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Abstract

A framework for mapping a polar-like coordinate

system to a non-rigid shape is presented. Using a graph

pyramid, a binary shape is decomposed into connected

parts, based on its structure as captured by the eccen-

tricity transform. The decomposition is used to derive

domains for the angular like coordinate. A closest point

search is employed to find point correspondences.

1 Introduction

Most shape matching methods output a similarity

value (e.g. [4, 5, 16, 8]), some also give correspon-

dences of the used border points/parts [14, 1, 19], but

finding all point correspondences is not straightforward.

This workmaps a coordinate system to an articulated

shape, with the purpose of addressing the correspond-

ing point (or a close one) in other instances of the same

shape. It is motivated by observations like: ’one might

change his aspect, alter his pose, but the wristwatch is

still located in the same place on the hand’.

For correspondences of all points of the shape, the

task is similar to the non-rigid registration problem used

in the medical image processing community [3]. Dif-

ferences include the usage of gray scale information

to compute the deformation vs. the usage of a binary

shape and, the registration of a whole image (in most

cases) vs. the registration of a (in this paper) connected

2D shape. In [4], a triangulation of the shape is used

as a model, which could be used to find corresponding

points, but an a priori known model is still needed. In

the surface parametrization community [2] a coordinate

system for shapes is defined, but articulation is not con-

sidered. In [9], for small variations, correspondences

between points of 3D articulated shapes are found. Re-

cently shape matching has also moved toward decom-

position and part matching, e.g. [16], mainly due to oc-

clusions, imperfect segmentation or feature detection.
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We use the eccentricity transform [7] as a basis for a

2D polar like coordinate system. To support this, shapes

are decomposed into connected parts. Initial ideas are

presented in [6]. Sec. 2 recalls the eccentricity trans-

form and graph pyramids. Sec. 3 and 4 describe the pro-

posed methods, with the experiments given in Sec. 5.

2 Eccentricity and Pyramids

Eccentricity Transform [7]: Let the shape S be a
closed set in R

2 and ∂S be its border1. A (geodesic)
path π is the continuous mapping from the interval
[0, 1] to S. Let Π(p1,p2) be the set of all paths
between two points p1,p2 ∈ S. The geodesic

distance d(p1,p2) between p1,p2 is defined as the

length λ(π) of the shortest path π ∈ Π(p1,p2)
i.e. d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π}, where

λ(π(t)) =
∫

1

0
|π̇(t)|dt, and π(t) is a parametrization

of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S is ECC(S,p) =

max{d(p,q)|q ∈ S}, ∀p ∈ S i.e. to each point p it
assigns the length of the shortest geodesic path(s) to the

points farthest away. The class of 4-connected discrete

shapes S defined by points on a square grid Z
2 are con-

sidered. Paths are contained in the area ofR2 defined by

the union of the support squares for the pixels of S. The
distance between any two pixels whose connecting seg-

ment is contained in S is computed using the L2-norm.

The shape bounded single source distance transform,

DT (S,p), computes the geodesic distance of all points
of a shape S to the point p, and is the main tool used for
computingECC(S). DT (S,p) can be efficiently com-
puted using discrete circles [7] or fast marching [18].

An eccentric point is a point e ∈ S that is farthest
away from at least one other point p ∈ S i.e. ∃p ∈
S s.t. ECC(S,p) = d(p, e). The center C ⊆ S is
the set of points with the smallest eccentricity i.e. c ∈
C iff ECC(S, c) = min{ECC(S,p) | ∀p ∈ S}. If S
is simply connected, C is a single point. Otherwise it
can be a disconnected set of arbitrary size (e.g. for S =

1It can be generalized to any continuous and discrete space.
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Figure 1. Eccentricity image transform.

the points on a circle, all points are eccentric and they

all make up the center). The smallest eccentricity is the

radius of the shape, and the highest one is the diameter.

Due to using geodesic distances, the variation of

ECC is bounded under articulated deformation to the

width of the ’joints’ [14]. The transform is robust with

respect to Salt & Pepper noise, and the positions of ec-

centric points and center are stable [13]. Fig. 1 shows

two hand shapes (taken from the Kimia99 database

[17]) and their eccentricity transform.

Irregular Graph Pyramids: A graph pyramid P =
{G0, . . . , Gt} is a stack of successively reduced graphs.
Each level Gk = (Vk, Ek) is obtained by contracting
and removing edges in the level below. Successive lev-

els reduce the size of the data by λ > 1. The reduction
window relates a vertex at a level Gk with a set of ver-

tices in the level directly below (Gk−1). Higher level

descriptions are related to the original input data - the

receptive field (RF) of a given vertex v ∈ Gk aggre-

gates all vertices in G0 of which v is an ancestor.
Each level represents a partition of the base level into

connected subgraphs i.e. connected subsets of pixels in

our case. The construction of an irregular pyramid is it-

eratively local [15]. In G0 the vertices represent single

pixels. The union of neighboring vertices on level k−1
(children) to a vertex on level k (parent) is controlled by
trees called contraction kernels (CK) [11] chosen by the

algorithm (e.g. segmentation, connected component la-

beling, etc.). Every vertex computes its values indepen-

dently of other vertices on the same level. Thus local in-

dependent (and parallel) processes propagate informa-

tion up and down and laterally in the pyramid [12].

3 ECC Isoheight Lines - Decomposition

The level set [20] of a function f : R
n → R, cor-

responding to a value h, is the set of points p ∈ R
n

s.t. f(p) = h. A level set of the ECC of S is the
set LS(e) = {q ∈ S | ECC(S,q) = e}, with e ∈
[min{ECC(S,p)}, max{ECC(S,p)}]. For S ∈ R2,

LS(e) can be a closed curve or a set of disconnected

Algorithm 1HD - Decompose S based on ECC LS

Input: Discrete shape S .

1: iECC = ⌊ECC(S)⌋ /*at least 8 connected IL*/

2: G0 ← oriented neighborhood graph of iECC

/* pixels with same iECC connected, G0 planar,

orient from small to high iECC*/

3: k← 0
4: ∀v ∈ V0 do

v.maxlength← 1, v.ecc← [ECC(v), ECC(v)]
/* init max length of isoheight lines and ecc. interval*/

5: repeat

6: A← {e = (v, w) ∈ Ek | v.ecc = w.ecc}
/* merge isoheight line parts*/

7: A ← A
S

{e = (v, w) | out-deg(v) = in-deg(w) = 1
and closed(v)=closed(w)}
/* closed(v)=true iff RF(v) contains only closed IL*/

8: if |A| > 0 then
9: K ← CK as subset of A

/*choose optimal subset of A with e.g. MIS [12] */

10: Gk+1 ← contract(Gk, K) /* also simplify*/
11: ∀v ∈ Vk+1 compute v.maxlength, v.ecc fromGk

/* use reduction window*/

12: k← k + 1
13: until |A| = 0
14: t← k

Output: Graph Pyramid P = {G0, . . . , Gt}.

open curves. The connected components of LS(e) are
called isoheight lines, IL ⊆ LS(e), IL connected.

HD(S) = {R1, . . . , Rn} is a a decomposi-
tion of S based on the connectivity of the ECC
isoheight lines (Fig. 2) if: HD is a partition

of S into simply connected regions; ∀Ri and

∀e ∈ [min{ECC(S,p)}, max{ECC(S,p)}] ⇒
Ri

⋂
LS(e) is connected; the number n of regions is

minimal. HD(S) exists for any connected shape S.
The top level Gt of the graph pyramid created by

Alg. 1 is a region adjacency graph describing the topol-

ogy of the decomposition HD(S). Edges of Gt are

oriented from regions with lower eccentricity to re-

gions with higher eccentricity. Each vertex contains the

length of the longest isoheight line in its RF.

If S is simply connected, the obtained region adja-
cency graph is a tree (Theorem 7.9 in [10]), with the RF

of the root vertex containing the (unique) center pixel.

Such a decomposition can be done for other transforms

also (e.g. the DT (S,p)). The eccentricity transform is
used because its center is a robust starting point [13]. A

study of the decomposition of shapes based on ECC iso-

height lines in the context of shape matching is planned.

4 The Non-rigid Coordinate System

A system of curvilinear coordinates [20] is com-

posed of intersecting surfaces. If all intersections are
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Algorithm 2 CtoP - Assign θ to ∀v ∈ G

Input: G = (V, E) from Alg. 1, vertex v, interval [θ1, θ2].

1: v.θ1 ← θ1, v.θ2 ← θ2

2: A← isoheight line of v with highest ecc.
3: for all e = (v, vo) ∈ E /*all edges oriented away*/ do

4: B ← isoheight line of vo with lowest ecc.

5: [θ′

1, θ
′

2] ← project B to A and compute from [θ1, θ2]
(Eq. 2)

6: call CtoP (G,vo, [θ
′

1, θ
′

2])

Output: G, with θ intervals [v.θ1, v.θ2] for each region

at angle π/2, then the coordinate system is called or-
thogonal (e.g. polar coordinate system). If not, a skew

coordinate system is formed. Two classes of curves are

needed for a planar system of curvilinear coordinates.

A single curve of each class passes through any p ∈ S.
The proposed coordinate system is intuitively similar

to the polar coordinate system, but forms a skew coor-

dinate system. We focus on simply connected shapes

and their properties. The decomposition of non simply

connected shapes is much more complex (general graph

with cycles, etc.) and more complex algorithms are re-

quired. Note that θ is not really an angle, just denoted
intuitively so. The radial coordinate

r(p) = ECC(S,p) −min{ECC(S,p)} (1)

is a linear mapping from the eccentricity value and the

angular coordinate θ is mapped to the isoheight lines of
the ECC based on the structure of the shape.

The figure above shows three adjacent isoheight lines

(A, B, G) of different regions. A has eccentricity e, and
B, G have e + k. If k → 0 then d → 0, and maximum
smoothness of θ is achieved when each point of B has
the same θ as his projection onA. This assumption puts
the values θ for A and B into relation. An approxima-
tion is to project the endpoints ofB ontoA, to find their
θ values, and interpolate along B:

θ′
1

= θ1 +
(θ2 − θ1)

∫ p

s
dl

∫ e

s
dl

(2)

The root vertex of Gt from Sec. 3, contains only

closed isoheight lines and is the only such vertex. Its

associated θ interval is 2π. Other vertices have an ’in-
put interval’ and 0 or more ’output intervals’ (edge ori-

entation in G). Smoothness along region boundaries is
assumed as above, and intervals of θ inside each region
are kept constant. Alg. 2 assigns the θ intervals to each
vertex. The parameters are the top level of the pyramid

from Alg. 1, the root vertex of Gt, and [0, 2π].

For the origin of θ, a path connecting the center (min-
imum eccentricity) with a point having the maximum

eccentricity can be used. This path is called the zero

path. It is used in the inner most region (root vertex of

Gt) to set the 0 for the θ of each isoheight line. Out-
side this region, linear interpolation is used (Eq. 2). The

point with maximum ECC can be selected using any

shape orientation method (e.g. [21]) - taking into con-

sideration the possible deformations would be optimal.

Fig. 2 shows the results of Alg. 1 and 2, and Eq. 1 and

2 for the two hands. The jagged isoheight lines of θ are
due to the smoothness/roughness of the shape boundary

i.e. curvature of the shape boundary at the endpoints

of isoheight lines, and partly due to the simple imple-

mentation (point projection by closest point search and

integral along line estimation by sum of line segment

lengths for Eq. 2, etc.).

5 Experiments

A pattern was laid on each hand - the source, and

copied to the other one - the destination, by finding

for each pixel pd(rd, θd) of the destination the “closest”
pixel ps(rs, θs) in the source. The local variation of θ
is not constant over the whole shape, making the Eu-

clidean metric not the best option for finding the clos-

est pixel to a given point pd(rd, θd). To avoid compen-
sating for this variation, a two step approach is used.

First, normalize r in both shapes to [0, 1]. This makes
finding eccd → r → eccs a linear scaling problem.

L← (eccs ≤ ECC(source) < eccs + 1) gives at least
8 connected isoheight lines of r. Second, the pixel of
L which minimizes |θd − θs| is chosen. The results are
promising (see Fig. 2) with the texture of the “articu-

lated” finger being nicely copied from one shape to the

other i.e. points are copied to their corresponding region

in the articulated version of the shape.

The noise like errors on the pattern are due to the

approximations mentioned above and to using “nearest

point” for finding the color of each pixel when copying

the pattern (instead of interpolating gray values). Errors

on the boundaries of fingers are due to certain coordi-

nates not existing in both shapes. The more global per-

turbation (palm of the hands in Figure 2) is mainly due

to the slightly different position of the centers and iso-

height line shape. Improvements can be made by con-

sidering both shapes when mapping the coordinates to

them, or by a more complex method for finding corre-

sponding points. Finding a matching between the re-

gions of the decomposition of the two shapes is an im-

portant step planned for the future.
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decomposition used zero path radial: r angular: θ pattern on the source on the destination

Figure 2. Results for the shapes in Figure 1.

6 Conclusion and Outlook

This paper presents a framework for mapping a

polar-like coordinate system to a non-rigid binary shape

and finding corresponding points between two shapes.

Promising initial results are presented. More global de-

cisions will provide smoother angular isoheight lines,

and additional correspondences between part structures

can help to solve failed correspondences. Further quan-

titative evaluation and extension to non simply con-

nected shapes is planned.
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