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Abstract. Structural pattern recognition describes and classifies data
based on the relationships of features and parts. Topological invariants,
like the Euler number, characterize the structure of objects of any di-
mension. Cohomology can provide more refined algebraic invariants to
a topological space than does homology. It assigns ‘quantities’ to the
chains used in homology to characterize holes of any dimension. Graph
pyramids can be used to describe subdivisions of the same object at mul-
tiple levels of detail. This paper presents cohomology in the context of
structural pattern recognition and introduces an algorithm to efficiently
compute representative cocycles (the basic elements of cohomology) in
2D using a graph pyramid. Extension to nD and application in the con-
text of pattern recognition are discussed.

Keywords: Graph pyramids, representative cocycles of cohomology
generators.

1 Introduction

Image analysis deals with digital images as input to pattern recognition systems.
Topological features have the ability to ignore changes in geometry caused by dif-
ferent transformations. Simple features are for example the number of connected
components, the number of holes, etc., while more refined ones, like homology
and cohomology, characterize holes and their relations.

In order to characterize the holes in a region adjacency graph (RAG) associ-
ated to a 2D binary digital image, one way would be to consider the cycles with
exactly 4 edges as degenerate cycles and establish an equivalence between all the
cycles of the graph as follows: two cycles are equivalent if one can be obtained
from the other by joining to it one or more degenerate cycles. There is only one
equivalence class for the foreground (gray pixels) of the digital image in Fig. [l
which represents the unique hole. This is similar to consider the digital image
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Fig. 1. a) A 2D digital image I; b) its RAG; c) a cell complex associated to I (in blue,
a representative cocycle); and d) the cell complex without the hole

as a cell complexl] [1] (see Fig. Mc). Here one can ask for the edges we have to
delete in order to ‘destroy’ the hole.

In the example in Fig.[Dit is not enough to delete only one edge. The set of blue
edges in Fig. [lc block any cycle that surrounds the hole; the deletion of these
edges together with the faces that they bound produces the ‘disappearing’ of
the hole. A 1-cocycle of a planar object can be seen as a set of edges ‘blocking’
the creation of cycles of one homology class. The elements of cohomology are
equivalence classes of cocycles.

Topology simplification is an active field in geometric modeling and medical
imaging (see for example [2]). In fact, the ring structure presented in cohomol-
ogy is more refined than homology. The main drawbacks to using cohomology
in Pattern Recognition have been its lack of geometrical meaning and the com-
plexity for computing it. Nevertheless, concepts related to cohomology can have
associated interpretations in graph theory. Having these interpretations opens
the door for applying classical graph theory algorithms to compute and manip-
ulate these features. Initial plans regarding this research have been presented
in [3], and in this paper in Section [H

The paper is organized as follows: Sections 2] and [3 recall graph pyramids
and cohomology, and make initial connections. Section Ml presents the proposed
method. Section [f] gives considerations regarding the usage of cohomology in
image processing. Section [6] concludes the paper.

2 Irregular Graph Pyramids

A RAG, encodes the adjacency of regions in a partition. A vertex is associated
to each region, vertices of neighbooring regions are connected by an edge. Clas-
sical RAGs do not contain any self-loops or parallel edges. An extended region
adjacency graph (eRAG) is a RAG that contains the so-called pseudo edges,
which are self-loops and parallel edges used to encode neighborhood relations
to a cell completely enclosed by one or more other cells [4]. The dual graph of
an eRAG G is called a boundary graph (BG) and is denoted by G (G is said
to be the primal graph of G). The edges of G represent the boundaries (bor-
ders) of the regions encoded by G, and the vertices of G represent points where

boundary segments meet. G and G are planar graphs. There is a one-to-one

! Intuitively a cell complex is defined by a set of 0-cells (vertices) that bound a set of
1-cells (edges), that bound a set of 2-cells (faces), etc.
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Fig. 2. A digital image I, and boundary graphs Gs, G1o and G of the pyramid of I

correspondence between the edges of G' and the edges of G, which also induces
a one-to-one correspondence between the vertices of G and the 2D cells (will be
denoted by faces@) of G. The dual of G is again G. The following operations are
equivalent: edge contraction in G with edge removal in G, and edge removal in
G with edge contraction in G.

A (dual) irregular graph pyramid [45] is a stack of successively reduced planar
graphs P = {(Go, Gy), ..., (Gn,Gn)}. Each level (G, Gi),0 < k < n is obtained
by first contracting edges in Gy_; (removal in Gj_1), if their end vertices have
the same label (regions should be merged), and then removing edges in Gj_1
(contraction in Gj_1) to simplify the structure. The contracted and removed
edges are said to be contracted or removed (sometimes called removal edges)
in (Gx_1,Gr_1). In each Gx_1 and G}_1, contracted edges form trees called
contraction kernels. One vertex of each contraction kernel is called a surviving
verter and is considered to have been ‘survived’ to (G, Gy). The vertices of a
contraction kernel in level £ — 1 form the reduction window of the respective
surviving vertex v in level k. The receptive field of v is the (connected) set of
vertices from level 0 that have been ‘merged’ to v over levels 0. .. k.

For each boundary graph G, the cell complex [6] associated to the foreground
object, called boundary cell compler, is obtained by taking all faces of G; cor-
responding to vertices of G;, whose receptive fields contain (only) foreground
pixels, and adding all edges and vertices needed to represent the faces.

Lemma 1. All the boundary cell complexes of a given irregular dual graph pyra-
mid are cell subdivisions of the same object. Therefore, all these cell complexes
are homeomorphic.

As a result of Lemma [I topological invariants computed on different levels of
the pyramid are equivalent.

3 Cohomology and Integral Operators

Intuitively, homology characterizes the holes of any dimension (i.e. cavities, tun-
nels, etc.) of an n-dimensional object. It defines the concept of generators which,
for example for 2D objects are similar to closed paths of edges surrounding holes.
More general, k-dimensional manifolds surrounding (k4 1)-dimensional holes are
generators [6], and define equivalence classes of holes. Cohomology arises from

2 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).
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m 0-cells {v1,v2,v3,v4}
g e ¢ 1-cells {e :
4 1,€2,€3,€4,€5,€6}

e, e, . 2-cells {f1}

f 3 1-boundary Ofi =e1+e2+es

1 1-chain e1+e3
—— 1-cycle a=-¢e3+es+es
v, 2 v, 1-cycle b=e1+ex+es+es
homologous cycles | a and b; since a = b+ df1

Fig. 3. Example cell complex

the algebraic dualization of the construction of homology. It manipulates groups
of homomorphisms to define equivalence classes. Intuitively, cocycles (the invari-
ants computed by cohomology), represent the sets of elements (e.g. edges) to be
removed to destroy certain holes. See (Fig.[lc) for an example cocycle.
Starting from a cell decomposition of an object, its homology studies incidence
relations of its subdivision. Fig. [3 illustrates the following abstract concepts. A
cell of dimension p is called a p-cell. The notion of p-chain is defined as a formal
sum of p-cells. The chains are considered over Z/2 coefficients i.e. a p-cell is either
present in a p-chain (coefficient 1) or absent (coeflicient 0) - any cell that appears
twice vanishes. The set of p-chains form an abelian group called the p-chain group
Cp. This group is generated by all the p-cells. The boundary operator is a set of

homomorphisms {9, : C, — Cp_1}p>0 connecting two immediate dimensions:

) )
RREAY Cp = Cpo1— -+ % Cy % . By linearity, the boundary of any p-chain

is defined as the formal sum of the boundaries of each p-cell that appears in the
chain. The boundary of O-cells (i.e. points) is always 0. For each p, 9,19, = 0.
A p-chain o is called a p-cycle if 9p(c) = 0. If 0 = Op41 (1) for some (p+1)-chain
1 then o is called a p-boundary. Two p-cycles a and a’ are homologous if there
exists a p-boundary b such that a = a’ + b.

Denote the groups of p-cycles and p-boundaries by Z, and B, respectively.
All p-boundaries are p-cycles (B, C Z,). Define the p homology group to be
the quotient group H, = Z,/ By, for all p. Each element of H,, is a class obtained
by adding each p-boundary to a given p-cycle a. Then a is a representative cycle
of the homology class a + B,,.

Cohomology groups are constructed by turning chain groups into groups of
homomorphisms and boundary operators into their dual homomorphisms. Define
a p-cochain as a homomorphism ¢ : C;, — Z/2. We can see a p-cochain as a binary
mask of the set of p-cells: imagine you order all p-cells in the complex (let’s say
we have n p-cells, and call this ordered set S,). Then a p-cochain c is a binary
mask of n values in {0,1}".

The p-cochains form the set CP which is a group. A p-cochain c is totally
defined by the set of p-cells that are evaluated to 1 by ¢. The boundary operator
defines a dual homomorphism, the coboundary operator d7 : C? — CP+!l, such
that 6P(c) = c¢Op41 for any p-cochain c. Since the coboundary operator runs
in a direction opposite to the boundary operator, it raises the dimension. Its
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kernel is the group of cocycles and its image is the group of coboundaries. Two
p-cocycles ¢ and ¢’ are cohomologous if there exists a p-coboundary d such that
¢ = ¢ +d. The p™ cohomology group is defined as the quotient of p-cocycle
modulo p-coboundary groups, H? = ZP/BP| for all p. Each element of H? is a
class obtained by adding each p-coboundary to a given p-cocycle c¢. Then c is a
representative cocycle of the cohomology class ¢+ BP. If the object is embedded
in R3, then homology and cohomology are isomorphic. However, cohomology has
a ring structure which is a more refined invariant than homology. See [6] for a
more detailed explanation.

Starting from a cell decomposition of an object (e.g. from any level of the

pyramid) and the chain complex associated to it, - - - % Ch o, Co % 0, take a
g-cell o and a (¢ + 1)-chain «. An integral operator [7] is defined as the set of
homomorphisms {¢, : C,, — Cpt1}p>0 such that ¢4(0) = o, ¢q(p) = 01if p is a
g-cell different to o, and for all p # ¢ and any p-cell v we have ¢,(y) = 0. It is
extended to all p-chains by linearity.

Integral operators can be seen as a kind of inverse boundary operator. They
satisfy the condition ¢p11¢, = 0 for all p. An integral operator {¢, : C, —
Cp+1}p>0 satisfies the chain-homotopy property iff ¢p,0p+10, = ¢, for each p.
For ¢, satisfying the chain-homotopy property, define 7, = i¢d,+¢p—10,+0p+10p
where {id, : Cp, — Cp}p>0 is the identity. Then, --- % imm & imm %0 s
a chain complex and {m, : C, — imm,} is a chain equivalence [6]. Its chain-
homotopy inverse is the inclusion map {¢,, : imm, — Cp}.

Consider, for example, the cell complex K in Fig. [ on the left. The integral
operator associated to the removal of the edge e is given by ¢1(e) = B. Then,
mi(e) =a+ f+d, ma(B) =0, m2(A) = A+ B (A+ B is renamed as A’ in K’) and
mp is the identity over the other p-cells of K, p = 0,1,2. The removal of edge e
decreased the degree of vertices 1 and 3 allowing for further simplification.

The following lemma guarantees the correctness of the down projection pro-
cedure given in Section

Lemma 2. Let {¢p : C, — Cpi1}p>0 be an integral operator satisfying the

chain-homotopy property. The chain complexes - - - % Ch L\ Co %0 and--- %

1mm 9 1Mo %0 have isomorphic homology and cohomology groups. If ¢ :
imm, — Z/2 is a representative p-cocycle of a cohomology generator, then cm :
Cp, — Z/2 is a representative p-cocycle of the same generator.

For example, consider the cell complex K’ of Fig. 4l The 1-cochain «, defined
by the set {¢,d} of edges of K’, is a 1-cocycle which ‘represents’ the white hole

s Vi 10} T
PRGN
clafp > N N e Bla+ f+d
¢ va NN : Vdv\\ B 0 0
Jey—"' A p A o] &
% 5 iy other p-cell o|0 o

Fig. 4. The cell complexes K and K’ and the homomorphisms ¢, 7,
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C' (in the sense that all the cycles representing the hole must contain at least
one of the edges of the set). Then § = an is defined by the set {c,d,e} of
edges of K. a and 3 are both 1-cocycles representing the same white hole C'.

Lemma 3. The two operations used to construct an irreqular graph pyramid:
edge removal and edge contraction, are integral operators satisfying the chain-
homotopy property.

In terms of embedded graphs an integral operator maps a vertex/point to exactly
one of its incident edges and an edge to exactly one of its incident faces. In every
level of a graph pyramid, the contraction kernels make up a spanning forest. A
forest composed of k connected components, spanning a graph with n vertices,
has k root vertices, n — k other vertices, and also n — k edges. These edges
can be oriented toward the respective root such that each edge has a unique
starting vertex. Then, integral operators mapping the starting vertices to the
corresponding edge of the spanning forest can be defined as follows: ¢ (v;) = e;,
where e; is the edge incident to v;, oriented away from it.

Lemma 4. All integral operators that create homeomorphisms can be repre-
sented in a dual graph pyramid. This is equivalent to: given an input image
(Go,Go) and its associated cell complex Z = {Cy,C1,Cs}, a cell complex Z' =
{C}, C1, Ch} with Z,Z' homeomorphic, and Z a refinement of Z' i.e. C} C C,
C{ C Cy, and C% C Cy, then there exists a pyramid P s.t. Z' is the cell complex
associated to some level (G, Gy),k > 0, of P.

4 Representative Cocycles in Irregular Graph Pyramids

A method for efficiently computing representative cycles of homology generators
using an irregular graph pyramid is given in [8]. In [9] a novel algorithm for
correctly visualizing graph pyramids, including multiple edges and self-loops is
given. This algorithm preserves the geometry and the topology of the original
image.

In this paper, representative cocycles are computed and drawn in the bound-
ary graph of any level of a given irregular graph pyramid. They are computed
in the top (last) level and down projected using the described process.

For this purpose, a new level, called homology-generator level, is added over
the boundary graph of the last level of the pyramid. The boundary graph in
this new level is a set of regions surrounded by a set of self-loops incident in a
single vertex. To obtain this level, on the top of the computed pyramid [8] we
compute a spanning tree and contract all the edges that belong to it (see Fig. Bl).
Note that this last level is no longer homeomorphic to the base level, but
homotopic.

Lemma 5. The boundary cell complex of any level of the pyramid and the one of
the homology-generator level have isomorphic homology and cohomology groups.
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For example, in the boundary graph of
the homology-generator level (Fig.[Ha, top)
each self-loop « that surrounds a region of
the background (hole of a region R of the
foreground) is a representative 1-cycle of
a homology generator. In the same graph,
the representative 1-cocycle of each coho-
mology generator is defined by exactly two
self-loops. One of them is the self-loop «
representing one homology generator. Let 3
be the self-loop surrounding the region R.
Then, {«,3} is a representative 1-cocycle
of a cohomology generator.

Let Ak, k > 0, denote the set of edges
that define a cocycle in Gy (the boundary
graph in level k). The down projection of
A to the level Gi_; is the set of edges
Ai_1 C Gp_1 that corresponds to Ay i.e.
represents the same cocycle. Aj_1 is com-
puted as Ax—1 = A;_; UA}_,, where A7
denotes the set of surviving edges in Gj_;
that correspond to Ay, and A} _, is a sub-

set of removed edges in G,_1. The following
steps show how to obtain A} _:

1. Consider the contraction kernels of
Gr-1 (RAG) whose vertices are labeled
with ¢ (the region for which cocycles are
computed). The edges of each contrac-
tion kernel are oriented toward the re-
spective root - each edge has a unique
starting vertex.

2. For each contraction kernel T', from the
leaves of T to the root, let e be an edge
of T, v its starting point, and F, the
edges in the boundary of the face asso-
ciated to v: label e with the sum of the
number of edges that are in both A;
and in F,, and the sum of the labels of
the edges of T" which are incident to v.

3. A removal edge of G_1 is in A} | if the
corresponding edge of Gi_; is labeled
with an odd number.

The proof of correctness uses the homomor-
phisms {m,} (proof in a follow-up journal

paper).
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Fig.5. a) Levels of a pyramid.
Edges: removed (thin), contracted
(middle) and surviving (bold). b)
Down  projection  representative
1-cocycle (bold).
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Note that these graphs were defined from the integral operators associated to
the removed and contracted edges of the boundary graph of level kK — 1 to obtain
level k. An example of the down projection is shown in Fig. Blb.

Let n be the height of the pyramid (number of levels), e,, the number of edges
in the top level, and vy the number of vertices in the base level, with n ~ log vy
(logarithmic height). An upper bound for the computation complexity is: O(von),
to build the pyramid; for each foreground component, O(h) in the number of
holes h, to choose the representative cocycles in the top level; O(e,n) to down
project the cocycles (each edge is contracted or removed only once). Normally not
all edges are part of cocycles, so the real complexity of down projecting a cocycle
is below O(e,n). The overall computation complexity is: O(von—+c(he,n)), where
c is the number of cocycles that are computed and down projected.

5 Cohomology, Image Representation and Processing

Besides simplifying topology, cohomology can be considered in the context of
classification and recognition based on structure. There is no concrete definition
of what ‘good’ features are, but usually they should be stable under certain trans-
formations, robust with respect to noise, easy to compute, and easy to match.
The last two aspects motivate the following considerations: finding associations
between concepts in cohomology and graph theory will open the door for apply-
ing existing efficient algorithms (e.g. shortest path); if cocycles are to be used
as features for structure, the question of a stable class representative has to be
considered i.e. not taking any representative cocycle, but imposing additional
properties s.t. the obtained one is in most of the cases the same. The rest of the
section considers one example: 1-cocycles of 2D objects.

A 1-cocycle of a planar object can be seen as a set of edges that ‘block’
the creation of cycles of one homology class. Assume that the reverse is also
valid i.e. all sets that ‘block’ the creation of cycles of one homology class are
representative 1-cocycles. Then, any set of foreground edges in the boundary
graph G;, associated to a path in the RAG G;, connecting a hole of the object
with the (outside) background face, is a representative 1-cocycle. It blocks any
generator that would surround the hole and it can be computed efficiently (proof
follows). If additional constraints are added, like minimal length, the 1-cocycle is
a good candidate for pattern recognition tasks as it is invariant to the scanning
of the cells, the processing order, rotation, etc.

Let K be the boundary cell complex associated to the foreground of the
homology-generator level. Suppose that « is a representative cycle i.e. a self-loop
surrounding a face of the background, and j is a self-loop surrounding a face f of
the foreground such that « is in the boundary of f in K, (Fig.[). Let a* denote
the cocycle defined by the set {a, 8}. Let K denote the boundary cell complex
associated to the foreground in Gy. Let ¢ be the composition of all integral oper-
ators associated with all the removals and contractions of edges of the foreground
of the boundary graphs of a given irregular graph pyramid. Let © = id 4+ ¢d + 0¢
and let ¢ : Ky — Ko be the inclusion map. Consider the down projection [8] of «
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- -
o
\\\
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a) cocycle {a, 8} in  b) down projec- «¢) edges e, € a  d) cocycle in Go (red)
the top level tion a, b of a, B and ey € b cohomologous to a)

Fig. 6. Example cocycle down projection

and 3 in Gy: the cycles (o) = a and +(3) = b, respectively. Take any edge e, € a
and e, € b. Let f,, fp be faces of Ky having e, respectively e in their boundary.
Let vg, vy, ..., v, be a simple path of vertices in G s.t. all vertices are labeled as
foreground. vy is the vertex associated to f,, and v, to fp.

Proposition 1. Consider the set of edges c = {eq, . ..,enr1} of Go, where eg =
€a; €nt1 = €p, and e;, i = 1...n, is the common edge of the regions in Go
associated with the vertices v;—1 and v;. ¢ defines a cocycle cohomologous to the
down projection of the cocycle o*.

Proof. ¢ is a cocycle iff ¢O is the null homomorphism. First, cd(f;) = c(e; +
ei41) = 1 +1 = 0. Second, if f is a 2-cell of Ky, f # fi, ¢ = 0,...,n, then,
cd(f) = 0. To prove that the cocycles ¢ and o*m (the down projection of o* to
the base level of the pyramid) are cohomologous, is equivalent to showing that
ct = o. We have that ci(a) = c(ep) = 1 and c(5) = ¢(e,) = 1. Finally, ¢t over
the remaining self-loops of the boundary graph of the homology-generator level
is null. Therefore, ct = a*.

Observe that the cocycle ¢ in Gy may correspond to the path connecting two
boundaries and having the minimal number of edges: ‘a minimal representative
cocycle’. As a descriptor for the whole object, take a set of minimal cocycles
having some common propertyt.

Lemma 6. Let v* be a representative 1-cocycle in Go, whose projection in the
homology-generator level is the cocycle o* defined by the two self-loops {«, 5}.
v* has to satisfy that it contains an odd number of edges of any cycle g in Gy
that is homologous to 1(a), the down projection of a in Gy.

Proof. v* contains an even number of edges of g iff v*(g) = 1. First, there exists
a 2-chain b in Ky such that g = ¢(a) +9(b). Second, v*(g) = v*(t(a) +9(b)) = 1,
since v*1(a) = a*(a) = 1, and v*9(b) = 0 because v* is a cocycle. So g must
contain an even number of edges of the set that defines ~*. a

Consider the triangulation in Fig. [{, corresponding to a torudd. Any cycle ho-
mologous to 3 contains an odd number of edges of 5* (e.g. red edges in Fig.[Dc).

3 E.g. they all connect the boundaries of holes with the ‘outer’ boundary of the object,
and each of them corresponds to an edge in the inclusion tree of the object.
* Rectangle where bottom and top, respectively left and right edges are glued together.
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a b ¢ a a b Pec a a b f*¢ a a b f'c a a b f*c a
d d d d d d d d 4 d
o
e e e e e e e e e
a b c a a' b C a a b c a a b < a a b < a
a) b) c) d) e)

Fig. 7. A torus: a) triangulation; b) representative cycles of homology generators; ¢) a
representative cocycle; d) and e) non-valid representative cocycles

The red edges in d) and e) do not form valid representative cocycles: in d), a
cycle homologous to 8 (blue) does not contain any edge of 5*; in e), another
cycle homologous to (8 contains an even number of edges of 3*.

6 Conclusion

This paper considers cohomology in the context of graph pyramids. Representa-
tive cocycles are computed at the reduced top level and down projected to the
base level corresponding to the original image. Connections between cohomol-
ogy and graph theory are proposed, considering the application of cohomology
in the context of classification and recognition. Extension to higher dimensions,
where cohomology has a richer algebraic structure than homology, and complete
cohomology - graph theory associations are proposed for future work.
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