuation attains its
global maximum if none of the local relinking operations yields higher
values. The new method is used for an adaption of graph pyramids to-
wards having a given receptive field.

1 Introduction

To perceive an image is to transform it [Ser82]. In order to allow a clear distinc-
tion between transformations of image structure and transformations of image
contents, we first represent the image as an attributed graph forming the base
level of a graph pyramid. A common way to construct the base level graph is to
create a vertex for each pixel and to let the edges represent the 4-connectivity
of the pixel array. The attributes of the vertices, edges and faces are derived
from the gray values or colors of the pixels. The other levels of the pyramid are
formed by subsequent dual graph contractions [Kro95a] controlled by applica-
tion defined models. A local function, the so called reduction function, derives
the attributes of the current level from the level below. In all levels the attributes
represent the image contents, while the structure of the image is given by the
graph without the attributes. The graphs on the higher levels of the pyramid
yield more and more abstract descriptions of the underlying image. However,
the construction of the graph pyramid should not be restricted to a bottom-up
procedure. The alternatives as given by a model usually induce constraints on
neighborhoods in the graph pyramid. Holding to the separation of structure and
contents we extend the influence of the model by allowing

1. relinking of the pyramid without adjusting the contents,
2. contents adjustments and classification without relinking.
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These transformations are also utilized to increase the robustness of the pyramid.
This paper is devoted to efficiently perform the relinking by iterated parallel
transformations (IPT) [Sch97]. A variable linking of regular pyramids was first
described in [BHRS81]. An extension to irregular hierarchies of graphs is shown
in [Nac95]. IPT for contents adjustment and classification, i.e. relazation, has
been applied to hierarchies of graphs in [WH96]. Since dual graph contraction is
an IPT towards abstraction, the IPT considered so far can be organized in the
triangle depicted in Fig. 1.

The paper is organized as follows. Section 2 is devoted to the construction of
graph pyramids by dual graph contraction. In Section 3 we arrive at a definition
of local relinking operations on graph pyramids. The definition is based on the
representation of graph pyramids as bases of matroids. Section 4 introduces
valuations on matroids. The valuations are utilized to guide the local relinking
operations. In Section 5 we apply the relinking to the adaption of graph pyramids
towards having a given receptive field. We conclude in Section 6.

2 Dual Graph Contraction

The construction of graph pyramids by dual graph contraction (see Fig. 2) is
described in [Kro95a). Let Go = (Vp, Fo) and Gy = (Vp, Ep) denote a pair of
plane graphs, where Gy is the dual of G. Dual graph contraction consists of two
steps: dual edge contraction and dual face contraction. Dual edge contraction is
specified by a subset Fy of Ep, such that the edges of Fy form a spanning forest
of Gy. The trees of the spanning forest are referred to as contraction kernels.
In Fig. 2a the non-trivial contraction kernels are emphasized. Each contraction
kernel Ty of Fy is contracted to one vertex v; of the graph G; = (Vi, E;) on
the next level of the graph pyramid. For each vertex vy of Ty the vertex vy is
called parent of vy and vy is called the child of v;. Each edge of E; corresponds
to exactly one edge in Ey, which does not belong to a contraction kernel. Let F,
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Fig. 1. Iterative parallel transformations on graph pyramids.
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Fig. 2. Dual graph contraction.

denote the set of edges in EO, which are dual to the edges in Fy. Set E, = E\F@
and G := (Vo, E1). Note that Gy and G, form a dual pair of plane graphs.

The second step, called dual face contraction, is specified by a subset F; of
E,. The edges of F| are required to form a spanning tree of G;. In Fig. 2b the
edges of F| are emphasized. Analogous to dual edge contraction, we generate
Gy and set Go := (Vi, Ey) with Ey := E; \ Fy. Each vertex in G has exactly
one child in Gy, i.e. the vertex itself. The graphs G5 and G form another dual
pair of plane graphs. In [Kro95a] the role of dual face contraction is confined to
the removal of faces bounded by less than three edges. In the following we will
drop this restriction in order to apply the theory of matroids in a general way.
Subsequent parallel edge [face] contraction steps may be summarized by a single
edge [face] contraction step.

Each vertex in the graph pyramid represents a connected set of base level
vertices, the so called receptive field. The receptive field of a base level vertex
contains exactly the vertex itself. For each vertex v, on the level k& > 1 the
receptive field RF(vy) is defined by all vertices in the base level of the pyramid
which lead to vy by climbing the pyramid from children to parents. In Fig. 3
the odd levels are omitted.

RF('UO) = {’Uo} for Vg € VO,
RF(v) = J(RF (vg—1) | vg—1 is child of vg,), k& > 0.

Note that the receptive fields in the graph pyramid do not overlap, since
all vertices (except the apex) have exactly one parent.

3 Representation of Graph Pyramids as Bases of
Matroids

Let Go and_ag_denote_a pair of plane graphs and assume P = (G, Gy, ...,Ga,)
and P = (Go, G, ..,Gay) to be graph pyramids constructed on top of the pair



Fig. 3. The vertices forming the receptive field of v are enlarged.

(Go,Go) by dual graph contractions. We also assume that the apex Gs, is a
graph with one vertex and zero edges. Let G; = (V;, E;) for all 0 < i < 2n.
The edge set Ey is required to be non-empty. The domain of all graph pyramids
with the above properties is denoted by D(G, 2n). For each edge e € Ey let I(e)
denote the maximal level of P which contains e, i.e.

le) :=maz{l|e € E\ Ej41}. (1)

The construction of the graph pyramid is determined by the above assignment
of labels from L := {0,1,...,2n — 1} to the edges in Ey (similar to [Kro95bl).
The assignments are expressed by subsets of Ey x L. Let B denote a subset of
Ey x L. We set

E°(B) := {e € Ey | 3j with (e,5) € B and j = 0 mod 2}. (2)

If B = {(e,l(e)) | e € Ep}, where I(-) refers to the construction of a graph
pyramid, then

— Ve € Ej exists exactly one [ with (e,l) € B and
— E%(B) forms a spanning tree in Ej.

Conversely, let B C Ey x L. If B fulfills the above two items, then B defines a
labeling of edges from Ejy, which describes the construction of a graph pyramid.
This follows from the fact, that E°(B) forms a spanning tree in Ep if and only
if

EY(B) := {e € Fy | 3j with (e,5) € B and j = 1 mod 2} (3)

forms a maximal edge set in G, which is not a cutset [TS92] (a cutset of a
connected graph G is a minimal set of edges of G such that its removal from G
disconnects G). Hence, the edges in Gy, which are dual to E*(B) form a spanning
tree F1(B) in Gy. In conjunction with the labels from B, the spanning trees




E°(B) and E'(B) define the contraction kernels for the dual edge contraction
and the dual face contraction respectively.

Let B denote the collection of all subsets of Ey x L which describe construc-
tions of graph pyramids in D(Gy,2n). Note that B # () because of Ey # (). The
following theorem states an exchange property for sets in B.

Theorem 1. Let B, B’ € B. For each b € B\ B’ there exists b € B'\ B such
that B\ {b} U {b'} € B.

Proof: It suffices to show that E°(B\ {b} U {b'}) forms a spanning tree of Gy
or that E1(B\ {b} U {b'}) forms a maximal non-cutset of Go.

e Case b = (e,l) with [ > 0: In the fundamental circuit [TS92] of E°(B') U {e}
there exists e’ ¢ E°(B) (since E°(B) contains no cycles). Let I’ € L denote
the unique number with (¢/,I’) € B’ and set b’ := (e,'). Since ¢’ ¢ E°(B),
it follows that e’ # e. This implies ' # b and (because of ¢ € E°(B’') U {e})
e/ € E°(B'),i.e. I' > 0. Since e and e’ belong to the same cycle of E°(B’) U {e}
and have positive labels, it follows that E°(B\ {b} U {b'}) forms a spanning
tree of Ej.

e Case b = (e,l) with [ < 0: The set E*(B’) U {e} forms a cutset of Go.
Since E'(B) contains no cutset, there exists ¢/ € E'(B') U {e},e’ ¢ E'(B).
Let I € L denote the unique number with (e’,!') € B’ and set b’ := (€',1).
Since e’ ¢ E'(B), it follows that €' # e. This implies b’ # b and (because
of ¢ € EY(B') U {e}) ¢ € EY(B'), i.e. I' < 0. Since e and €' belong to the
cutset E'(B)U{e'} , it follows that E*(B\ {b}U{b'}) is a maximal non-cutset. O

Definition 1. For B € B,b € B,b ¢ B the mapping modif(B,b,b') := B\
{b}U {b'} is called local modification of B, if modif(B,b,b') € B.

The sets in B, the so called bases, determine a matroid M := (Ey x L,Z) on
FEy x L, where
I:={ICB|BebB} (4)

[Ox192]. Thus we may write M = M(B). In [Bru69] the exchange property of
Theorem 1 is extended:

Theorem 2. Let B denote the collection of bases of a matroid and let B,B' € B.
For each b € B\ B’ there exists b' € B'\ B such that

e B\ {b}U{b'} eB and

e B\ {V}U{b} € B.

Theorem 2 implies that any B € B can be adapted to any other B’ € B by local
modifications only.

If the construction of P is determined by B, each local modification of B
induces an operation on P. We define:

Definition 2. An operation on a graph pyramid P is called local relinking op-
eration, if it is induced by a local modification on a matroid base that describes
the construction of P.



4 Valuated Matroids

In order to utilize local relinking operations for the adaption of a graph pyramid,
the choice of the operations has to be determined by the goal of the adaption. We
represent graph pyramids as bases of matroids and use a definition in [DW90],
where R denotes, for example, the set of reals or the set of integers.

Definition 3 (Valuation on a Matroid). A wvaluation on a matroid M =
M(B) is a function w: B — R which has the following exchange property. For
B,B' € B and b€ B\ B’ there exists b' € B'\ B such that

- B\ {bju{b'}enB,
- B\ {V}u{b}eB,
— w(B) +w(B) Sw(B\{b}U{d'}) +w(B"\ {t'} U{d}).

A matroid equipped with a valuation is called valuated matroid.

The following theorem [DW90] implies that valuations on matroids can be max-
imized by local modifications.

Theorem 3. Let B € B and let w be a valuation on the matroid M = M(B).
Then w(B) is maximal, if w(By,) < w(B) for all local modifications By, of B.

In order to utilize Theorem 3 for the adaption of graph pyramids by local relink-
ing operations, we have to find a valuation on the corresponding matroid, which
is maximal if and only if the goal of the adaption is reached. Then we apply a
local relinking operation whenever it increases the valuation.

5 Adaption of Graph Pyramids

In this section we use valuated matroids to adapt a graph pyramid P towards
having a receptive field equal to a given connected set T" of vertices from the base
level of P. If there is no receptive field equal to 7', we may still ask: How well
does T fit into the pyramid P? This question has a narrow metric and a wider
structural aspect: If there exists a receptive field RF' in P with a small distance
(Hausdorff-distance for example) to T', we say that T fits well into P. The wider
structural aspect is the following: Can a good fit of T" into P be achieved by only
a few (including zero) local relinking operations on P? This case is illustrated
in Fig. 4b, where splitting off the receptive field K from RF yields T.

In the following, we will apply local relinking operations to the graph pyramid
‘P, such that one of its receptive fields becomes equal to T'. In Fig. 5a and 5d the
pyramid P and the adapted pyramid P’ are illustrated by their receptive fields.
The set T is given by the filled circles.

Since T is contained in the receptive field of the apex of P, there exists a
smallest receptive field of P which covers T' completely. In particular, there exists
a vertex v§%V in P such that T C RF(v5®") and T ¢ RF(v) for all children v
of v@?. If T = RF(v$") no adaption of P is needed. Otherwise structural
modifications are needed only in the subpyramid of P, whose apex is v”.
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Fig. 4. Metric and structural comparison of receptive fields.

As explained in Section 3, we may describe the adaption of P by local mod-
ifications on the corresponding matroid base B. The set Ey of edges in the base
level of P is partitioned by the edge sets E°(B) and E'(B), as defined in (2)
and (3). The edge sets E°(B) and E'(B), in turn, are partitioned with respect
to T into three classes each. For i € {0,1} we set:

— E{(B) := {e = (u,v) € E(B) | {u,v} C T},
— E3(B) :={e = (u,v) € EY(B) | {u,0} NT = B},
— E3(B) := E(B) \ (E{(B) U E5(B)).

Adapting P towards containing T" as a receptive field, we focus on the following
edges in E°(B):

Definition 4. An edge e = (w,z) € E°(B) conflicts with T, if

—~ e € EY(B) and
— one end point of e is contained in RF(v¥')\ T.

Theorem 4. The graph pyramid P has no receptive field equal to T < P has
edges conflicting with T .

Proof of Theorem 4:

=: Assume that no receptive field of P equals T, i.e. RF(v$??) D T and
RF(v5Y) # T. The set of all edges from E°(B) with both end vertices in
RF(v§°?) forms a spanning tree of RF(v§®?) and thus contains an edge e = (w, z)
with w € T and z € RF(v$°V) \ T. The edge e conflicts with T.

<: Let e = (w, z) be an edge conflicting with 7'. Without loss of generality we
assume z € RF(vV) \ T'. It follows that RF(v5?") # T'. If there was a receptive
field in P equal to T, RF(v$°Y) would equal T', a contradiction. O
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Fig. 5. Relinking towards a given receptive field. Modified edges are highlighted.

5.1 Algorithm for the Adaption

The adaption of P towards containing 7' is done in three steps, all of which
reduce the number of edges, which conflict with T':

1. The number of edges in EY(B) is increased without affecting edges in E9(B).
2. The number of edges in EY(B) is increased without affecting edges in EY(B).
3. The labels of the remaining edges conflicting with 7" are raised.

In order to perform the first two steps, we define valuations w; and ws. The
matroid base B is a subset of Ey x L. An element z of B can be written as
z = (ez,l(e;)). For e, ¢ E°(B) let C(B,e,) denote the fundamental circuit of
E°(B) U {e,} and set

Ig(ey) == max{l(e) | e € C(B,e;),e # ey }. (5)
Let e, € C(B,e;) with e, # ey, l(ey) = lp(ey). In [Kro95b] it is shown that

the graph pyramid defined by B\ {(ey,(ey))} U{(ez,!B(ez))} equals the graph
pyramid defined by B. For i € {1,2} we set w;(B) := _, g val;(z) with

1 : e, € E}YB),l(es) =lples)
vty ] 1 ¢ er € ENB)UEY(D) o
BT -1 1 e, € EY(B)UE!N(B),l(e;) # lp(ex)

0 : otherwise



Consider the case i = 1 first. The value 1 is given for labeled edges, which we
want to insert between vertices of 7. The same value is given for labeled edges
that we do not want to change anymore. The valuation w;(B) is maximal only
if the edges in EY(B) form a spanning tree of T. In the case i = 2 the roles
of T and the complement of T' are reversed. Finally, the levels of the remaining
edges conflicting with T are raised to the highest even label [,.. an edge between
vertices of RF(v$?Y) can have. These local relinking operations are guided by
the valuation w3(B) := ) . pvalz(z) with

1 : e, € EY(B)UEY(B)
val3(z) == =1 : e, € EY(B),l(es) # lace (7)
0 : otherwise.

Note that each local modification (guided by wy, we or ws) reduces the number
of edges conflicting with T by exactly one and raises the valuation by exactly
one. The effect on the receptive fields can each time be described as detaching a
part of RF (v5°Y). These parts are fully determined by the edges conflicting with
T.

5.2 Example

Fig. 5b shows that there are exactly two local modifications which raise the
valuation w;. The total increase of w; thus amounts to 2. Fig. 5¢c shows that
wy and ws can be raised by 2 and 1 respectively. The comparison of Fig. 5a
and Fig. 5d yields that none of the receptive fields completely contained in T" or
completely contained in the complement of 7" have been modified.

6 Conclusion

Valuations on matroids were shown to be capable of guiding the relinking of
graph pyramids by local relinking operations. Furthermore, the local relinking
operations may be performed in an iterated parallel way. We suggest the new
method for tracking and motion analysis. In conjunction with dual graph con-
traction and contents adjustment it is also suggested for graph based object
recognition.
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