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Abstract The eccentricity transform associates to each point of a shape the geodesic dis-

tance to the points farthest away. This can be used to decompose shapes into parts based on

the connectivity of the isoheight lines. The adjacency graph of the obtained decomposition

is similar to a Reeb graph and characterizes the topology of the object. Graph pyramids are

used to efficiently compute the decomposition and its adjacency graph. Initial experimental

results and discussion for 2D and 3D are given.
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1 Introduction

Topological features play an important role in structural pattern recognition due to their ability
to describe classes of objects robust with respect to changes in the geometry produced by usual
deformations or noise. Application domains include general object categorization, medical image
processing, study of different structures (alloys, bones, etc.), and study of the behavior over time
by considering an embedding in a higher dimensional space (e.g. a beating heart in 3D gives a 4D
object).

A special kind of graphs introduced by G. Reeb in [14] is often used in this context. It is
computed on an object with respect to a particular function depending on the application and
produces a kind of topological skeleton of the object. The accuracy of the representation deeply
depends on the chosen function.

The eccentricity transform (named from the eccentricity of a vertex in graph theory) associates
to each point of a shape the length of the shortest geodesic path(s) connecting it to the point
farthest away i.e the longest of the shortest geodesics. The eccentricity transform is part of a
class of image transforms also containing the distance transform [15], which associates to each
point the length of the shortest path to the border, and the Poisson equation [5], which can
be used to associate to each point the average time to reach the border by a random path (an
average of the random shortest paths).

We propose to extract topological features of a shape, based on observing the evolution of the
isolines of the eccentricity transform through a graph similar to the Reeb graph. Using a measure
based on geodesic distances for obtaining a Reeb graph is also proposed in [1], where the focus is
on average rather than longest distances.

Initial ideas regarding the presented decomposition are given in [6], but only focusing on
2D shapes without holes and no direct interest regarding the topology of the shape. Also the
connection eccentricity - Reeb graphs is novel.
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Section 2 recalls Reeb graphs, eccentricity and graph pyramids which can be used to improve
the computation. Section 3 focuses on the computation of the proposed graph. Section 4 considers
the extraction of topological features, properties and open points. Conclusion follows in Section 5

2 Recall

In this section basic definitions and properties of the eccentricity transform, graph pyramids, and
Reeb graphs are given.

2.1 Eccentricity Transform

The following definitions and properties follow [7]. Let the shape S be a closed set in R
n and ∂S

be its border1. A (geodesic) path π is a continuous mapping from the interval [0, 1] to S. Let
Π(p1,p2) be the set of all paths between two points p1,p2 ∈ S within the set S. The geodesic
distance d(p1,p2) between two points p1,p2 ∈ S is defined as the length λ(π) of the shortest
path π ∈ Π(p1,p2) between p1 and p2:

d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π} where λ(π(p1,p2)) =

∫ 1

0

|π̇(t)|dt (1)

where π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S can be defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q) : q ∈ S} (2)

i.e. to each point p it assigns the length of the shortest geodesic to the points farthest away from
it. In [10] it is shown that this transformation is quasi-invariant to articulated motion and robust
against salt and pepper noise (which creates holes in the shape).

This paper considers the class of shapes S defined by points on a square grid Z
2 that are

4-connected. Paths need to be contained in the area S ⊆ R
2 defined by the union of the support

squares/cubes for the pixels/voxels of S. The distance between any two pixels whose connecting
segment2 is contained in S is computed using the L2-norm. In a graph theoretical framework,
a vertex is associated to every point of S. Every two vertices, whose associated points can be
connected by a line segment included in S, are connected by an edge weighted with the length of
the line segment. The geodesic distance d(p,q) is the length of the shortest path connecting the
vertices associated to p and q.

Terminology:

An eccentric point of a shape S is a point e ∈ S that is farthest away in S from at least one other
point p ∈ S i.e. ∃p ∈ S s.t. ECC(S,p) = d(p, e).

The center C ⊆ S of a shape S is the set of points c ∈ C with the smallest eccentricity i.e.
c ∈ C ⇐⇒ ECC(S, c) = min{ECC(S,p), ∀p ∈ S}. If the shape S is a simply connected shape3

in R
2, the center C is a single point. If S is a simply connected discrete shape in Z

2, C is a
connected set of less than 5 pixels. Otherwise it can be a set of arbitrary size and connectivity
(e.g. for S made out of the points on a circle, all points are eccentric and they all make up the
center).

The smallest eccentricity is called the radius of the shape, and the highest one is called the
diameter.

1This definition can be generalized to any dimension, continuous and discrete objects.
2Straight line segment connecting the two points.
3No holes.

2



Properties:

The variation of geodesic distances is bounded under articulated deformation to the width of the
’joints’ [11]. The eccentricity transform uses geodesic distances and is bounded in the same way.

The transform is very robust with respect to noise, and the positions of eccentric points and
the center are stable [10]. They change only if all supporting pixels for a certain eccentric point are
removed or if the diameter changes i.e. the shape is modified around the points with the highest
eccentricity.

See Figure 2(a) and (b) for an example of a shape and its eccentricity transform.

2.2 Irregular Graph Pyramids

A graph pyramid is a stack of successively reduced graphs P = {G0, . . . , Gt}. Each level Gk =
(Vk, Ek), 1 ≤ k ≤ t, is obtained by contracting and removing edges in the level below. Successive
levels reduce the size of the data by λ > 1. Edges and vertices of Gk can be attributed. The
reduction window relates a vertex at a level Gk with a set of vertices in the level directly below
(Gk−1). Higher level descriptions are related to the original input data. This is done by the
receptive field (RF) of a given vertex v ∈ Gk, which aggregates all vertices in the base level (G0)
of which v is an ancestor.

Each level represents a partition of the base level into connected subgraphs i.e. connected
subsets of pixels in our case. The union of neighboring vertices on level k−1 (children) to a vertex
on level k (parent) is controlled by contraction kernels (CK) [8], a spanning forest which relates
two successive levels of a pyramid. Contraction kernels are chosen based on the content and the
structure of the data4. Every parent computes its values independently of other on the same level.
Thus local independent (and parallel) processes propagate information up and down and laterally
in the pyramid [9].

2.3 Reeb graphs

Reeb graphs are used to partially encode the topology of manifolds and to provide a compact
representation of them. More precisely, they provide a kind of skeleton of the object on which
they are computed. They are for instance used in 3D shape retrieval methods together with
graph matching algorithms. The construction of such graphs is deeply related to the choice of the
function, f .

A mathematical definition of Reeb graphs of manifolds can actually be expressed as follows
[3]. Let f : M −→ R be continuous, and call a component of a level set a contour. Two points x,
y ∈M are equivalent if they belong to the same component of f−1(t) with t = f(x) = f(y). The
Reeb graph of f is the quotient space defined by this equivalence relation.

Most applications use functions with particular properties such as Morse functions. A Morse
function is a function whose critical points (i.e. points where the derivative is null) are non
degenerated (i.e. the second derivative at these points is different from zero).

If using such functions, each node of the obtained graph corresponds to a critical point of the
function f , in other words there is one node per level set of f . Edges between nodes somehow
represent the connectivity between level sets. Moreover the preservation of the topology can
be more easily quantified with such functions. For instance, when dealing with 2D-orientable
manifolds, it is known that the number of loops of the graph is exactly the genus of manifold [3].

The choice of f is not straightforward [2]. It often depends on the properties of the objects
on which the matching shall focus. Ideally such functions should also be invariant under classical
transformations such as translation, rotation, scaling. Moreover they should not induce expensive
computational cost. The simplest function often used is the height function: it associates to each
point of the manifold its altitude in a given direction (See Figure 1). Such a function is obviously
not invariant under rotation as if the direction changes the height function also does. It is hence
particularly suited for applications where a given orientation can naturally be associated to the

4For example, for connected component labeling, edges connecting vertices with the same label are contracted.
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Figure 1: An object with 3 tunnels and its associated Reeb graph obtained with the elevation
function

object. But it is not adapted to the classification of any set of images. Many other functions
can also be used based for instance on the distance from the barycenter, or the computation of
curvature extrema.

3 2D Shape Decomposition based on ECC isoheight Lines

The level set of a differentiable function f : R
n → R corresponding to a real value h is the set of

points {p ∈ R
n : f(p) = h} [16].

A level set of the eccentricity transform of S ∈ R
n is the set:

LS(e) = {q ∈ S : ECC(S,q) = e}, (3)

with e ∈ [min{ECC(S,p)}, max{ECC(S,p)}] an eccentricity value. If S ∈ R
2, LS(e) can be a

single closed curve (cycle) or a set of disconnected open curves. The connected components of
LS(e) are called isoheight lines, IL ⊆ LS(e), IL connected.

Given a shape S, a decomposition of S into simply connected regions is the set {R1, . . . , Rn}
s.t.

⋃
Rk = S, k = 1, . . . , n; Ri

⋂
Rj = ∅, ∀i, j ∈ {1, . . . , n}; and Ri is a simply connected region.

HD(S) = {R1, . . . , Rn} is a a decomposition of S ∈ R
2 based on the connectivity of the ECC

isoheight lines if HD is a decomposition into simply connected regions (as defined above), ∀Ri

and ∀e ∈ [min{ECC(S,p)}, max{ECC(S,p)}] ⇒ Ri

⋂
LS(e) is a connected region, all IL part

of the same Ri are closed or all open (same topology), and n, the number of regions, is minimal.
HD(S) exists for any connected shape S.

Given a discrete shape S and its eccentricity transform ECC(S), HD(S) can be computed by:

1. in a graph theoretical framework: Algorithm 1 creates a graph pyramid s.t. the top
level Gh is an oriented region adjacency graph describing the topology of the decomposition
HD(S). Edges of Gh are oriented from regions with lower eccentricity to regions with higher
eccentricity. Each vertex contains the length of the longest isoheight line in its receptive field.

2. sequential approach: ’follow’ the isoheight lines from the minimum eccentricity to the
maximum eccentricity. Whenever an isoheight line gets disconnected, or merged, new regions
are started for the formed isoheight line part(s). This way of presenting the algorithm is
similar to building a Reeb graph, and equivalent with Algorithm 1. (The sequential approach
is more intuitive, but needs building the adjacency graph for the decomposition ’over’ it. In
addition, it is lacking the fast access advantages when searching for the pixel with a known
coordinate.).

We will use decomposition graph to denote the adjacency graph of the decomposition, as
obtained in the top level of the pyramid produced by Algorithm 1. Figure 2(c) shows an example
decomposition based on the connectivity of isoheight lines.
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Algorithm 1 HD - Decomposition of S ∈ R
2 based on the connectivity of ECC isoheight lines

Input: Discrete shape S.

1: iECC = ⌊ECC(S)⌋ /*compute ECC, round = at least 8 connected isoheight lines*/
2: G0 ← oriented neighborhood graph of iECC /*ensure proper connectivity of isoheight lines

while keeping G0 planar, orient from small to high eccentricity*/
3: k ← 0
4: for all v ∈ Vk do v.maxlength← 1, v.ecc← [ECC(v), ECC(v)], /*init max length of isoheight

lines and eccentricity interval for each vertex*/
5: repeat

6: A← {e = (vi, vj) ∈ Ek : vi.ecc = vj .ecc} /*merge isoheight segment parts*/
7: A ← A

⋃
{e = (vi, vj) :deg(vi),deg(vj) ≤ 2 and closed(vi)=closed(vj)} /*same region,

closed(v)=true ⇐⇒ receptive field of v contains only closed isoheight lines*/
8: if |A| > 0 then

9: K ← contraction kernels as subset of A /*use MIS or MIES [9] to optimally break A into
valid contraction kernels*/

10: Gk+1 ← contract(Gk, K) /*contract edges in K and simplify*/
11: for all v ∈ Vk+1 do compute v.maxlength, v.ecc from Gk /*use reduction window*/
12: k ← k + 1
13: end if

14: until |A| = 0
15: h← k

Output: Graph Pyramid G0, . . . , Gh.

4 Eccentricity based Reeb

The graph produced in Section 3 as a result of the decomposition, is similar in concept with the
Reeb graph, if considering the eccentricity transform as the function f (see Section 2.3).

For the shape in Figure 2(a), the produced graph contains 53 nodes. Figure 2(d) shows the
graph. Note that for visualization purposes, 21 leaves corresponding to tiny regions with 1-3 pixels
have been removed. The two cycles identifying the two holes are shown in Figure 2(e), and the
region corresponding to the vertex with the highest degree (6) is given in Figure 2(f). Both figures
can be easily obtained from Figure 2(d) by using edge contraction and removal, and the concept
of receptive field.

To directly obtain the cycles in the decomposition graph, one can use the approach proposed
in [4] and contract all edges which are not selfloops. The obtained graph will contain a self loop for
each hole. Also, the graph in Figure 2(e) can be transformed to one like in Figure 1 (i.e. without
any loops enclosed in other loops), with a continuous deformation as described in [13].

The following main questions arise from these concepts:

Correctness: the fact that the decomposition graph contains exactly as many selfloops as holes
is an intuition and is proposed as future study. Note that a similar decomposition can be done in
the same way, for other transforms also (e.g. the single source shape bounded distance transform,
also called geodesic distance function ). We use the eccentricity transform because its center is
stable [10] and there is no need to give a starting point. On the other side, proving that the
obtained graph has the number of cycles equal to the number of holes in the input object could
be easier for the geodesic distance function.

Going to higher dimensions: the algorithm in Section 3 uses connectivity and whether an
isoline is closed or not to create the decomposition for 2D shapes. Only level sets LS having
the same topology (intuitively, number of connected components and of holes, if the 2D shape is
embedded in 2D) are grouped together. If going to 3D, level sets become surfaces, which have
properties regarding connectedness, 1D and 2D holes (tunnels & cavities). One might consider
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A 2D Shape with 2 holes, (b) its eccentricity transform (modulo 20), (c) decomposi-
tion (connected & same gray value means same region), (d) decomposition graph (leaves belonging
to 1-3 pixel regions have been left out for drawing clarity), (e) the two cycles in the graph, (f) image
region corresponding to vertex with highest degree (6) (the small width is just a coincidence).

putting all neighboring connected components of level sets together, if they share the same number
of tunnels and cavities. This would produce the correct result for the object in Figure 1, but
ambiguities can appear in the cases of cavities. Like Reeb graphs, the obtained graphs will
certainly not be able to distinguish between cavities and tunnels (e.g. a plain sphere i.e. a solid
with one cavity, could result in the same graph as the torus). To overcome this difficulty, a solution
could be to compare this invariant to other topological invariants such as the homology groups
that provide an accurate representation of holes in any dimension [12]. One could also imagine
applying the same algorithm again, for each of the 2D eccentricity level sets obtained for a 3D
object. But the question of putting together the results from each level is still open.

Relations between features: what are the relations between the eccentricity transform and
the holes in an object? (e.g. a disconnected center =⇒ at least one hole).

5 Conclusion

A concept for using isolines of the eccentricity transform to extract topological features is pre-
sented. The isolines are used to decompose a 2D shape into parts. The adjacency graph of the
decomposition is similar to the Reeb graph and can be used to characterize the holes. A discussion
regarding properties and extension to 3D is given.
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