
Integral Trees: Subtree Depth and Diameter

Walter G. Kropatsch1, Yll Haxhimusa1, and Zygmunt Pizlo2

1,� Vienna University of Technology, Institute of Computer Aided Automation,
PRIP 183/2, Favoritenstr, 9, A-1040 Vienna, Austria

{krw, yll}@prip.tuwien.ac.at
2,�� Department of Psychological Sciences, Purdue University, West Lafayette,

IN 47907-1364
pizlo@psych.purdue.edu

Abstract. Regions in an image graph can be described by their span-
ning tree. A graph pyramid is a stack of image graphs at different gran-
ularities. Integral features capture important properties of these regions
and the associated trees. We compute the depth of a rooted tree, its
diameter and the center which becomes the root in the top-down decom-
position of a region. The integral tree is an intermediate representation
labeling each vertex of the tree with the integral feature(s) of the sub-
tree. Parallel algorithms efficiently compute the integral trees for subtree
depth and diameter enabling local decisions with global validity in sub-
sequent top-down processes.

1 Introduction

Viola and Jones introduced the ‘Integral Image’ [1] as an intermediate repre-
sentation for the image to compute rapidly rectangular features. Each pixel of
an integral image stores the sum of values of a window defined by the left up-
per image corner and the pixel in the lower right corner. The computation of
the integral image is linear and the computation of the sum of any rectangular
window uses only four pixels of the integral image. Its effectiveness has been
demonstrated in people tracking [2]. Rotated windows and articulated move-
ments of arms and legs cause still problems. We follow the strategy to adapt the
data structure to the data and compute features on the adapted structures.

On a graph, vertices take the role of pixels in images. Image graphs are
embedded in the plane and can take many different forms: the vertices of the
‘neighborhood graph’ correspond to pixels and are connected by edges if the
corresponding pixels are neighbors. In the ‘region-adjacency-graph’ vertices cor-
respond to regions in the image and edges connect two vertices if the two corre-
sponding regions share a common boundary. Graphs of different granularity can

� Supported by the FWF under grants P14445-MAT, P14662-INF and FSP-S9103-
N04.

�� Supported by ECVision and by the Air Force Office of Scientific Research.

R. Klette and J. Žunić (Eds.): IWCIA 2004, LNCS 3322, pp. 77–87, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

be related through the concept of dual graph contraction [3] giving rise to graph
pyramids representing the regions of an image at multiple resolutions.

We start by further motivating the research by similar problems and solutions
in the k−traveling salesperson problem and other visual problems. Section 2
transfers the classical parallel algorithm for computing the distance transform
of a discrete binary shape from the discrete grid to the plane graph G. We then
formulate an algorithm which computes a spanning tree of a given shape by
successively removing edges that connect a foreground face with the background
(section 3). This is similar to the distance transform and to well-known shrinking
and thinning algorithms. However, in contrast to those algorithms, the goal is
not to prune the branches of a skeleton of the shape but to determine its ‘internal
structure’. This internal structure is used in section 4 to determine the diameter
and the center of the spanning tree. The diameter of a graph is the longest among
the shortest paths between any pair of vertices. Its determination involves the
search for the shortest path between any pair of vertices. This is much less
complex if the graph is a tree. This is one of the reasons why we first search for
a tree spanning the graph and find then the diameter of this tree. Partly as a
by-product we compute the maximal path lengths of all branches of the subtrees
and the respective diameters (section 5.1). These ‘integral features’ describe a
property of a complete subtree. That is why we chose the name ‘integral tree’
in analogy to integral image. Integral trees can be used in many ways. We will
show first experimental results for a top-down decomposition of the spanning
tree into a disjoint set of subtrees with balanced diameters (section 5).

1.1 Further Motivation: TSP and Visual Problem Solving

Let us consider the traveling salesperson problem (TSP) in which n cities must be
visited in the shortest time. Suppose that the regulation allows an agent to travel
to at most 10 cities. The solution to this problem requires many agents, breaking
the original TSP problem into k TSP problems. A simple solution is to cover
the vertices of the graph with k−tours and to balance the load of the agents,
for example by minimizing the maximal tour, or by minimizing the diameter
of the subgraph. The TSP is that of finding a shortest tour (minimum length)
that visits all the vertices of a given graph with weights on edges. The problem
is known to be computationally intractable (NP-hard) [4]. Several heuristics
are known to solve practical instances [4]. The TSP has been generalized to
multiple salespersons (k−TSP), allowing each salesperson to visit n/k out of n
cities. Another closely related problem is the multiple minimum spanning tree
(k−MST) problem, where k trees are generated where each tree contains a root,
and the size of the largest tree in the forest is minimized. Our goal is to generate
a spanning forest that consists of k trees with roots, such that the diameters of
the trees are balanced, i.e. none of the diameters of trees in the forest is greatly
larger than the other tree diameter.

More recently, pyramid algorithms have been used to model the mental mech-
anisms involved in solving the visual version of the TSP [5], as well as other types
of visual problems [6]. Humans seem to represent states of a problem by clus-

Integral Trees: Subtree Depth and Diameter 79

ters (recursively) and determine the sequence of transformations from the start
to the goal state by a top-down sequence of approximations. This approach
leads to algorithms whose computational complexity is as low as that of the
mental processes (i.e. linear), producing solution paths that are close to
optimal. It follows that pyramid models may provide the first plausible
explanation of the phenomenon of the directedness of thought and
reasoning [7].

It is important to emphasize that by “pyramid algorithms” we mean any
computational tool that performs image analysis based on multiple representa-
tions of the image forming a hierarchy with different scales and resolution, and
in which the height (number) of a given level is a logarithmic function of the
scale (and resolution) of the operators. Multiresolution pyramids form a sub-
set of the general class of exponential pyramid algorithms. Pyramid algorithms,
which incorporate a wider class of operators, are adequate models for the Gestalt
rules of perceptual organization such as proximity, good continuation, common
fate [8]. They also provide an adequate model of Weber’s law and the speed-
accuracy tradeoff in size perception, as well as of the phenomenon of mental
size transformation [9]. In the case of size processing, modeling visual processes
involves both bottom-up (fine to coarse) and top-down (coarse to fine) analyses.
The top-down processing seems also critical in solving the image segmentation
problem, which is a difficult inverse problem. This problem has received much
attention in psychological literature, and is known as figure-ground segregation
phenomenon [10].

2 Distance Transform

Let G(V, E) denote a graph embedded in the plane and G(F, E) its dual. Al-
gorithm in Fig. 1 labels each vertex of the graph G(V, E) with the (shortest)
distance dmin : V �→ {0, 1, . . . ,∞} from the background. Assume that the ver-
tices of the graph describe a binary shape and the edges determine the vertice’s
neighbors. It is the translation of the parallel algorithm [12] from grids to graphs.
Distances of vertices on the boundary to the background are initialized to 1. Edge
lengths l(e) > 0 in Algorithm Fig. 1 accomodate the fact that lengths other than
1 can appear. On square grids diagonal connections could be weighted by

√
2 or

by appropriate chamfer distances [11]. In contracted graphs edges correspond to
paths connecting two vertices. In such cases the length of the contracted edge
could hold the length of the corresponding path. The integral property resulting

1. Initialize distances dmin(v) :=
{

1 if v is on the boundary
∞ otherwise

2. repeat ∀v ∈ V in parallel:
dmin(v) := min(dmin(v), min{l(e) + dmin(w)|(v, w) ∈ E or (w, v) ∈ E})

Fig. 1. Algorithm: Parallel distance transform on a graph

80 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

from the distance transform is that the boundary of the shape can be reached
from any vertex v with a path of length dmin(v) at most.

3 Determine the Spanning Tree

The smallest connected graph covering a given graph is a spanning tree. The
diameter of a tree is easier and more efficient to determine than of a graph in
general. In addition elongated concave shapes force the diameter to run along
the shape’s boundary, which is very sensitive to noise.

3.1 Minimal Spanning Tree

The greedy algorithm proceeds as follows: fist it computes distance transform
dmin; then computes edge weights w(e) = −dmin(u)dmin(v) for all edges e =
(u, v); and finally finds minimal spanning tree using Kruskal’s greedy algorithm.
Skeletons based on morphology or distance transform give usually better results
but the subsequent algorithms were able to cope with these deficiences.

3.2 Spanning Skeleton

The construction of the spanning tree is related to the computation of the dis-
tance transform and the skeleton of the shape. It operates on the dual graph
G = (F, E) consisting of faces F separated by dual edges E. Let us denote

B ⊂ F the background face(s) and by degb(f) := |{(f, b) ∈ E}| the number of
edges connecting a face f ∈ F with the background B. Algorithm in Fig. 2 uses
dual graph contraction [3] to successively remove edges connecting the interior
of the shape with the background B while simplifying the boundary by removing
unnecessary vertices of degree one and two. In our case dual removal of an edge
e merges face f with the background face b and corresponds to contracting edge
e = (f, b) in the dual graph G. The result is a set of contraction kernels used

to build the graph pyramid up to the apex. The searched spanning tree is the
equivalent contraction kernel (V, Eeck), Eeck ⊂ E [13] of the apex.

1. dually contract vertices of degree 1 and 2 in G; (the connecting edges correspond
to self-loops and multi-edges in the dual graph G.)

2. dually remove all edges e ∈ E (in parallel) if
– edge e = (f, b) ∈ E, b ∈ B separates
– a foreground face f ∈ F \ B from the background
– in a unique way: degb(f) = 1.

3. for all faces f ∈ F multiply connected with the background, degb(f) > 1, do:
(a) select an edge e = (f, b) ∈ E ⊂ (F \ B) × B and
(b) dually remove e from E.

4. repeat steps 1 – 3 until F = ∅
5. spanning skeleton is the equivalent spanning tree of the surviving vertex of G.

Fig. 2. Algorithm: Spanning Skeleton

Integral Trees: Subtree Depth and Diameter 81

3.3 Discussion and Computational Complexity

In Step 1 of the algorithm we distinguish two cases: i) If the vertices of degree less
than 3 are adjacent to the background B a complete subtree externally attached
to the shape is removed after a number of (sequential) steps corresponding to
the length of the longest branch of the tree, and ii) vertices of degrees 1 and
2 may also exist inside the shape if they are not adjacent to the background.
They are removed similar to the external tree in the very first step. As before
the complexity depends on the longest branch. Since the dual contraction of all
trees is independent of each other, the parallel complexity is bound by the longest
branch of any tree. Step 2 removes all edges on the boundary of the graph as long
as the non-background face is not multiply connected to the background. They
are all independent of each other and hence can be removed in one single parallel
step. Step 3 removes one of the edges of faces which are multiply connected to
the background. Since vertices of degree 2 have been eliminated in step 1 this can
only happen at ‘thin’ parts of the graph (where the removal of 2 or more such
edges would disconnect the graph). Only one edge need to be removed to allow
the face to merge with the background. Since different faces multiply connected
to the background are independent of each other all dual removals can be done
in one single parallel step.

The total number of steps needed to complete one iteration of steps 1-3
depends on the longest branch of a tree in step 1 and needs two additional steps.
The branches contracted in step one become part of the final spanning tree hence
in total, all steps 1 need at most as many steps as the longest path through the
tree (i.e. its diameter). The number of iterations is limited by the thickness of
the graph since at each iteration one layer of faces adjacent to the background
is removed. Hence we conclude that the parallel complexity of the algorithm in
the worst case is O(diameter(G) + thickness(G)).

4 Diameter and Integral Tree of Depths

Given a (spanning) tree adapted to the shape we would like to measure distances
between any vertices of the tree. Algorithm in Fig. 3a labels each vertex with
the length dmax of the longest tree branch away from the center. The result is
the same as produced by [14] but it differs by its parallel iterated and local
operations. Given the (spanning) tree T = (V, Eeck) algorithm Subtree Depth
computes the vertex attribute dmax in O(|diameter|/2) parallel steps. If the tree
is cut at any edge e = (u, v), dmax(v) gives the depth of the remaining tree which
includes vertex v. It has the integral property that any leaf of the subtree can be
reached along a path not longer than dmax(v). The function max2{M} returns
the second largest value of the argument set M , i.e. max2(M) := max(M \
{max(M)}).1

1 If set M has less than two elements, then the function is not defined in general. If,
however, it appears as a member of a set like in min(·) or max(·) then it can simply
be ignored or, formally, replaced by the empty set: max2(∅) = max2{x} = ∅.

82 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

1. Initialize distances dmax(v) :={
0 if v is a leaf, degT (v) = 1
∞ otherwise

2. repeat for all vertices v ∈ V in
parallel:
dmax(v) :=
min(dmax(v), max2{l(e) +
dmax(w)|(v, w) ∈ Eeck or (w, v) ∈
Eeck})

c → · · · → v �→ w

→ s1 · · · → l1

→ u

→ s2 · · · l2
→ s3 · · · l3
→ s4 · · · l4

→ sn · · · → ln

a b

Fig. 3. a) Algorithm: Subtree Depth and b) subdivision of the Subtree Depth

4.1 Center and Diameter of the Spanning Tree

The sample result is shown in Fig. 4b. Each vertex is labeled with two values,
the first being the subtree depth. The diameter is the longest path2 through
the tree and consists of the two sub-paths v0, v1, . . . , v9 and w9, w8, . . . , w0 with
dmax(vi) = dmax(wi) = i, i = 0 . . . 9. Its length is 19. There is one edge (v9, w9) of
which both ends have (maximal) depth 9. This is the center of the tree with
the (integral) property that all leafs (i.e. all vertices!) of the tree can be reached
in maximally dmax(v9) = 9 steps. The diameter of this tree is obviously 19, an
odd number. All trees with an odd diameter have a central edge. Trees with
an even diameter have a single maximum dmax-value, e.g. a vertex is the center.
Similar information is contained in the subtree depth of the other vertices: Given
the center of the tree, we can orient the edges such that they either point towards
the center or away from the center. Let us assume in the following that all edges
of the tree are oriented towards the center.

4.2 Computational Complexity of Algorithm Subtree Depth

We consider the number of repetitions of step 2 and the number of steps required
to compute max2. First we note that the algorithm stops if the function dmax(v)
does not change after updating of step 2. It starts with vertices of subtree depth
0 and increases the distance values at each (parallel) iteration. Hence step 2
need not be repeated more than half the diameter times. To compute the dmax-
value in step 2 all the neighbors of a vertex need to be considered. Hence this
is bounded by the degree of the vertex. In summary the parallel computational
complexity is O(diameter ∗ maximal vertex degree).

5 Decomposing the Spanning Tree

In [14] we presented an algorithm to decompose a spanning tree into subtrees
such that the diameter of each subtree is maximally half the diameter of the

2 Edge length l(e) = 1 is used in all examples.

Integral Trees: Subtree Depth and Diameter 83

Table 1. Degrees of the contraction kernels

’Bister’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 1653 759 1
1 → 2 2340 24 2
2 → 3 2124 48 24 6
3 → 4 1779 99 8 8 8 10
4 → 5 1111 199 21 22 19
5 → 6 451 244 8 18 8 25
6 → 7 75 174 16 4 8 32
7 → 8 13 48 16 8 43
8 → 9 3 8 2 8 50

9 → 10 1 2 62
10 → 11 1 120

’Disc’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 821 380 1
1 → 2 1165 12 2
2 → 3 1057 24 12 6
3 → 4 877 52 4 4 4 10
4 → 5 529 110 8 10 19
5 → 6 229 116 4 8 4 25
6 → 7 37 86 8 2 4 32
7 → 8 5 24 8 4 43
8 → 9 4 1 4 50

9 → 10 1 62

original tree. Recursively continued until the subtrees have a diameter ≤ 2, this
strategy creates a hierarchy of log(diameter) height. The only parameter used
for this decomposition is the length of the diameter and the center of the tree.

We studied the relation between the shape (two sample examples are shown
in Fig. 5a,b, for more examples see [15]) and the resulting graph pyramid. Table 1
lists the observed properties of the contraction kernels used at level k to produce
level k +1 (k → k +1). For every level the histogram of kernel’s degrees is given
together with the largest diameter δ of all subtrees at the respective levels. The
similarity of the substructure ‘Disc’ to ‘Bister’ is obvious and not surprising.
The length of the diameter and the center appear to be very robust whereas the
fine substructures are sensitive to noise. In particular we observe many spurious
branches (deg(v) = 0) and high splitting degrees. This can be avoided to a large
extend and optimized using subtree diameters.

5.1 The Integral Tree of Diameters

Subtree depths dmax are upper bounds for reaching any vertex in the outer
subtree. Consider the following configuration sketched in Fig. 3b): c denotes the
center, li are the leafs, v, w, u, si are intermediate vertices. dist(x, y) denotes
the distance between vertices x and y. The depth of the center c is not shorter
than the distance to any leaf3: dmax(c) ≥ dist(c, li). The actual distance between
the center and any vertex v is also bounded: dist(c, v) ≤ dmax(c) − dmax(v).
Along the tree’s diameter-path the above inequalities are equalities. Assume we
cut the tree between vertices v and w. The diameter of the outer subtree of w
goes either through w or it connects two subbranches excluding w. If it goes
through w its length is the sum of the subtree depth of w and the length of
its second longest subbranch. The length of a subbranch is the length of the
edge connecting the branch to w plus the subtree depth of the first son in this
subbranch: δ(w) = dmax(w) + max2{l((w, s)) + dmax(s)|(w, s) ∈ Eeck}.

3 Odd diameters create a central edge splitting the tree in two subtrees for which the
above inequalities hold.

84 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

1. Initialize diameters δ(v) := dmax(v)
2. repeat ∀v ∈ V in parallel:

δ(v) := max(max{δ(s)|(v, s) ∈ Eeck},
max2{dmax(v) + l((v, s)) + dmax(s)|
(v, s) ∈ Eeck})

�

�

�

�

�

�

�

�

�

�

�

�

�0,0�0,0

�1,1�2,3
�3,3�4,5
�1,2�0,0

�0,0�0,0
�0,0
�5,7�0,0 �6,7�7,7

�3,4�0,0
�0,0�8,9
�0,0

�2,2�4,4
�0,0�0,0
�9,9

�1,1�5,6
�6,7�7,10
�8,10�9,10

�0,0�0,0
�0,0�2,2 �0,0�1,1

a b

Fig. 4. a) Algorithm: Subtree Diameters δ, and b) Integral trees of depths and diam-
eters dmax, δ

The max2-function is well defined because dmax(w) > 0 implies a degree
deg(w) ≥ 2. If the diameter of subtree w does not go through w it connects two
leafs through a vertex, e.g. u : l2 · · · s2 ← u → s4 · · · l4. In this case vertex u
calculates the diameter as w above and propagates the length of the diameter
up to vertex w. The diameters of all subtrees can be computed similar to the
Subtree Depth: Algorithm Fig. 4a generates diameters δ (2nd values in Fig. 4b).

5.2 Using Integral Trees for Decomposition

The integral features of depth dmax and diameter δ should enable us to decide
locally where it is best to split the spanning tree. Criteria could be a good balance
of diameter lengths, a small degree of the top contraction kernels (“a hand has 5
fingers”) or more object specific properties that could be known to the system.

Let us consider what happens if we cut the tree at a certain distance from
the center by removing the cut-edge. A cut-edge (v, w) is selected if the depth
of the outer tree is smaller than a threshold dT , dmax(v) < dT ≤ dmax(w) (‘cut-
edge condition’). Note that the threshold dT can depend on the length of the
overall diameter δ(c). After cutting, the longest possible diameter of the outer
tree δmax is twice the subtree depth of dmax(v) (this was used in [14]). This can
be improved using the actual diameters δ(v) calculated by algorithm subtree-
diameters (Fig. 4b). If all edges satisfying the cut-edge condition are rigorously
removed the depth of the remaining central tree is reduced by the subtree depth
of new leaf dmax(w) = dT . Consequently the diameter of the central tree shrinks
by the double amount δnew(c) = δold(c)−2dT . Table in Fig. 5 lists the different
diameters and degrees for all possible cut-depths dT . The decomposition should
first split the ‘important’ components and not be too much influenced by spurious
subtrees. The degree of the contraction kernel corresponds exactly to the number
of cut-edges. While the ‘cut-degree’ counts all rigorously created new subtrees
including trees with very small depth and diameter (0 in table in Fig. 5), the
‘min’-value gives the degree after re-connecting all cut-edges to the central tree
which do not increase the largest diameter of all outer and the inner trees. The
remaining subtree diameters are bold faced in table in Fig. 5.

Integral Trees: Subtree Depth and Diameter 85

Table of Cuts through example tree Fig. 4b
cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut min
9 16 9 1 10 2 2
8 14 0, 7 3 10 3 2
7 12 0, 7 5 0, 7, 2 5 3
6 10 0, 7, 0 7 0, 0, 6, 0 , 2 8 6
5 8 0, 0, 2, 5, 0 9 0, 0, 4, 0, 0, 2 11 6
4 6 0, 0, 2, 0, 3, 0, 0 11 0, 0, 4, 0, 0, 2 13 5
3 4 0, 0, 2, 0, 3, 0, 0 13 0, 0, 0, 2, 0, 0, 2 14 3
2 2 0, 0, 2, 0, 1 ,0, 0, 0 15 0, 0, 0, 1, 0, 0, 1 15 3
1 0 0, 0, 0, 0, 0, 0, 0, 0, 0 17 0, 0, 0, 0, 0, 0, 0 16 2

a

b

Fig. 5. Two example a) Bister(2 × 1581 + 9 pixel) and b) Disc (1581 pixel) used in
experiments and Table of Cuts

5.3 Experiment: Two Connected Balls (‘Bister’)

The example of Fig. 5a consists of two large balls connected by a thin curve. Bister
et.al. [16] used a similar example to demonstrate the shift variance
of regular pyramids. The goal of this experiment, refered to as ‘Bister’, is to
check whether the simple decomposition expressed by the above description
could be derived from the integral tree. Table 2 lists the different subtree depths
and diameters in the example ‘Bister’ (see subtree depth and diameters of
central part in Fig. 6). This shows clearly that the diameters of the two cir-
cles (62) propagate up to the center which receives diameter 120. Cutting the
path which connects the two large circles produces three subtrees (degree of
contraction kernel 2) of which both outer subtrees have diameter 62 from
cut-edge with subtree depths (59,60) down to (36,37). With smaller subtree
depth the degrees of the contraction kernels start to grow since extra branches
of the two circles are cut. We continued the table down to cut-edge (29,30)
where the diameter of the center-tree becomes larger than any of the outer
trees. We also note that no spurious branches can be integrated in this first level
decomposition.

�
� �

�

�

�

�

�

�

�

�

��

�

�

�

��

�

� �· · · �

�

�

�

�

�

�

�

�

�

��

�

� � �

�28,48
�29,50
�21,21
�29,50

�20,20
�30,60
�31,60
�32,62
�20,20

�28,48
�29,50
�21,21
�33,62
�34,62
�19,19

�27,47
�20,20
�20,20
�35,62
�19,19

�19,19

�36,62
�25,44
�37,62
�18,18

�59,62
�60,120
�59,62
�58,62

� �

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� � �×

�28,48
�29,50
�21,21
�29,50

�20,20
�30,60
��31,62

�30,60

�20,20

�28,48
�29,50
�21,21
�29,50

�28,48

�19,19

�27,47
�20,20
�20,20
�27,47

�19,19

�19,19

�26,44

�25,44

Fig. 6. Center part of left circle of example Bister before and after cut

86 W.G. Kropatsch, Y. Haxhimusa, and Z. Pizlo

Table 2. Cuts through spanning tree of example ‘Bister’

cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut
60 118 62 0 62 2
59 116 62 2 62 2

· · ·
37 72 62 46 62 2
36 70 44, 62 48 44, 62 4
35 68 44,19, 62 50 44,19, 62 6
34 66 44,19,19, 62 52 44,19,19, 62 8
33 64 44,19,19, 62, 20 54 44,19,19, 62, 20 10
32 62 44,19,19,20,50, 60, 20 56 44,19,19,20,50, 60, 20 14
31 60 44,19,19,20,50,21, 60, 21,20 58 44,19,19,20,50,21,60,21,20 18
30 58 44,19,19,20,50,21,50,20,50,21,20 60 44,19,19,20,50,21,50,20,50,21,20 22

· · ·

6 Conclusion

We have introduced integral trees that can store integral features or properties.
Efficient parallel algorithms have been presented for computing: i) the boundary
distance dmin of a binary shape; ii) the depth of all subtrees dmax; and iii) the
diameter δ of the outer subtrees. These integral features are not just sums over all
elements of the subtree but capture properties of the complete substructure. The
integral trees have been used to decompose the spanning tree of the shape top-
down. The decomposition can use following optimization criteria: i) balance the
diameters of the subtrees more efficiently than cutting at a fixed distance from
the center or the leafs; unfortunately this often generates contracktion kernels of
high degree; ii) set the degree n of the contraction kernel beforehand and find the
n subtrees with largest integral feature, e.g. diameter. iii) define the optimization
criterium which can be solved using local information provided by the integral
tree and some global properties like global size or diameter proportion that are
propagated during the top-down process. In future research we plan to apply
integral tree for new solutions of the TSP problem as well in tracking.

References

[1] Viola, P., Jones, M.: Robust Real-time Face Detection. International Journal of
Computer Vision 57 (2004) 137–154

[2] Beleznai, C., Frühstück, B., Bischof, H., Kropatsch, W.G.: Detecting Humans in
Groups using a Fast Mean Shift Procedure. OCG-Schriftenreihe 179, (2004)71–78.

[3] Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEE-
Proc. Vision, Image and Signal Processing 142 (1995) pp. 366–374

[4] Christofides, N.: The Traveling Salesman Problem. John Wiley and Sons (1985)
[5] Graham, S.M., Joshi, A., Pizlo, Z.: The Travelling Salesman Problem: A Hierar-

chical Model. Memory & Cognition 28 (2000) 1191–1204
[6] Pizlo, Z., Li, Z.: Graph Pyramids as Models of Human Problem Solving. In: Proc.

of SPIE-IS&T Electronic Imaging, Computational Imaging, (2004) 5299, 205–215
[7] Humphrey, G.: Directed Thinking. Dodd, Mead, NY (1948)

Integral Trees: Subtree Depth and Diameter 87

[8] Pizlo, Z.: Perception Viewed as an Inverse Problem. Vis. Res. 41 (2001) 3145–3161
[9] Pizlo, Z., Rosenfeld, A., Epelboim, J.: An Exponential Pyramid Model of the

Time-course of Size Processing. Vision Research 35 (1995) 1089–1107
[10] Koffka, K.: Principles of Gestalt psychology. Harcourt, NY (1935)
[11] Borgefors, G.: Distance Transformation in Arbitrary Dimensions. Computer Vi-

sion, Graphics, and Image Processing 27 (1984) 321–145
[12] Borgefors, G.: Distance Transformation in Digital Images. Computer Vision,

Graphics, and Image Processing 34 (1986) 344–371
[13] Kropatsch, W.G.: Equivalent Contraction Kernels to Build Dual Irregular Pyra-

mids. Springer-Verlag Advances in Computer Vision (1997) pp. 99–107
[14] Kropatsch, W.G., Saib, M., Schreyer, M.: The Optimal Height of a Graph Pyra-

mid. OCG-Schriftenreihe 160, (2002) 87–94.
[15] Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z.: Integral Trees: Subtree Depth and

Diameter. Technical Report No. 92, PRIP, Vienna University of Technology (2004)
[16] Bister, M., Cornelis, J., Rosenfeld, A.: A Critical View of Pyramid Segmentation

Algorithms. Pattern Recognition Letters 11 (1990) pp. 605–617

