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Abstract

Human image understanding copes with even strong gray level transformations, as long as the

ordering of the gray levels with respect to neighboring pixels is nowhere disturbed. In this paper,

we study dual graph contractions, which do not depend on these gray level transformations

either. The result of the dual graph contractions is a pair of dual attributed graphs. One of

them describes neighborhood relations of the local maxima in the image, the other one does the

same for the local minima. In contrast to the well known watersheds, the two graphs also express

hierarchies of nested bright and dark blobs in the image. The concept of duality for graphs is

coupled with the reversal of the attribute order in the contraction rules. The contractions are

characterized by the preservation of a connectivity property taking into account the gray levels.

1 Introduction

In this paper the rigid arrangement of the pixels in a two-dimensional digital gray level image is

replaced by a pair of dual graphs adapted to the gray levels. Throughout the paper we refer to

the intuitive interpretation of a gray level image as a digital elevation model (see Figure 3(a)),

where the heights are given by the gray levels [KvD94]. The task is as follows: Construct a

plane graph, where each summit is represented by exactly one vertex and each edge expresses

a neighborhood of hills. In addition, each basin is represented by exactly one face of the graph,

i.e vertex of the dual graph. The edges of the dual graph stand for neighborhood relations of

the basins. For the gray level image in Figure 1(a) such a graph is depicted in Figure 3(b). The

�rst step of constructing the dual pair consists in the generation of a so called image graph,

where each vertex represents exactly one pixel and the edges connect the 4-connected pixels

(see Figure 1(b)).

1)This work is supported by the Austrian Science Foundation (FWF) under grant S7002-MAT.
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Figure 1: (a) The gray levels of the pixels. (b) The image graph of the marked sub-image (inside the black

border), where the vertices are represented as circles. The numbers in the vertices and at the edges indicate

the vertex values and the edge values of the image graph. The numbers in the middle of the square faces refer

to the vertices of the dual graph.

The plan of the paper is as follows: In order to obtain the �nal pair from the image graph and

its dual by contractions, we �rst provide the image graph and its dual with attribute values for

the vertices and the edges. The choice of these initial values is motivated by a sketch of the

contractions we want to apply. This is done in Section 2. The framework for the contractions

proposed is the concept of dual graph contraction presented in Section 3. In Section 4 we then

specify the rules for the contractions leading to the �nal pair. These contractions turn out to

preserve strong properties of the graphs, which are formulated and whose preservation is proven

in Section 5. In Section 6 we conclude and give an outlook.

2 Initialization of the Image graph and its Dual

Initially an image graph G is created, which re
ects the rigid arrangement of the pixels. Each

pixel of the graph is represented by a vertex v, the attribute value val(v) of which (short: vertex

value) indicates the gray level of the pixel. In Figure 1(b) the vertices are represented by circles.

The corresponding vertex value is written in the circle. Each pair of 4-connected pixels gives

rise to an undirected edge e = (v1; v2), where v1 and v2 are the vertices representing the pixels.

In the following, we sketch the main idea of obtaining the �nal pair by dual graph contraction

[Kro95a]. This will also explain the choice of the values associated with the edges and faces

of Figure 1(b)). Since, at the end, each vertex of G is to represent exactly one summit, it is

intuitive to contract edges, such that the end vertex with the maximal value survives. However,

the contraction must not lead to the uni�cation of separate hills. We now think of an edge

as representing a path in the landscape. If the height of the lowest point along this path is



between the heights of the end points, we may contract the edges without the risk of unifying

two separate hills. Hence, we want each edge to be associated with the minimal height of

the path that is represented by the edge: the attribute value val(e), short edge value, of edge

e = (v1; v2) is thus initialized to the minimum of the values val(v1) and val(v2).

We now focus on the contraction of the dual of G denoted by G. Recall, that the contraction of

an edge e in G goes along with the removal of the corresponding dual edge in G (see [Kro99]).

In terms of watersheds, (see [MR98]) it is intuitive to fuse the faces of G until each of the

resulting faces corresponds to exactly one basin of the landscape. Two faces sharing an edge

may be fused, if the edge does not represent a barrier. Now the term barrier has to be speci�ed:

Again we think of the edge as representing a path in the landscape. If the lowest height along

the path (i.e. the edge value) is between the lowest heights in each of two faces, the edge does

not represent a barrier. Thus, for each face we have to know the height of its deepest point.

Each face of G is represented by exactly one vertex of the dual graph of G, i.e. G. The depths

of the faces may thus be stored as attribute values of the vertices of G. The attribute value

val(v), short vertex value, of the vertex v is initialized to the minimum of all values val(u),

where u is a vertex on the boundary of the corresponding face. This initialization includes the

in�nite background face.

To complete the initialization, we assign values to the edges e = (v1; v2) of the graph G.

The goal is to express the fusion of two adjacent faces by a contraction in G similar to the

contractions in G. This is achieved by setting the value of e to the value of the corresponding

dual edge e in G. Like in the graph G an edge of G may be contracted only if the edge value

is between the values of the end vertices. In G, however, the value of the surviving vertex has

to be smaller or equal to the value of the non-surviving vertex.

This initialization of the pair (G;G) yields the following properties. The value of a vertex in

G is always greater or equal to the values of the adjacent edges. In G the value of a vertex is

always smaller or equal to the values of the adjacent edges. We suggest the names max-graph

and min-graph for graphs with these properties. The sketched contractions always transform

a dual pair consisting of a max-graph and a min-graph into another dual pair to consist of a

max-graph and a min-graph.

3 Dual Graph Contraction

The contractions sketched in the previous section were contractions of single edges. This might

lead to the false impression of a sequential process. In this section we present a terminology

and a data structure that allow for the speci�cation of contractions performed in parallel .

Consider a subtree of edges to be contracted, such that the surviving vertex is always the same.
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Figure 2: Part (a) shows a plane graph (vertices = '�', edges = '{') and its dual graph (vertices = ' ', edges

= '���'), where the vertex representing the background face is omitted for sake of simplicity. The contraction

kernels are marked ('Æ' are non-surviving vertices and '!' point at the surviving vertices). Part (b) shows the

result of the dual edge contraction and two contraction kernel of the dual graph ('2' are non-surviving vertices

and '���>' point at the surviving vertices). Part (c) shows the result of the dual face contraction.

Obviously these edges may be contracted in parallel. The same applies to a collection of such

trees, where the trees are disjoint (no vertex is contained in more than one tree). Including

trees to consist of a single vertex each, we may specify a parallel contraction by a spanning

forest, the trees of which have depths � 1. This concept can be extended to specify a whole

sequence of parallel contractions (see [Kro95b]). The depths of the trees may then be greater

than one:

De�nition 3.1 (Decimation Parameter, Contraction Kernel)

Given a graph G. A subgraph De of G is a decimation parameter of G, if and only if De

is a spanning forest of G. The connected components (trees) of De are called contraction

kernels. The roots of the trees are called surviving vertices. All other vertices of the trees

are called non-surviving vertices.

As sketched in the previous section, we wish to contract also the dual G of G. Therefore

we require G to be plane. The decimation parameter for the contraction of G is denoted by

Df . The vertex representing the background face must always survive. The indices e and f

of the decimation parameters refer to the two phases, i.e dual edge contraction and dual face

contraction, of the dual graph contraction (see again [Kro95b]):

De�nition 3.2 (Dual Graph Contraction)

Given an embedded pair of dual graphs (G;G) and decimation parameters De and Df for con-

tractions in G and in G respectively. dual graph contraction consists of the two following

phases:



1. dual edge contraction described by a function Ce : (G;G) ! Ce[(G;G); De] =

(G0; G0).

2. dual face contraction Cf : (G0; G0)! Cf [(G0; G0); Df ] = (G00; G00).

Figures 2(a) and 2(b) demonstrate an example of the dual edge contraction. The contraction

kernels for the dual edge contraction are shown in Figure 2(a). The result of the contraction

is shown in Figure 2(b). During the contraction a non-surviving vertex is identi�ed with a

surviving vertex which is the root of the contraction kernel. Note, that the contraction of an edge

goes along with the deletion of the corresponding dual edge in G (see Figure 2(b)). Afterwards

the dual face contraction is executed (Figures 2(b) and 2(c)). Note, that the contraction of an

edge in G goes along with the deletion of the corresponding dual edge in G (see Figure 2(c)).

Applications for the dual graph contraction are described in [Kro95a, GEK99].

4 Monotonic Dual Graph Contraction

The dual graph contractions de�ned in Section 3 provide a very large class of graph transfor-

mations. One way to specify a subclass is to formulate conditions for edges, which may be

contracted. In the following, the conditions are formulated with respect to the values of the

edges and the values of the end vertices of the edges. The resulting dual graph contractions are

called monotonic.

Let e = (v1; v2) denote an edge of the image graph G. As sketched in Section 2 the edge e may

be contracted only if

minfval(v1); val(v2)g � val(e) � maxfval(v1); val(v2)g: (1)

If the condition is ful�lled, the edge is called contractible. As motivated in Section 2 the value

of the surviving vertex has to be greater or equal to the value of the non-surviving vertex. If

val(v1) = val(v2), the surviving vertex is chosen randomly. Without loss of generality let v2

denote the non-surviving vertex of a contractible edge e = (v1; v2). Let eold 6= e, eold = (v2; v3)

be another edge adjacent to the vertex v2. After the contraction of e, there will be a new edge

enew = (v1; v3), which needs a new value. As motivated in Section 2, we set the value of enew to

val(enew) := minfval(e); val(eold)g = val(eold): (2)

The dual face contractions are de�ned symmetrically: The edge e = (v1; v2) may be contracted,

if

minfval(v1); val(v2)g � val(e) � maxfval(v1); val(v2)g: (3)

If the condition is ful�lled, the edge is called contractible. The value of the surviving vertex has

to be smaller or equal to the value of the non-surviving vertex. Without loss of generality let



v2 denote the non-surviving vertex. Let eold 6= e, eold = (v2; v3) be another edge adjacent to the

vertex v2. After the contraction of e, there will be a new edge enew = (v1; v3), which receives

the value

val(enew) := maxfval(e); val(eold)g = val(eold): (4)

Recall, that the vertex representing the background must always survive. In the initial dual

graph the values of the edges bounding a face v are all greater or equal to val(v). Obviously,

this property is preserved by the monotonic dual graph contraction:

val(eb) � val(v) for all edges eb on the boundary of v: (5)

Applying the monotonic dual graph contraction to the image graph of Figure 1(a), a part of

which is shown in Figure 1(b), yields the graph shown in Figure 3(b). None of the edges of the

graph and its dual are contractible anymore. The vertices of the corresponding dual are drawn

as boxes. The boxes contain the values of the corresponding vertices. Comparing the graph

(Figure 3(b)) with the digital elevation model of Figure 3(a), we emphasize that the nested

craters on the upper left are represented as nested cycles in the graph.

A drawback of our concept goes back to the fact, that the saddles in the digital elevation model

are not represented as vertices. We cannot properly describe saddles which lead to more than

two summits, if one follows the ascending crest lines (see Figure 4). Figure 4 also makes clear,

that the �nal graph is not unique. The bent edge might as well be situated at the left side.

Our future work will aim at the proper representation of the saddles. For this purpose we will

have a closer look at the contraction kernels.

5 Connectivity Levels

Consider two points in a landscape. A map of an area containing the two points should at least

roughly contain the information about the highest altitude, which one needs to descend to, if

going from one point to the other. This critical height is now de�ned for the image graph G:

De�nition 5.1 (Connectivity Levels, minval)

Let �G(v; w) denote the set of all paths in G, which connect the vertices v and w. For each

path P 2 �G(v; w) set minval(P ) := minfval(e) j e is an edge on P g. The connectivity level

CG(v; w) between v and w in G is de�ned as: CG(v; w) := maxfminval(P ) j P 2 �G(v; w)g.

We prove that the monotonic dual graph contraction preserves the connectivity levels:

Theorem 5.2 (Preservation of Connectivity Levels)

Let G0 = (V 0; E 0) denote a graph, which was obtained from G = (V;E) by monotonic dual

graph contractions. Let v0 and w0 denote two vertices of V 0 (i.e. vertices of G that survived the

monotonic dual contractions). The following equation holds: CG0(v0; w0) = CG(v
0; w0).



(a)

9

9
3

1

5

3

8

2

5

8

8

87

8

7

7

9

9

(b)

Figure 3: (a) Digital elevation model of the gray levels from Figure 1(a) (interpolated). (b) Corresponding

�nal graph (vertices = 'Æ', undirected (curved) edges = '|') and the surviving vertices '2' of the dual (displayed

without edges).



9

5

3

9 9

9

3

7

7

7

5

9

Figure 4: The gray levels of the pixels (left) and the �nal graph representing the image (right).

Proof of 5.2: We �rst introduce the following notations: Let econ = (v1; v2) denote a con-

tractible edge of E (see condition 1 in Section 4). Without loss of generality we assume that

val(v1) � val(v2). Let G=fecong denote the graph, which is obtained from G by contracting

econ, such that v1 is the surviving vertex.

Let edel = (v1; v2) denote a contractible edge of E (see condition 3 in Section 4). The contrac-

tion of edel in G goes along with the deletion of the corresponding edge edel in G. Let Gnfedelg

denote the graph, which is obtained from G by deleting edel.

The proof is organized as follows:

� (a): prove the theorem for G0 = G=fecong,

� (b): prove the theorem for G0 = Gnfedelg,

� (c): prove the theorem for all G0 using (a) and (b).

In order to prove (a) we consider the set Eold � E; Eold := feold = (v2; v3) for some vertex v3 2

V; eold 6= econg and the set of paths �old := f(econ; eold) j eold 2 Eoldg. Each path � = (econ; eold)

of �old corresponds to exactly one edge enew in E 0nE after the contraction of econ. From 2

in Section 4 follows val(enew) = val(eold). Since val(econ) � val(v2) � val(eold), we have

minval(�) = val(eold). Thus, there is a one-to-one correspondence between all paths in G with

end points other than v2 and all paths in G0 = G=fecong, such that corresponding paths have

the same minimal edge value. This completes the proof of (a).

We now prove (b): Since the removal of an edge does not increase any connectivity level, it

suÆces to show that no connectivity level is decreased by the removal of edel.

Let (v0; w0) denote a pair of surviving vertices in G0 = Gnfedelg. Then there exists a path P

between v0 and w0 in G0, such that minval(P ) = CG(v
0; w0). We only have to consider the case

that edel is an edge of P and may assume that v1 is the surviving vertex in G0. It suÆces to show

that val(edel) is minimal with respect to all edges which bound the face represented by v2 (see

Figure 5). In this case there exists a detour of edel with a minimal edge value greater or equal to

CG(v
0; w0). This would complete the proof of (b). Hence, to prove (b) we only have to show that

val(edel) is minimal with respect to all edges, which bound the face represented by v2: From 5
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Figure 5: The faces of v1 and v2.

in Section 4 we know that each of the edges bounding the face represented by v2 has an edge

value greater or equal to val(v2). On the other hand, we have val(edel) = val(edel) � val(v2),

since v2 is the non-surviving vertex. This �nishes the proof of (b).

The proof of (c) follows from the fact that each monotonic dual graph contraction can be

performed by a sequence of contractions treated in (a) or in (b). 2

A theorem analogous to Theorem 5.2 holds for the dual graph.

6 Conclusions and Outlook

In this paper we have proposed a new approach to the computation of image structure for gray

level images. The structure is represented by a pair of attributed dual graphs. This pair is

constructed by parallel dual graph contractions respecting the monotonicity of the gray levels.

The contractions preserve the connectivity levels of the surviving vertices. Our representation

of gray level images can express structures like nested gray level basins. Future work will focus

on a representation of image structure, where the saddles are represented as vertices.
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