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Abstract. We review multilevel hierarchies under two special aspects:
their potential for abstraction and for storing discrete representations.
Motivated by claims to 'bridge the representational gap between image
and model features' and by the growing importance of topological prop-
erties we discuss several extensions to dual graph pyramids and to topo-
logical maps: structural simpli�cation should preserve important topo-
logical properties and content abstraction could be guided by an external
knowledge base.

1 Introduction

At a panel of the last International Workshop on Visual Form (IWVF4) Sven
Dickinson asked the following question referring to several research issues in
the past and also in the future: "How do we bridge the representational gap
between image features and coarse model features?" He identi�es the one-to-one
correspondence between

{ salient image features (pixels, edges, corners,...) and
{ salient model features (generalized cylinders, polyhedrons, invariant mod-
els,...)

as limiting assumption that makes prototypical or generic object recognition
impossible. He suggested to bridge and not to eliminate the representational gap,
and to focus e�orts on:

{ region segmentation
{ perceptual grouping
{ image abstraction

Let us take these goals as a guideline to re-consider research e�orts in the area of
multiresolution discrete representations under the special viewpoint of abstrac-
tion and of representations that are discrete in nature.

Regions as aggregations of primitive pixels play an extremely important role
in nearly every image analysis task. Their internal properties (color, texture,
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shape, ...) help to identify them and their external relations (adjacency, inclusion,
similarity of properties) are used to build groups of regions having a particular
meaning in a more abstract context. The union of regions forming the group is
again a region with both internal and external properties and relations.

A representational concept that supports processes working at multiple levels
of abstraction with the possibility to access semantic knowledge from the external
world are extremely complex. We would like to highlight a few approaches that
may have the potential to be extended into a future complex vision system
bridging the representational gap identi�ed by Dickinson.

At the last DGCI Udupa [35] considered surfaces as basic descriptive elements
for representing boundaries between volumetric regions in 3D. He identi�es three
'important' properties of such surfaces:

1. connected (topology)
2. oriented (combinatorial maps)
3. closed (Jordan boundary)

We would like to address some of these issues in the context of gradually gen-
eralizing our discrete image data across levels where geometry dominates up to
levels of the hierarchy where topological properties become important.

Based on experiences with multiresolution pyramids we present several con-
ceptual extensions with the aim of stimulating further research and collaboration
which is necessary to overcome the intrinsic complexity of the proposed system
architecture by joint e�orts leaving enough room for original contributions.

The paper is organized as follows: After considering the formal de�nition
of abstraction (section 2) and the consequences for representations we review
discrete representations including a 'natural' example of vision based on an ir-
regular sampling (section 3). Image pyramids are the main focus of section 4
where we present the basic ideas and properties of dual graph pyramids and
of multilevel topological maps. Abstraction in such multilevel structures can be
done either by modifying the contents of a representational cell (section 5) or
by 'simplifying' the structural arrangement of the cells while major topological
properties are preserved (section 6). In this last section we present two sim-
ple 3D con�gurations which turned out to be hard to distinguish by current
representations.

2 Visual Abstraction

By de�nition abstraction extracts essential features and properties while it ne-
glects unnecessary details. Two types of unnecessary details can be distinguished:

{ redundancies
{ data of minor importance

Details may not be necessary in di�erent contexts and under di�erent objectives
which reect in di�erent types of abstraction. In general, three di�erent types
of abstractionare distinguished:



isolating abstraction: important aspects of one or more objects are extracted
from their original context.

generalizing abstraction: typical properties of a collection of objects are em-
phasized and summarized.

idealizing abstraction: data are classi�ed into a (�nite) set of ideal models,
with parameters approximating the data and with (symbolic) names/notions
determining their semantic meaning.

These three types of abstraction have strong associations with well known tasks
in computer vision: recognition and object detection tries to isolate the object
from the background; perceptual grouping needs a high degree of generaliza-
tion; and classi�cation assigns data to 'ideal' classes disregarding noise and
measurement inaccuracies.

In all three cases abstraction drops certain data items which are considered
less relevant. Hence the importance of the data needs to be computed to decide
which items to drop during abstraction. The importance or the relevance of an
entity of a (discrete) description must be evaluated with respect to the purpose
or the goal of processing. The system may also change its focus according to
changing goals after knowing certain facts about the actual environment, other
aspects that were not relevant at the �rst glance may gain importance. Repre-
sentational schemes must be exible enough to accommodate such attentional
shifts in the objectives.

3 Discrete Representations

A discrete representation is associated with a countable variable which can be
mapped into 6Zn [12]. A digital image is the result of sampling a continuous im-
age at discrete locations the sampling points. Usually this is a �nite subset of
'pixels' of the discrete grid 6Z2. This discretization process maps any object of
the continuous image into a discrete version if it is suÆciently large to be cap-
tured by the sensors at the sampling points. Resolution relates the unit distance
of the sampling grid with a distance in reality. There exist di�erent concepts
to model the conversion between continuous and discrete representations. Re-
cently Brimkov etal [5] have introduced new schemes for object discretizations
in higher dimensions: k-neighbors in 6Zn, minimal cover and super-cover. Besides
their relevance for visualization purposes such concepts allow also the continu-
ous interpretation of discrete measurements. The properties of the continuous
object, i.e. color, texture, shape, as well as its relations to other (nearby) objects
are mapped into the discrete space, too. The most primitive discrete represen-
tation assigns to each sampling point a measurement, be it a gray or color value
from a �nite set or a binary value.

Hence a digital image is a �nite set of integer triples (ix; iy; ig) 2 6Z3. In
order to express the connectivity or other geometric or topological properties
this set must be enhanced by a neighborhood relation. In the regular square grid
arrangement of sampling points it is implicitly encoded as 4- or 8-neighborhood
with the well known problems in conjunction with Jordan's curve theorem. Note



that ALL the information about the image's content is stored at the sampling
points!

The neighborhood of sampling points can be represented explicitly, too: in
this case the sampling grid is represented by a graph consisting of vertices cor-
responding to the sampling points and of edges connecting neighboring vertices.
Although this data structure consumes more memory space it has several ad-
vantages, among which we �nd the following:

{ The sampling points need not be arranged in a regular grid.
{ The edges can receive additional attributes too.
{ The edges may be determined either automatically or depending on the data.

Since sub-sampling of a discrete representation is also a discrete represen-
tation, the arrangement of a human retina can be considered as discrete, too.
Fig. 1(a) shows a small portion of the sampling points of a monkey's retina,
which is similar to the one of a human eye. In Fig. 1(b-f) we opposed a sim-
ple sampling concept both with the natural but irregular grid and an arti�cial
but regular grid of similar resolution. Sampling points being within a certain
distance to the line have been �lled and the radius has been varied. Let this
distance be determined by a circle intersecting the continuous line. Optically
similar e�ects can be observed: with a small radius the sequence of bold points
has many gaps (Fig. 1b,c,e), the line is not connected. Increasing the radius, the
density of black points increases also and the gaps are closed. With a large ra-
dius the line becomes thick since also sampling points not directly along the line
reach the line (Fig. 1d,f). These e�ects are typical for discrete lines and they are
overcome in many di�erent ways, but most approaches consider the regular grid.
The problem arising with irregular grids is that there is no implicit neighbor def-
inition! Usually Voronoi neighbors determine the neighborhood graph. It would
be interesting whether concepts for discrete straight lines, discrete planes in 3D
and hyper-planes in nD, discrete circles, spheres and hyper-spheres could be re-
covered also from irregular grids and if the involved computational processes are
feasible.

The retina example demonstrated that the neighborhood in irregular grids
needs to be represented explicitly. This creates a new representational entity: the
binary relation of an edge in the neighborhood graph. Together with the fact
that a 2D image is embedded in the continuous image plane the line segments
connecting the end points of edges partition the image plane into connected
faces which are part of the dual graph. In n dimensions n+1 basic entities are
suÆcient to describe a discrete con�guration embedded in the space spanned by
the n coordinate axes, e.g. the cells of abstract cellular complexes [24]. Let us
shortly remind some of the most frequent names used by di�erent authors:

dimension geometry spel [35] graph
0 point pixel,pointel vertex
1 line linel edge
2 face, region surfel face
3 volume voxel



`` `` ` ``` `` ``` ` `` ``` `` ` `` ` ``` `` ` `` ` `` ` ` ``` ` ` ` `` ``` `` `` ` ``` ` `` ` ` ` ``` ` ```` ` `` ` `` `` ` `` `` ` ` ```` ` `` ` ` ` ` ` ` `` ``` ` `` ` ` ` `` ` `` ` `` `` ` ` `` `` ` `` ` `` `` ` `` ` ` ``` ` ` ``` `` ```` ` ``` ``` `` ` ` `` ` `` ` ` ` ` `` ` ` ``` ` ` ` `` ` `` `` `` `` ```` ` ``` ` ``` `` ` ` ` `` `` ` `` `` ` ` ` ` `` `` `` ` `` `` ` `` `` `` `` ` `` ` ` ` `` ` ` `` `` ` ` ` ` `` ` ` ` `` `` ` `` ` `` ` `` ` ` `` ` `` ` ` `` ` ` ` `` ` ` `` ` ` `` ` `` ` ` `` `` ` `` `` `` `` ``` ` ``` ` `` ` `` ` ` ` `` ` ` ` `` ` ` ` ` `` `` `` ` ` `` ``` ` `` ``` ` `` ` `` ` ``` ` ` ` ` ` `` ` ` `` ``` `` ` ` ``` `` ` ` ``` ` `` `` ` ` `` ` `` ` ` ` `` ` `` ` ` `` `` ` `` ` ` ` ``` ` `` ` `` ` ` `` `` ` `` ` `` ` ` ` `` `` ` ` ` `` `` ` ` ```` `` ` `` ` ``` ` ```` ` `` ` ` `` `` `` ` `` ` `` ` ` `` ` `` ``` ` `` ` `` ` ` ` `` ` ``` ` `` ` `` ` ` ` ` `` `` ` `` ` ` `` ` ` `` `` ` `` ` `` `` ` ` `` ``` ` ` `` `` ` `` ` ` `` ` ` ` `` ` ` `` `` `` ` ` `` `` `` ` ` ` `` `` ` `` ` ` `` ` ` ` `` ` `` ` ` ` `` `` `` ` ``` ` `` ` ` ` `` ` ` `` ` `` `` ` ``` ` ` `` ` `` `` ` `` ` `` ` ` ` `` `` ` ` ` `` ` `` ` `` `` ` `` ` `` ` `` ` ` ` ` `` ``` ` `` `` ` ` `` ` ` ` ` `` `` `` `` ` ` ` ` ` `` ` ` ` ``` ` ` ` ` `` `` ` `` ` `` ` ` ` ` `` ` ` ` ` ` ` ` `` ` ` ` ``` ` ` `` ` `` ` `` ` `` ` ` `` ` `` `` ` `` ` ` `` ` ` `` ` `` ` ``` `` ` `` ` ` ` ``` ` `` ` `` ` `` ` ` ` `` ` ` `` ` `` ` ` `` ` `` ` `` ``` ` ` ` ` `` ` `` ` `` ` ` `` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` ` `` `` ` ` `` ` `` ` ` `` ` ` ``` ` `` ` ` ``` ` `` ` ` `` ` ` ``` ` `` ` ` `` ` ` ` ` `` ` ` ` `` `` ` `` ` ` ` `` ` ` ` ` ` `` ` ` ` `` `` `` ` ` ` `` ` ` ` `` ` `` ` `` `` ` ``` ` ` ` ` `` ` ``` ` ` ` `` `` ` ` `` ` ` ` `` ` `` ` ` ` ` ` ` ` `` ` ` ` ` `` ` ` ``` `` ` ` `` ` `` ` `` ` ` `` ` `` `` ` ` ` ` `` `` ` ` `` ` ``` ` ` `` ` ` ` ` `` ` ` ` `` ` ` ` `` ``` ` ` ` `` `` `` `` ` `` ` ` ` `` ` ` ` ` ` `` ` ` `` `` ` ` ` ` `` ` `` ` `` `` ` ` `` ` ``` ` ` ` ` `` ` `` `` ` ` ` `` ` ` `` ` `` ` ` `` ` ` ` ` ` ` `` ` ` ` ` `` `` ` ` ` ` `` ` ` ` ``` ` ` `` ` `` ` ` ` ` `` ` ` ` `` `` ``` ` `` ` `` ` ` `` ` `` ` ` `` ` `` `` ` ` `` ` ` ` ` `` `` ` ` ` `` ` ` ` ` `` ` ` ` ``` ` `` ` ` ``` ` ` ` `` ` ` ` ` `` ` `` ` ` `` ` `` ` ` `` ` ` ` ` `` ` `` ` ` ` `` ` ` ` `` `` `` ` `` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ` ` `` ` ` `` `` ` ` ``` ` ` ``` ` `` ` ` ` ` ` ` `` ` ` ```` ` ` `` ` `` ` ` ` ` ` `` `` ` ` `` ` ` ` ` ``` ` `` ` ` `` ` `` ` ` `` ` `` ` ` ` ``` ` ` `` `` `` ` ` `` ` ` ` `` ` ` `` ` `` ` ` ` `` `` ` ` ` `` ` `` ` `` ` ` `` `` ` ` `` `` ` ` `` `` ` ` `` `` ` ` `` ` ` ` `` ` `` ` ` `` ` `` ` `` ` `` ` `` `` ` ` `` `` `` ` `` ` ` ` ` ` ```` ` ` ` `` ` ` ` ` ` `` ` `` ` ` ` ` ` `` ``` `` ` ` ` `` ` `` ` ` ` ``` ` `` ` `` ` ` `` ` ` ` ` ` ` ` ` ``` ` `` ` ` ``` ` `` ` ` ` `` ` `` ` `` ` `` `` ` ` ` ``` ` `` ` ` ` `` ` `` ` `` ` ` `` `` ` `` ` ` ` `` ` ` `` `` `` ` ` ` `` `` `` ` ` ` ` `` ` ` `` ` ` ` ` `` ` `` `` ` ` `` ` ``` ` ` ` ` ` ``` ` `` `` ` `` ` ` `` ` ` ` ` ` `` ` `` ` `` ` `` `` `` ` ` `` ` `` ` ` `` ` ` ` ` `` ` `` `` `` `` ` ` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` ` ` `` `` ` `` ` ` ` ` `` `` `` ` ` ` `` ` ` ` `` ` ` `` ` ` `` `` ` ` ` ` ` ` `` `` `` ` ` ` `` ` `` ` ` `` ` ` `` ` ``` ` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ``` `` ` `` ` ` ` ` `` ` ` `` ` ` `` ` `` `` ` ` ` ` ``` ` `` `` ` ` `` ` ` `` ` ` ` `` ` `` `` ` `` ` ` `` ` ` `` `` ` ` `` ` ` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` `` ` ` ` ` ` `` ` `` ` `` `` ` ` ` `` ` `` ` `` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ` `` `` `` ` ` ` ` ``` ` `` ` `` ` `` ` ` ` ` ` `` ` `` ` ` `` `` ` ` ` `` ` ` ` ` ` `` ` `` ` `` ` ` `` ` ` `` ` `` ` `` `` `` ` ` ` ` ` ``` ` ` ` `` ` ` `` ` `` ` ` ` ` ` ` `` ` ` `` ` `` `` ` ` ` ` ` `` ` ` ` ` `` ` ` ` `` `` ` `` ` `` ` ` `` ` ` `` ` ` `` ` `` ` ` `` ` ` `` ` ` ` ` `` ` ` ` ` `` `` ` ` `` `` `` ` `` ` ` ` ` ``` ` ` `` ` ` `` ` ` ` ` `` ` `` `` ` `` ` ` ` `` ` ` `` `` ` ` `` ` ` ``` ` ` ` `` ` ` `` ` ` ` ` `` ` ` `` ` ` `` `` `

`` `` ` ``` `` ``` ` `` ``` `` ` `` ` ``` `` ` `` ` `` ` ` ``` ` ` ` `` ``` `` `` ` ``` ` `` ` ` ` ``` ` ```` ` `` ` `` `` ` `` `` ` ` ```` ` `` ` ` ` ` ` ` `` ``` ` `` ` ` ` `` ` `` ` `` `` ` ` `` `` ` `` ` `` `` ` `` ` ` ``` ` ` ``` `` ```` ` ``` ``` `` ` ` `` ` `` ` ` ` ` `` ` ` ``` ` ` ` `` ` `` `` `` `` ```` ` ``` ` ``` `` ` ` ` `` `` ` `` `` ` ` ` ` `` `` `` ` `` `` ` `` `` `` `` ` `` ` ` ` `` ` ` `` `` ` ` ` ` `` ` ` ` `` `` ` `` ` `` ` `` ` ` `` ` `` ` ` `` ` ` ` `` ` ` `` ` ` `` ` `` ` ` `` `` ` `` `` `` `` ``` ` ``` ` `` ` `` ` ` ` `` ` ` ` `` ` ` ` ` `` `` `` ` ` `` ``` ` `` ``` ` `` ` `` ` ``` ` ` ` ` ` `` ` ` `` ``` `` ` ` ``` `` ` ` ``` ` `` `` ` ` `` ` `` ` ` ` `` ` `` ` ` `` `` ` `` ` ` ` ``` ` `` ` `` ` ` `` `` ` `` ` `` ` ` ` `` `` ` ` ` `` `` ` ` ```` `` ` `` ` ``` ` ```` ` `` ` ` `` `` `` ` `` ` `` ` ` `` ` `` ``` ` `` ` `` ` ` ` `` ` ``` ` `` ` `` ` ` ` ` `` `` ` `` ` ` `` ` ` `` `` ` `` ` `` `` ` ` `` ``` ` ` `` `` ` `` ` ` `` ` ` ` `` ` ` `` `` `` ` ` `` `` `` ` ` ` `` `` ` `` ` ` `` ` ` ` `` ` `` ` ` ` `` `` `` ` ``` ` `` ` ` ` `` ` ` `` ` `` `` ` ``` ` ` `` ` `` `` ` `` ` `` ` ` ` `` `` ` ` ` `` ` `` ` `` `` ` `` ` `` ` `` ` ` ` ` `` ``` ` `` `` ` ` `` ` ` ` ` `` `` `` `` ` ` ` ` ` `` ` ` ` ``` ` ` ` ` `` `` ` `` ` `` ` ` ` ` `` ` ` ` ` ` ` ` `` ` ` ` ``` ` ` `` ` `` ` `` ` `` ` ` `` ` `` `` ` `` ` ` `` ` ` `` ` `` ` ``` `` ` `` ` ` ` ``` ` `` ` `` ` `` ` ` ` `` ` ` `` ` `` ` ` `` ` `` ` `` ``` ` ` ` ` `` ` `` ` `` ` ` `` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` ` `` `` ` ` `` ` `` ` ` `` ` ` ``` ` `` ` ` ``` ` `` ` ` `` ` ` ``` ` `` ` ` `` ` ` ` ` `` ` ` ` `` `` ` `` ` ` ` `` ` ` ` ` ` `` ` ` ` `` `` `` ` ` ` `` ` ` ` `` ` `` ` `` `` ` ``` ` ` ` ` `` ` ``` ` ` ` `` `` ` ` `` ` ` ` `` ` `` ` ` ` ` ` ` ` `` ` ` ` ` `` ` ` ``` `` ` ` `` ` `` ` `` ` ` `` ` `` `` ` ` ` ` `` `` ` ` `` ` ``` ` ` `` ` ` ` ` `` ` ` ` `` ` ` ` `` ``` ` ` ` `` `` `` `` ` `` ` ` ` `` ` ` ` ` ` `` ` ` `` `` ` ` ` ` `` ` `` ` `` `` ` ` `` ` ``` ` ` ` ` `` ` `` `` ` ` ` `` ` ` `` ` `` ` ` `` ` ` ` ` ` ` `` ` ` ` ` `` `` ` ` ` ` `` ` ` ` ``` ` ` `` ` `` ` ` ` ` `` ` ` ` `` `` ``` ` `` ` `` ` ` `` ` `` ` ` `` ` `` `` ` ` `` ` ` ` ` `` `` ` ` ` `` ` ` ` ` `` ` ` ` ``` ` `` ` ` ``` ` ` ` `` ` ` ` ` `` ` `` ` ` `` ` `` ` ` `` ` ` ` ` `` ` `` ` ` ` `` ` ` ` `` `` `` ` `` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ` ` `` ` ` `` `` ` ` ``` ` ` ``` ` `` ` ` ` ` ` ` `` ` ` ```` ` ` `` ` `` ` ` ` ` ` `` `` ` ` `` ` ` ` ` ``` ` `` ` ` `` ` `` ` ` `` ` `` ` ` ` ``` ` ` `` `` `` ` ` `` ` ` ` `` ` ` `` ` `` ` ` ` `` `` ` ` ` `` ` `` ` `` ` ` `` `` ` ` `` `` ` ` `` `` ` ` `` `` ` ` `` ` ` ` `` ` `` ` ` `` ` `` ` `` ` `` ` `` `` ` ` `` `` `` ` `` ` ` ` ` ` ```` ` ` ` `` ` ` ` ` ` `` ` `` ` ` ` ` ` `` ``` `` ` ` ` `` ` `` ` ` ` ``` ` `` ` `` ` ` `` ` ` ` ` ` ` ` ` ``` ` `` ` ` ``` ` `` ` ` ` `` ` `` ` `` ` `` `` ` ` ` ``` ` `` ` ` ` `` ` `` ` `` ` ` `` `` ` `` ` ` ` `` ` ` `` `` `` ` ` ` `` `` `` ` ` ` ` `` ` ` `` ` ` ` ` `` ` `` `` ` ` `` ` ``` ` ` ` ` ` ``` ` `` `` ` `` ` ` `` ` ` ` ` ` `` ` `` ` `` ` `` `` `` ` ` `` ` `` ` ` `` ` ` ` ` `` ` `` `` `` `` ` ` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` ` ` `` `` ` `` ` ` ` ` `` `` `` ` ` ` `` ` ` ` `` ` ` `` ` ` `` `` ` ` ` ` ` ` `` `` `` ` ` ` `` ` `` ` ` `` ` ` `` ` ``` ` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ``` `` ` `` ` ` ` ` `` ` ` `` ` ` `` ` `` `` ` ` ` ` ``` ` `` `` ` ` `` ` ` `` ` ` ` `` ` `` `` ` `` ` ` `` ` ` `` `` ` ` `` ` ` ` ` `` ` ` `` `` ` ` ` `` ` ` ` `` ` `` ` ` ` ` ` `` ` `` ` `` `` ` ` ` `` ` `` ` `` ` ` ` ` ` `` ` ` ` `` ` `` ` ` ` `` `` `` ` ` ` ` ``` ` `` ` `` ` `` ` ` ` ` ` `` ` `` ` ` `` `` ` ` ` `` ` ` ` ` ` `` ` `` ` `` ` ` `` ` ` `` ` `` ` `` `` `` ` ` ` ` ` ``` ` ` ` `` ` ` `` ` `` ` ` ` ` ` ` `` ` ` `` ` `` `` ` ` ` ` ` `` ` ` ` ` `` ` ` ` `` `` ` `` ` `` ` ` `` ` ` `` ` ` `` ` `` ` ` `` ` ` `` ` ` ` ` `` ` ` ` ` `` `` ` ` `` `` `` ` `` ` ` ` ` ``` ` ` `` ` ` `` ` ` ` ` `` ` `` `` ` `` ` ` ` `` ` ` `` `` ` ` `` ` ` ``` ` ` ` `` ` ` `` ` ` ` ` `` ` ` `` ` ` `` `` `

���
���

���
���

���
��

q q q q q q q

(a) Sampling grid of retina (b) Retina samples line with very small radius
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(c) Retina samples line with small radius (d) Retina samples line with large radius

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aa

rr rr r rr rr
r rr rr r rr

rr r rr rr r

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
ccccc
cc

sssssssssssssssssssssssssss
ssssssssssssssssssssssssss

ssssssssssssssssssssssssssss
ssssssssssssssssss

(e) Regular sampling with small radius (f) Grid samples line with large radius

Fig. 1. Sampling a line with irregular and regular grids



The reason to review these basic representational entities is to point out that in
nearly all discretization concepts only one of these entities (be it the point or the
'dual' correspondent, e.g. the face in 2D or the voxel in 3D) carries the measured
information. Only few representational schemes allow the other entities to store
information appropriate for the particular dimension of the manifold.

4 Pyramids

In this section we summarize the concepts developed for building and using mul-
tiresolution pyramids [33, 21, 28] and put the existing approaches into a general
framework. The focus of the presentation is the representational framework, its
components and the processes that transfer data within the framework.
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(a) Pyramid concept (b) Discrete levels

Fig. 2. Multiresolution pyramid

A pyramid (Fig. 2) describes the contents of an image at multiple levels of
resolution. The base level is a high resolution input image. Successive levels re-
duce the size of the data by a constant reduction factor � > 1:0 while constant
size local reduction windows relate one cell at the reduced level with a set
of cells in the level directly below. Thus local independent (and parallel) pro-
cesses propagate information up and down in the pyramid. The contents of a
lower resolution cell is computed by means of a reduction function the input
of which are the descriptions of the cells in the reduction window. Sometimes
the description of the lower resolution needs to be extrapolated to the higher
resolution. This function is called the re�nement or expansion function. It is
used in Laplacian pyramids [11] and wavelets [30] to identify redundant informa-
tion in the higher resolution and to reconstruct the original data. The number
of levels n is limited by the reduction factor �: n � log(image size)= log(�).
The main computational advantage of image pyramids is due to this logarithmic
complexity.

We intent to extend the expressive power of these eÆcient structures by
several generalizations. The reduction window and the reduction factor relate



two successive levels of a pyramid. In order to interpret a derived description at
a higher level this description should be related to the original input data in the
base of the pyramid. This can be done by means of the receptive �eld (RF)
of a given pyramidal cell ci: RF (ci collects all cells (pixels) in the base level of
which ci is the ancestor .

Since our goal is to bring up the 'relevant data' for solving a particular task let
us give the term 'resolution' a more general meaning beyond the pure geometric
de�nition.

This is the base of several pyramidal approaches, two of which are chosen as
representatives: irregular graph pyramids and topological maps.

4.1 Irregular Graph Pyramids

A graph pyramid is a pyramid where each level is a graph G(V;E) consisting of
vertices V and of edges E relating two vertices. In the base level pixels are the
vertices and two vertices are related by an edge if the two corresponding pixels
are neighbors. This graph is also called the neighborhood graph. The content of
the graph is stored in attributes attached to both vertices and edges. Initially
only the attributes of the vertices receive the gray values of the pixels. In order
to correctly represent the embedding of the graph in the image plane [19] we
additionally store the dual graph G( V ; E) at each level. Let us denote the
original graph as the primal graph.

In general a graph pyramid can be generated bottom-up as follows:

while further abstraction is possible do

1. determine contraction kernels
2. perform dual graph contraction and simpli�cation of dual graph
3. apply reduction functions to compute content of new reduced level.

The complete formalism of dual graph contraction is described in [28].
Let us explain it here by means a small window of our line example (Fig. 1).
The �rst step determines what information in the current top level is important
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Fig. 3. Neighborhood graph G0 and contraction kernel N01

and what can be dropped. A contraction kernel is a (small) sub-tree of the top



level the root of which is chosen to survive. Fig. 3 shows the window and the
selected contraction kernels each surrounded by an oval. Selection criteria in this
case contract only edges inside connected components except for isolated black
vertices which are allowed to merge with their background.

All the edges of the contraction trees are dually contracted during step 2.
Dual contraction of an edge e (formally denoted byG=feg) consists of contracting
e and removing the corresponding dual edge e from the dual graph (formally
denoted by G n f eg). This preserves duality and the dual graph needs not be
constructed from the contracted primal graph G0 at the next level.

Since the contraction of an edge may yield multi-edges and self-loops there is
a second phase of step 2 which removes all redundant multi-edges and self-loops.
Note that not all such edges can be removed without destroying the topology
of the graph: if the cycle formed by the multi-edge or the self-loop surrounds
another part of the data its removal would corrupt the connectivity! Fortunately
this can be decided locally by the dual graph since faces of degree two (having
the double-edge as boundary) and faces of degree one (boundary = self-loop)
cannot contain any further elements in its interior. Since removal and contraction
are dual operations, the removal of a self-loop or of one of the double edges can
be done by contracting the corresponding dual edges in the dual graph. The dual
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Fig. 4. Dually contracted graph G1 and contraction kernel N12

contraction of our example remains a simple graph G1 without self-loops and
multi-edges (Fig. 4).

Step 2 generates a reduced pair of dual graphs. Their contents is derived
in step 3 from the level below using the reduction function. In our example
reduction is very simple: the surviving vertex inherits the color of its son. In the
only case where the contraction kernel contains two di�erent colors, the isolated
vertex is always chosen as surviving vertex.

The result of another dual contraction is shown in Fig. 5. The selection rules
and the reduction function are the same as in the �rst iteration. The result shows
that the bridges between the gaps of the original sampling has been closed and
the three surviving black vertices are connected after two iterations. This fact
could be used in a top-down veri�cation step which checks the reliability of
closing the gap in the more general context.
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Fig. 5. Graph G2 after two steps of dual graph contraction

There are lots of useful properties of the resulting graph pyramids. If the
plane graph is transformed into a combinatorial map the transcribed opera-
tions form the combinatorial pyramid [6, 7]. This framework allowed us to prove
several of the above mentioned properties and links dual graph pyramids with
topological maps which extend the scope to three dimensions.

The following table summarizes dual graph contraction in terms of the control
parameters used for abstraction and the conditions to preserve topology:

Level representation contract / remove conditions

0 (G0; G0)
# contraction kernel N0;1 forest, depth 1

(G0=N0;1; G0 n N0;1)
# redundant multi-edges, self-loops deg v � 2

1 (G1; G1)
# contraction kernel N1;2 forest, depth 1
...

4.2 The Topological Map

Fiorio, Bertrand and Damiand developed a method that derives the topologically
correct region adjacencies both in 2D and in 3D [1, 13]. Their base representa-
tions are combinatorial and generalized maps. The derivation proceeds in several
levels similar to a pyramid with the di�erence that the lower levels are not used
any more after the higher level has been created. In 2D following levels are iden-
ti�ed:
Level representation merge conditions
0 complete inter-pixel map

# adjacent faces same label
1 line map

# lines (l1; v; l2) deg v = 2 and colinear(l1; l2)
2 border map

# lines (l1; v; l2) deg v = 2
3 topological map



In addition to the topological map an inclusion tree is generated and maintained
to cope with holes in regions. The resulting representation is computed by a se-
quential scan line procedure comparing 2�2 windows with prestored 'pre-codes'
each requiring a special treatment. The current approach has no limit on the
size of the reduction window in the sense that any number of elements ('darts')
of level i may be merged into a single element at level i+1. However a large set
of fused elements could be decomposed into a hierarchy of locally independent
fusions to allow parallel implementation.

The extension into three dimensions is straight forward and contains six dif-
ferent levels [13]:
Level representation merge conditions
0 complete inter-voxel map

# adjacent volumes same label
1 line map

# faces (f1; l; f2) deg l � 2, coplanar(f1; f2)
2 level 2 map

# lines (l1; v; l2) deg l = 2, colinear(l1; l2)
3 border map

# faces (f1; l; f2) deg v � 2
4 level 4 map

# lines (l1; v; l2) deg v = 2, l1 6= l2
5 topological map

Besides the inclusion tree that captures the 3D holes, �ctive edges are maintained
to prevent disconnection of faces or lines. Additional conditions are implicitly
expressed to prevent disconnections and suppression of basic elements. The pro-
cess proceeds similar to the 2D case: 2�2�2 windows are compared with a set of
'pre-codes' and the corresponding procedure is executed for each code. The lev-
els and several categorizations permit to reduce the number of cases drastically
from the ones that would be needed for the exhaustive enumeration.

5 Abstraction in Pyramids

In order to discuss the role of abstraction in general multiresolution hierarchies.
Let us consider the structure of the representation and the content stored in the
representational units separately. In our generalization we allow the resolution
cell to take other simply connected shapes and to describe the content by a more
complex 'language'.

The �rst generalization is a consequent continuation of the observations of
Bister etal [4] to overcome the limited representational capabilities of rigid reg-
ular pyramids. It necessitates to consider in more detail the structure of a reso-
lution level which was implicitly coded as a matrix in regular sampling grids. A
similar conclusion was expressed by DeFloriani etal [14] where a 'multi-complex'
was presented as a unifying framework for many multiresolution regular cell
complexes and extensions to cope with non-regular shapes are envisioned. Since
irregular structures reduce the importance of explicitly representing geometry,



topological aspects become relevant. These aspects will be discussed in more
detail in section 6.

The second generalization started with the works of Hartley [20] who allowed
a resolution cell to contain more than one (gray) value and interpreted them as
the parameters of a globally de�ned model.

5.1 Content Models and Reduction Functions

In the topological map approach each cell contains a label identifying the mem-
bership of the cell to the class of all those cells having the same label. In this case
the contents of the cells merged during the reduction process can be propagated
by simple inheritance: the fused cell 'inherits' its label from its children and it
does not matter from which since all have the same label.

In classical gray level pyramids the contents of a cell is a gray value which is
summarized by the mean or a weighted mean of the values in the reduction win-
dow. Such reduction functions have been eÆciently used in Gaussian pyramids.
Laplacian pyramids, Ratio pyramids and wavelet pyramids identi�ed the loss of
information that occurs in the reduced level and stored the missing information
in the hierarchical structure where it could be retrieved when the original base
level is reconstructed. All these approaches use one single globally de�ned

model which must be exible enough to adapt its parameters to approximate
the data.

In our generalization we would like to go one step further and allow di�erent

models to be used in di�erent resolution cells as there are usually di�erent
objects at di�erent locations of an image. The models could be identi�ed by
a name or a symbol and may be interrelated by semantic constraints.

Simple experiments have been done with images of line drawings. This re-
search used the experiences gained with a regular 2 � 2=2 curve pyramid [25]
and the chain pyramid [31] in the more exible framework of graph pyramids.
The model describes symbolically the way how a curve intersects the discrete
segments of the boundary of a cell and the reduction function consists in the
transitive closure of the symbols collected in the reduction window. The concept
works well in areas where the density of curves was low, through the rigidity
of the regular pyramid ambiguities arise when more curves appeared within the
same receptive �eld. This limitation could be e�ectively overcome with irregular
pyramids in which we could limit the receptive �eld of a cell to a single curve.
Fig. 6 gives an impression of the complexity of the data that have been processed
in the minimum line property preserving (MLPP) pyramid in order to �nd and
identify components in a technical drawing. More details can be found in [8].

The content abstraction in this representation has following features:

{ models are identi�ed by (discrete) names (empty cell, line end, line crosses
edge, junction), no parameters were used;

{ adjacent models have to be consistent ('good continuation');
{ contraction kernels were selected such that only one consistent curve is cov-
ered in one receptive �eld;



Fig. 6. Technical drawing used to build an MLPP-pyramid

{ a few symbolic rules of the form:

new model 7! local generic sub-graph with model assignments (1)

governed this selection process;
{ the reduced content appears in the left hand side of the rule (1).

One may notice a certain similarity between the selection rule (1) and the use
of pre-codes in the eÆcient computation of the topological maps [2, 1, 13].

In both cases the knowledge about the models and in what con�gurations
they are allowed to occur needs to be stored in a knowledge base. In order to
determine which are the best possible abstractions the local con�gurations at a
given level of the pyramid must be compared with the possibilities of reduction
given in the knowledge base. This would typically involve matching the local
con�guration with the right-hand sides of rules stored in the knowledge base.
Such a match may not always be perfect, one may allow a number of outliers.
The match results in a goodness of match, which can be determined for all
local con�gurations. The selection can then choose the locally best candidates
as contraction kernels and reduce the contents according to the generic models
which matched the local con�guration. The goodness of match may also depend
on a global objective function to allow the overall purpose, task or intention to
inuence the selection process.

5.2 The Knowledge Base

The knowledge to be used in the pyramid can be organized in many di�erent
ways. It is needed in selecting surviving cells and as the model for the reduction



function. Since the aim is to achieve abstraction it should provide also, besides
a goodness of �t, a measure of relevance or importance which may depend on
varying goals of the system. These variations in the goals further need to be
communicated to the system. Hence the language of interaction must be part of
the knowledge base.

It is certainly impossible to exhaustively enumerate all the possibilities to
organize the knowledge. We list a few exemplary ways (1., 2.) one can �nd
in existing approaches and propose a structure (3.) which �ts to the concept
sketched above.

1. The most common way to enter semantic knowledge into a system is by im-

plicit coding. In the pyramid building process it appears as the parameters
that control the selection function or the frequently used �lters in the reduc-
tion function. Although often computationally eÆcient implicit coding has
no exibility to adapt to the data and any change requires a modi�cation
of the program code. This type of knowledge representation can be found in
most regular pyramid approaches which are based on linear �lters.

2. In order to separate the knowledge from the process working on the data,
globally coded rules or states are associated with speci�c procedures to treat
the data. This knowledge is pre-compiled and is accessed through indices
based on locally computed features. As examples can be mentioned the pre-
codes for building the topological map and the syntactical rules used for the
line drawing application (Fig. 6). These types of knowledge representations
are more exible than the implicit coding since the knowledge base can be
extended or adapted to the special needs of an application. However the
knowledge is used mostly in a deterministic way without assigning special
priorities to items important for the current task. Furthermore the knowledge
is in all cases compiled manually which limits the scope of the application.
A few 'rules' have been used for the line drawing example, application de-
pendent rules would need an enormous amount of e�ort. Similarly for the
de�nition of pre-codes of the topological map: the 2D construction needs
only 12 pre-codes which grows to more than 4000 cases in 3D. Although
this number could be substantially reduced using the six levels and further
categorization the extension to higher dimensions seems to be prohibitive.

3. The concept presented in the previous section suggests that the knowledge
base can provide pre-stored local con�gurations that can be used to identify
potential local contraction kernels. There are several approaches pointing
in this direction, e.g. the one presented by Kittler etal [22] where three
interrelated levels express the knowledge of the system: the measurements,
the image features, and the object cues. In addition each 'con�guration' must
be associated with the following:

{ A function computing the importance based on the goodness of match
between the data con�guration and the pre-stored con�guration.

{ The more abstract description needs to be identi�ed, e.g. by a name or
a symbol.



{ The reduction function associated with the new identity calculates the
speci�c parameters (attributes of the survivors) from the attributes of
the data con�guration.

Such a knowledge base could be realized as a formal (graph) grammar.
However, as the examples already demonstrated, in order to be e�ective
the knowledge needs a non-negligible degree of complexity. This has conse-
quences for both the knowledge retrieval and updating: Knowledge retrieval
requires a high degree of internal organization to quickly access all those con-
�gurations that must be checked in a particular case. Exhaustive search may
not be feasible. One could imagine a structure similar to the data pyramid
since also the abstract terms have neighbors, e.g. associations in an abstract
sense, more speci�c terms they are derived from and more abstract terms
they are part of. Let us call this the abstraction pyramid in contrast to
the data pyramid having the image data in the base. In this case the pos-
sible con�gurations to be checked in a particular part of the data pyramid
could be local neighbors in the abstraction pyramid of the abstract term as-
sociated with the data cell. Note that a simpli�ed version has been proposed
for regular pyramids by P. Burt: the pattern tree [10].
The second consequence of the high complexity of the knowledge base con-
cerns the updating: both interactive user interfaces and learning strategies
could be integrated with the concept of the abstraction pyramid. However
there is still a wide �eld of research necessary before such systems could be
used in 'real' applications.

6 Preserving Topology

Objects mapped into images remain connected if they are not occluded by other
objects nor disturbed by noise. Neither the projection nor the discretization
separate the two corresponding adjacent regions in the image. A similar property
holds for the adjacency of objects. Hence the connectivity and the adjacency
of regions and of boundary segments is a very important property which
should not be lost by abstraction. Several authors studied operations that allow
the modi�cation of the data structure, e.g. its reduction, while the topological
properties of the represented objects and their background is preserved (e.g.
[23, 32, 3, 26, 15, 9]).

In the following we �rst look at the simpler cases in two dimensions and
refer to the dual graph pyramid. Then some considerations about the reduction
operations in 3D based on the recent results of Damiand are discussed.

6.1 Preserving Topology in 2D

Table 1 summarizes the necessary primitive operations: The Euler number char-
acterizes the topology of a description given in terms of points (#P ), lines (#L)
and faces (#F ). Since we aim at preserving its value the sum of the changes
must be zero:

�#P ��#L+�#F = 0:



Table 1. Topology Preserving Operations in 2D

Points Lines Faces Con�g. PRE-CONDITION CCL

Euler #P �#L +#F = const.

Incr. �#P ��#L +�#F = 0 Euler

Contract(l; p0) -1 -1 0 (p1; l; p0) p1 6= p0 same label
Remove(l; f0) 0 -1 -1 (fx; l; f0) fx 6= f0 deg(f0) � 2

Any Incr. (�a �b �c) b = a+ c;

by a contr. (�1 �1) �a

by c remov. (�1 �1) �c

First we observe the changes introduced by contracting an edge l bounded
by the two points p0; p1. This eliminates one of the points (i.e. p0) and the edge
l, hence it does not change the Euler characteristic. The only pre-condition is to
avoid contracting a self-loop.

If we remove an edge l, the number of points remains the same, but two
faces f0; fx are merged into one (fx). That reduces the number of faces by one.
If we would have the same face on both sides of the edge, i.e. fx = f0, the edge
would be a bridge in G the removal of which would disconnect G. If one of the
end points of l would have degree 1, the removal of its only connection to the re-
maining structure would isolate it. Both cases are excluded from removal by the
pre-condition fx 6= f0. The second pre-condition deg(f0) � 2 identi�es a redun-
dant self-loop or a redundant multi-edge: in the later case f0 is bounded by two
parallel edges connecting the same end-points. This con�guration is simpli�ed
in the second phase of dual graph contraction.

What about other operations? It is clear that the elimination of an edge
must be accompanied by the removal of either a point or a face to preserve the
Euler number. So we cannot have less elements involved in a topology preserving
modi�cation. But we can also show the following:
Contraction and removal are the ONLY operations needed to re-

duce the structure while preserving the topology. Any other topology-
preserving operation can be achieved by appropriate combinations of contraction
and removals. If we want to remove a number a of points and a number c of faces
we have to remove also a number b = a+c of edges to preserve the Euler number.
This can be achieved by a contractions and c removals.

Pre-conditions for individual operations can be extended to sets of operations
to allow a di�erent order of execution or even parallelism: The requirement for
contraction kernel to form a FOREST is such an extension. If the edges of a
cycle would be contracted the last one need to be a self-loop which cannot be
contracted. Hence sets of edges to be contracted must be acyclic.

6.2 What Remains after Repetitions?

We can repeat contracting edges the end point of which carry the same label and
remove all unnecessary self-loops and multi-edges until no further contraction



nor removal is possible. Note that a very similar strategy is used to create the
border map in [2, 1] and the topological map in [13]. At convergence we have
the following conditions:

1. all edges (p1; l; p2) with di�erent end points have di�erent labels: lab(p1) 6=
lab(p2).

2. A surviving self-loop (p; l; p) separates two di�erent faces, (f1; l; f2) and the
inner face has degree deg(f1) > 2. Since any tree of the dual graph would
have been eliminated by the rule deg(f1) � 2 starting from the leafs up to
the root, there must be a cycle C 2 G and inside this cycle there exists a
point p3 2 C : lab(p3) 6= lab(p).

3. All faces have three or more sides: deg(f) � 3.
4. Pseudo or �ctive edges are self-loops (p0 = p1) which cannot be contracted

in the primal graph and which separate two faces with deg(f0) > 2 and
deg(f1) > 2. Such edges were �rst observed in [29] as an artifact of topology
preserving contraction. They connect the boundary of a hole to the sur-
rounding 'main land'. Holes can be equivalently represented by an inclusion
tree as in [13].

5. Fictive edges appear arbitrarily placed and depend only on the order of con-
tractions and removals. Similar observations can be found in the topological
3D-map [13] where �ctive edges appear as the last ones before disconnecting
a face or a boundary during the merging of faces and lines (for the process
of successive region merging see [1, 2]).

6. For each hole there remains exactly one �ctive edge (as indicated by the
Betti number [17]).

7. Fictive edges are not delineated between two regions as all other edges. Hence
they can be continuously deformed and their end points can be moved along
the boundary as long as the edge remains fully embedded inside f . Other
�ctive edges are not excluded from being traversed by the end point! We
conjecture that an arrangement of �ctive edges can be transformed into any
other legal arrangement of �ctive edges. Algorithms for continuous deforma-
tion [34] or [18] may �nd a new application for re-arranging �ctive edges.

6.3 Preserving Topology in 3D

The primitive operations to build the 3D topological map merge voxels (V-
Fusion), faces (F-Fusion) and linels (L-Fusion). In analogy to the 2D table Ta-
ble 2 summarizes the necessary primitive operations in 3D:

1. V-Fusion, F-Fusion and L-Fusion are the ONLY operations needed, the
reasoning is the same as in 2D. Any other topology-preserving operation can
be achieved by appropriate combinations.

2. Pre-conditions in 3D are non-trivial except for volumes: a line may delimit
more than 2 faces, and a point may be the intersection of more than 2
lines. Damiand [13] lists additional constraints: no disconnection and no
suppression of any face or line should be possible.



Table 2. Topology Preserving Operations in 3D

Pts. Lin. Fac. Vol. Con�g. PRE-CONDITION CCL

Euler #P �#L +#F �#V = const.

Incr. �#P ��#L +�#F ��V = 0 Euler

V-Fusion -1 -1 (v1; f; v2) v1 6= v2 same label
F-Fusion -1 -1 (f1; l; f2) f1 6= f2 deg l � 2
L-Fusion -1 -1 (l1; p; l2) l1 6= l2 deg p � 2

3. It remains to be checked whether the pre-conditions for individual operations
can be extended to sets of operations.

4. Semantic control (i.e. checking the same label as for CCL) occurs only in the
initial fusions, all other operations are automatic simpli�cations.

6.4 What should remain in 3D after repetition?

Fig. 7. Are the two 3D con�guration the same?

It is not surprising that the complexity of minimal topological cases to be
considered grows with dimension. In 2D only holes have to be considered and
correctly represented by either an inclusion tree or additional �ctive edges. In
3D, tunnels may be present additionally both in the foreground and in the back-
ground.

Con�gurations like the two tori as in Fig. 7 need to be distinguished. The
answer 'there are two tori' is not wrong but it is unsatisfactory since it does not
distinguish the two depicted con�gurations. Most representations do not even
have the necessary relation to express the interlacing between the two tori in the
second case. In addition they are not connected. So the description most involve
the topology of the surrounding background.

Let us sketch a possible solution using �ctive elements. A �ctive surface
intersecting the tunnel could be used to make a torus (genus 1) homotopic to
a sphere (genus 0). This �ctive surface is not �xed geometrically in space but
another object, like the second torus, would intersect it and create a hole. The
boundary of the hole would be connected by a �ctive edge to the outer boundary



Fig. 8. Two tori with two �ctive surfaces and one �ctive edge

of the �ctive surface added to the torus. An identical reasoning applies to the
second torus creating in total two �ctive surfaces and one �ctive edge as depicted
in Figure 8.

The consequences for abstract representations open a wide range for further
research and may address deep mathematical problems in di�erent �elds: knot
theory, Morse complexes, algebraic topology, . . . (see [17, 16]).

7 Conclusion

We motivated our discussion by Dickinson's and Udupa's claims to 'bridge the

representational gap', to 'focus on image abstraction', and to study 'topological

properties' in the introduction. We �rst discussed the basic �elds, abstraction
and discrete representation, in more detail. It seems that there are much less
concepts working on discrete irregular grids than on their regular counterparts.
We then recalled two pyramidal approaches having the potential to cope also
with irregular grids. These pyramids have some useful properties, e.g.

1. they show the necessity to use multi-edge and self-loop to preserve the topol-
ogy;

2. they allow to combine primitive operations at one level (i.e. collected by the
contraction kernel) and across several levels of the pyramid (i.e. equivalent
contraction kernels [27]);

3. repeated contraction converges to speci�c properties which are preserved
during contraction;

4. termination criteria allow to stop abstraction before a certain property is
lost.

5. pseudo/�ctive elements characterize topological relations, a �ctive edge char-
acterizes a hole, a �ctive face characterizes a tunnel, . . . ;

7.1 Open Problems

There are numerous open problems partly addressed in the paper. Let us just
enumerate a few important issues:

1. extensions to 3D, 4D, 5D (see [35] for current data sources)
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Fig. 9. The Olympic problem

2. how to represent multiple interlaced tori, chains, the Olympic rings (Fig. 9)
in a topologically correct representation?

3. Re-insertion of removed edges/darts (like reconstruction with wavelets): after
reducing a level of the pyramid the data remaining in the level below could
be checked for redundancies and store only the di�erences needed for loss-less
reconstruction;

4. repeated contraction has several control parameters which allow adaptation
to speci�c applications:

{ di�erent selection criteria

{ di�erent termination criteria

{ di�erent attributes

{ di�erent reduction functions

5. these control parameters could be organized in a knowledge base to allow
further user interaction and automation through learning.
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