Controlling Topology Preserving Graph Pyramids

Walter G. Kropatsch,

in collaboration with Martin Cerman, Rocio Gonzalez-Diaz, Darshan Batavia

May 25, 2022

IC PyR+AmId 2022

ICPRAI 2022

Who recognizes the picture Coral? 1/47

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

2

Who recognizes the picture Coral?

Walter G. KropatschTU-Wien 193/03Pattern Recognition and Image Processing Group

Who recognizes the picture Cat?

Which one is the original image Fish? 3/47

Walter G. KropatschTU-Wien 193/03Pattern Recognition and Image Processing Group

Which one is the original image Fish?

SCIS re-produced with much less colors 4/47

next

SCIS re-produced with much less colors

Structurally Correct Image Segmentation (SCIS) by preserving the image structure/topology. Pictures from the Berkeley Image data base [MFTM01]

Picture	pixels	regions	reduction	by
Coral	154401	12352	92%	
Cat	154401	9264	94%	
Fish	154401	9264	94%	

More in PRIP TR-133, Master Thesis of Martin Cerman, https://www.prip.tuwien.ac.at/publications/technical_reports.php

Overview

- 4 Motivations + Background
- Building LBP-Pyramid + reconstruction
- \bullet an INSIGHT problem
- Critical Points from LBP
- Monotonic Path/Curve
- \bullet Process + Control + Tasks
- The space between critical points: slopes
- Conclusion and Outlook

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

1. Biological Perception Problem [Uhr86]

Vision is Very Parollel (- Seriel) 107 cones, 108 rods (each exe) 103 operations/sec (1.5 msec synapse) 200-800 msec to recognize complexe 30 msec per frame for moving objec (Subtract 120 msec for periphere) of 50 serial depth on 25-600

complex vision in < 600 serial steps \downarrow parallel (MPP) Log.complexity \downarrow

8

Pattern Recognition and Image Processing Group

Leonard Uhr proposed Pyramids 1986

Pyromids are NOT (only) Multi-resolution Parallel bottlenecks Low level Arroy Processors Trees Egyption or Mexican (Incor) Razor blade sha-peners.

- "pyramid needs augmentation"
- "... any connected (data-flow) graph could be used."
- "combine bottom-up and top-down"

Pattern Recognition and Image Processing Group

2. Retina is irregular

Pattern Recognition and Image Processing Group

3. Water's Gateway to Heaven (2020-2024)

https://waters-gateway.boku.ac.at/

- 3D imaging and modeling of transient stomatal responses in plant leaves
- μ CT images 2000 × 2000 × 2000, at 2-4 times
- visible objects: different cells, water ways, airspace
- leaves are deformable...
- **understand** opening and closing of stomata for **photosynthesis**

4. Critical/stationary Points

Jan Koenderink [Koe84]: "The Structure of Images".

- Intensity $\Phi(x, y, t)$, (x, y)-coordinates, t scale
- ... generated by convolution with Gaussian kernel $\Phi(x,y,0)*G(t)$
- **Diffusion** $\Delta \Phi = \Phi_t$ is the basis for scale space theory.
- "Any feature at a coarse resolution is required

to possess a 'cause' at finer resolution."

- stationary (critical) points $\Phi_x = \Phi_y = 0$ Hessian $\Phi_{xx}\Phi_{yy} - \Phi_{xy}^2 \ge 0...$ extremum Hessian $\Phi_{xx}\Phi_{yy} - \Phi_{xy}^2 < 0...$ saddle point Alternative: LBP no bit switches > 2 bit switches
- Extrema and saddle points disappear pairwise when t increases.

Pattern Recognition and Image Processing Group

An Insight Problem from [Piz22]

Create n equilateral triangles (\triangle) with m matchesticks:

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

- Critical points in 1D are local extrema
- ... characterized by horizontal tangents
- curves between critical points are **monotonically**
- ... alternating ups (\uparrow) and downs (\downarrow)

Pattern Recognition and Image Processing Group

LBPs along monotonic curves

- Local Binary Patterns (LBP) compare a central point with its neighbors,
 0 ... neighbor is smaller
 - $1 \dots$ neighbor is greater
- along monotonic curves: same ('uniform') LBP-code 0 · 1 bounded by local minimum (⊖): 1 · 1 and local maximum (⊕): 0 · 0
- no derivatives!

Pattern Recognition and Image Processing Group

Critical Points in 2D ... 18/47

next

19

Pattern Recognition and Image Processing Group

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

Edge Contraction 21/47

Pattern Recognition and Image Processing Group

Pattern Recognition and Image Processing Group

Dual Operations: Contraction vs. Removal 24/47

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

р

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

After 1st Simplify: 1 double edge bounds I 26/47

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

Dually Contracted Graph 27/47

Pattern Recognition and Image Processing Group

Pattern Recognition and Image Processing Group

29

while further abstraction is possible do

- 1. select contraction kernels
- 2. perform contraction
- 3. and simplification;
- 4. apply reduction functions \rightarrow new reduced content

Each iteration: **new level of the pyramid**

Preserving Topology

Changes Δ by the primitive operations, edge contraction and edge removal:

change of Euler-Poincaré characteristicoperation $\Delta \# P - \Delta \# E + \Delta \# F = 0$ contraction1-1removal0-1+0=0

Any number of contractions and removals does NOT change the characteristic!

31

Pattern Recognition and Image Processing Group

CONTROL by the **CONTENT**

- 1. Selection of contraction kernels
- 2. Simplification strategies
- 3. Reduction functions
- 4. Expansion

(a) by inverse operations (as in [TK14]):

de-contraction contraction

re-insertion | removal (b) by interpolation

- (c) by inheritance
- (d) by model refinement

Pattern Recognition and Image Processing Group

1. SELECT Contraction KERNELs

- RANDOM (like stoch.pyramid \rightarrow [Mee89])
- Filters \rightarrow local MAX., the ADAPTIVE Pyramid [JM92]
- RULES (CCL, GAP closing, line drawings [BK99, BK21])
- MATCHING: parametric MODELS (e.g. by correlation) 'goodness of match' structures (e.g. by GRAPH MATCHING)
- locally lowest contrast, critical points survive

Pattern Recognition and Image Processing Group

2. Simplification Strategies

- complete simplification after each contraction $(\mathcal{O}(a^{-1}(n,n)) \quad a(n,n) \dots$ Ackermann function)
- \bullet only one simplification pass after a contraction
- ALL simplifications after ALL contractions
- content-controlled simplification (some degree 1 or 2 faces survive)
- anticipated simplification before contraction [BBK22]

Pattern Recognition and Image Processing Group

34

3. REDUCTION FUNCTIONS

- Inheritance (e.g. for CCL)
- average, convolution filter,

as in DCNN

- transitive closure (used in line drawings [BK99])
- MODEL name, symbol (like , , for dotted lines in [Kro95]) parameters that best match data[HR84].
- LBP: survivors inherit value of critical point

preserves range of grey values

Pattern Recognition and Image Processing Group

Selecting Parameters for Abstraction (1)

Application	Important	Negligible	Redundant
	elements survive	are merged	are removed
CCL [KM95,	1 repr/lab	(L,L)	empty faces,
MK95, Kro96,			$\deg < 3$
BK21]			
segmentation	1 repr/ region	similar, end points	empty faces,
[KB96b, KB96a,			$\deg < 3$
KH04a, HMK04]			
2x on curve [Kro97]	X, ends	empty space,	empty faces,
		connections	$\deg < 3$
line images [KBI98,	ends, junctions	empty space,	empty faces,
BK98, KB98]		connections	no touching curve

Pattern Recognition and Image Processing Group

Selecting Parameters for Abstraction (2)

Application	Important	Negligible	Redundant
matching [PKJ98,	discrim.template,	simil.inside object	simil.empty faces,
GPK02, GPK04]	object boundary		$\deg < 3$
motion [GEK99,	foreground,	occluded backgr.	empty faces,
MKH04, AIK09]	static background,	moving foregr.	$\deg < 3$
	articulations		
gap closing [Kro02,	1 repr/lab	(L,L)	empty faces,
KH04b]	incl. background		$\deg < 3$
RAG ⁺ Hierarchy	max.ext.Contrast,	min.int.Contrast	empty faces,
[HK03, HK04,	MST		$\deg < 3$
HIK06]			
LBP-Pyramid	critical points,	lowest contrast	empty faces,
[CGK15, CJGK16,	texture, high freq.		$\deg < 3$
KCBG19a]			

Walter G. Kropatsch TU-Wien 193/03 Pattern Recognition and Image Processing Group

Original Berkely Pheasant 154401 Pixels

next

Walter G. Kropatsch TU-Wien 193/03

38

Pattern Recognition and Image Processing Group

SCIS(Pheasant) with 30%(154401) Regions

next

Walter G. Kropatsch TU-Wien 193/03

Pattern Recognition and Image Processing Group

SCIS(Pheasant) with 10%(154401) Regions

Pattern Recognition and Image Processing Group

SCIS(Pheasant) with 3%(154401) Regions

'Image = Structure + Few Colors', [BGK21]

- most critical points survive
- \bullet contracting lowest contrast \longleftrightarrow preserving high contrast of dual edge
- In contrast to ALL smoothing reductions: **preserves high frequencies** (small, thin details)
- \implies reconstructions with only a few highest levels give good results

... what are the spaces between critical points?

A connected region R of a 2D surface is a **slope region** iff all pairs of points $\in R$ are connected by a **continuous monotonic curve** $\in R$.

- there may be one \oplus, \ominus inside R
- saddles \otimes have an important role:

 \otimes are only on the boundary ∂R , never inside R

43

Pattern Recognition and Image Processing Group

44

Pattern Recognition and Image Processing Group

Slope Complex

An abstract cellular complex is a **slope complex** if all cells are slope regions

Bounding relations are given by $G(V, E) \longleftrightarrow \overline{G}(\overline{V}, \overline{E})$

More ... [GDBCK21]

Pattern Recognition and Image Processing Group

Conclusion (1)

- intrinsic 3D (cell-)structure does not change at higher levels
- topological data structures:
 - -2D: planar graphs, combinatorial maps
 - -3D: combinatorial maps, generalized maps
 - nD: generalized maps.
- hierarchies (pyramids) can be built on image, retina, planar graph, combinatorial map, generalized map
- Goal: REDUCE DATA while PRESERVING PROPERTIES

Conclusion (2) and Outlook

- LBP \longleftrightarrow edge orientation \longrightarrow critical points \oplus, \ominus, \otimes and slopes.
- Partitioning into slope regions: not unique
- Slope complex partitions continuous surface.
- Merge slopes \implies dual graph pyramid.
- Any hill-climbing inside a slope region reaches the peak!
- Complexity: $\mathcal{O}(\log(\text{diameter (slope})))$ following parent links.

Pattern Recognition and Image Processing Group

are cordially acknowledged. New future collaborations welcome!

Pattern Recognition and Image Processing Group

References

- [AIK09] Nicole M. Artner, Adrian Ion, and Walter G. Kropatsch. Rigid Part Decomposition in a Graph Pyramid. In Jan Olof Eklundh Eduardo Bayro-Corrochano, editor, *The 14th International Congress on Pattern Recognition, CIARP 2009*, volume 5856 of *Lecture Notes in Computer Science*, pages 758–765, Berlin Heidelberg, November 2009. Springer-Verlag.
- [BBK22] Majid Banaeyan, Darshan Batavia, and Walter G. Kropatsch. Removing Redundancies in Binary Images. In 2nd International Conference on Intelligent Systems & Pattern Recognition. Springer LNCS, 2022. doi: 10.1109/IPRIA53572.2021.9483533.
- [BGK21] Darshan Batavia, Rocio Gonzalez-Diaz, and Walter G. Kropatsch. Image = Structure + Few Colors. In Andrea Torsello, Luca Rossi, Marcello Pelillo, Battista Biggio, and Antonio Robles-Kelly, editors, S+SSPR 2020, volume LNCS 12644 of Lecture Notes in Computer Science, pages 365–376. Springer Nature, January 2021.
- [BHK19] Darshan Batavia, Jiří Hladůvka, and Walter G. Kropatsch. Partitioning 2D Images into Prototypes of Slope Region. In Mario Vento and Gennaro Percannella, editors, Proc. 18th Intl. Conference on Computer Analysis of Images and Patterns, volume LNCS 11678 of Lecture Notes in Computer Science, pages pp. 363—374, Salerno, I, September 2019. Springer Nature Switzerland AG.
- [BK98] Mark Burge and Walter G. Kropatsch. Contracting Line Images using Run Graphs. In M. Gengler, M. Prinz, and
 E. Schuster, editors, *Pattern Recognition and Medical Computer Vision 1998, 22nd ÖAGM Workshop*, pages 235–244.
 OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 1998. Band 106.
- [BK99] Mark Burge and Walter G. Kropatsch. A Minimal Line Property Preserving Representation of Line Images. Computing, Devoted Issue on Image Processing, 62:pp. 355–368, 1999.
- [BK21] Majid Banaeyan and Walter G. Kropatsch. Pyramidal Connected Component Labeling by Irregular Pyramid. In 5th International Conference on Pattern Recognition and Image Analysis. IEEE, 2021.
- [CGK15] Martin Cerman, Rocio Gonzalez-Diaz, and Walter G. Kropatsch. Lbp and irregular graph pyramids. In Nicolai Petkov and George Azzopardi, editors, *Computer Analysis of Images and Patterns*, volume LNCS 9256 of *Lecture Notes in Computer Science*, Malta, September 2015. Springer, Cham.

TU-Wien 193/03

Pattern Recognition and Image Processing Group

- [CJGK16] Martin Cerman, Ines Janusch, Rocio Gonzalez-Diaz, and Walter G. Kropatsch. Topology-based image segmentation using LBP pyramids. *Machine Vision and Applications*, 27(8):1161–1174, 2016.
- [GDBCK21] Rocio Gonzalez-Diaz, Darshan Batavia, Rocio M Casablanca, and Walter G Kropatsch. Characterizing slope regions. Journal of Combinatorial Optimization, pages 1–20, 2021.
- [GEK99] Roland Glantz, Roman Englert, and Walter G. Kropatsch. Contracting distance maps of pores to pore networks. In Norbert (ed.) Brändle, editor, *Computer Vision - CVWW'99, Proceedings of the Computer Vision Winter Workshop*, pages 112–121, Wien, Austria, 1999. PRIP TU Wien.
- [GPK02] Roland Glantz, Marcello Pelillo, and Walter G. Kropatsch. Matching Hierarchies of Segmentations. In Horst Wildenauer and Walter G. Kropatsch, editors, Computer Vision - CVWW'02, Computer Vision Winter Workshop, pages pp. 149– 158, Wien, Austria, February 2002. PRIP, TU Wien.
- [GPK04] Roland Glantz, Marcello Pellilo, and Walter G. Kropatsch. Matching Segmentation Hierarchies. International Journal for Pattern Recognition and Artificial Intelligence, 18(3):397–424, 2004.
- [HIK06] Yll Haxhimusa, Adrian Ion, and Walter G. Kropatsch. Comparing Hierarchies of Segmentations: Humans, Nomalized Cut, and Minimum Spanning Tree. In Frank Lenzen, Otmar Scherzer, and Markus Vincze, editors, *Proceedings of* 30th OEAGM Workshop, pages 95–103, Obergurgl, Austria, 2006. OCG-Schriftenreihe books@ocg.at, Österreichische Computer Gesellschaft. Band 209.
- [HK03] Yll Haxhimusa and Walter G. Kropatsch. Hierarchy of Partitions with Dual Graph Contraction. In E. Michaelis and G. Krell, editors, DAGM 2003, 25th DAGM Symposium, volume 2781 of Lecture Notes in Computer Science, pages 338–345, Magdeburg, Germany, September 2003. Springer, Berlin Heidelberg.
- [HK04] Yll Haxhimusa and Walter G. Kropatsch. Segmentation Graph Hierarchies. In Ana Fred, Terry Caelli, Robert P.W. Duin, Aurelio Campilho, and Dick de Ridder, editors, Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops on SSPR 2004 and SPR 2004, volume LNCS 3138 of Lecture Notes in Computer Science, pages 343–351, Lisbon, Portugal, August 2004. Springer, Berlin Heidelberg, New York.
- [HMK04] Allan Hanbury, Jocelyn Marchadier, and Walter G. Kropatsch. The Redundancy Pyramid and its Application to Image Segmentation. In Wilhelm Burger and Josef Scharinger, editors, *Digital Imaging in Media and Education, 28th ÖAGM*

Pattern Recognition and Image Processing Group

	<i>Workshop</i> , pages 157–164. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 2004. Band 179.
[HR84]	TH. Hong and Azriel Rosenfeld. Compact region extraction using weighted pixel linking in a pyramids. <i>IEEE Trans-</i> actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6(2):pp.222–229, 1984.
[JM92]	Jean-Michel Jolion and Annick Montanvert. The adaptive pyramid, a framework for 2D image analysis. <i>Computer Vision, Graphics, and Image Processing: Image Understanding</i> , 55(3):pp.339–348, May 1992.
[KB96a]	Walter G. Kropatsch and Souheil BenYacoub. A general pyramid segmentation algorithm. In Robert Melter, Angela Y. Wu, and Longin Latecki, editors, Vision Geometry V, Intl. Symposium on Optical Sciences, Engineering, and Instrumentation, volume 2826, pages 216–224. SPIE, 1996.
[KB96b]	Walter G. Kropatsch and Souheil BenYacoub. Universal Segmentation with PIRRamids. In Axel Pinz, editor, Pattern Recognition 1996, Proc. of 20th ÖAGM Workshop, pages 171–182. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 1996. Band 90.
[KB98]	Walter G. Kropatsch and Mark Burge. Minimizing the Topological Structure of Line Images. In Adnan Amin, Dov Dori, Pavel Pudil, and Herbert Freeman, editors, <i>Advances in Pattern Recognition, Joint IAPR International Workshops</i> <i>SSPR'98 and SPR'98</i> , volume Vol. 1451 of <i>Lecture Notes in Computer Science</i> , pages 149–158, Sydney, Australia, August 1998. Springer, Berlin Heidelberg, New York.
[KBI98]	Walter G. Kropatsch, Mark Burge, and Heinz L. Idl. Dual Graph Contraction for Run Graphs. In Aleš Leonardis and Franc (eds.) Solina, editors, <i>Computer Vision - CVWW'98</i> , <i>Proceedings of the Computer Vision Winter Workshop</i> , pages pp. 75–86, Ljubljana, 1998. IEEE Slovenia Section.
[KCBG19a]	Walter G. Kropatsch, Rocio M. Casablanca, Darshan Batavia, and Rocio Gonzalez-Diaz. Computing and Reducing Slope Complexes. In Rebeca Marfil, Mariletty Calderon, Fernando Diaz del Rio, Pedro Real, and Antonio Banderas, editors, <i>Proceedings 7th intl. Workshop on Computational Topology in Image Context</i> , volume LNCS 11382 of <i>Lecture Notes in</i> <i>Computer Science</i> , pages 12—-25, Malaga, Spain, January 2019. Springer, Berlin Heidelberg.
[KCBG19b]	Walter G. Kropatsch, Rocio M. Casablanca, Darshan Batavia, and Rocio Gonzalez-Diaz. On the Space Between Critical Points. In Michel Couprie, Jean Cousty, Yukiko Kenmochi, and Nabil Mustafa, editors, <i>Discrete Geometry for Computer</i>

Pattern Recognition and Image Processing Group

Imagery, volume LNCS 11414 of Lecture Notes in Computer Science, pages 115–126. Marne-la-Vallée, F. March 2019. Springer, Berlin Heidelberg. [KH04a] Walter G. Kropatsch and Yll Haxhimusa. Grouping and Segmentation in a Hierarchy of Graphs. In Charles A. Bouman and Eric L. Miller, editors, Computational Imaging II, volume 5299, pages 193–204, Bellingham, WA, January 2004. SPIE. Walter G. Kropatsch and Yll Haxhimusa. Hierarchical Grouping of Non-connected Structures. In Wilhelm Burger [KH04b] and Josef Scharinger, editors, Digital Imaging in Media and Education, 28th ÖAGM Workshop, pages 165–172. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 2004. Band 179. [KM95] Walter G. Kropatsch and Herwig Macho. Finding the structure of connected components using dual irregular pyramids. In Cinquième Colloque DGCI, pages 147–158. LLAIC1, Université d'Auvergne, ISBN 2-87663-040-0, September 1995. [Koe84] Jan J. Koenderink. The structure of images. *Biological Cybernetics*, 50:363–370, 1984. [Kro95] Walter G. Kropatsch. Building Irregular Pyramids by Dual Graph Contraction. IEE-Proc. Vision, Image and Signal Processing, Vol. 142(No. 6):pp. 366–374, December 1995. [Kro96] Walter G. Kropatsch. Properties of pyramidal representations. Computing, Supplementum: Theoretical Foundations of Computer Vision, No. 11:pp. 99–111, 1996. [Kro97] Walter G. Kropatsch. Property Preserving Hierarchical Graph Transformations. In Carlo Arcelli, Luigi P. Cordella, and Gabriella Sanniti di Baja, editors, Advances in Visual Form Analysis, pages 340–349. World Scientific Publishing Company, 1997. [Kro02] Walter G. Kropatsch. Abstraction Pyramids on Discrete Representations. In Achille Braquelaire, Jacques-Olivier Lachaud, and Anne Vialard, editors, Discrete Geometry for Computer Imagery, 10th DGCI, volume Vol. 2301 of Lecture Notes in Computer Science, pages 1–21, Bordeaux, France, 2002. Springer, Berlin, Heidelberg, New York.

[Mee89] Peter Meer. Stochastic image pyramids. Computer Vision, Graphics, and Image Processing, Vol. 45(No. 3):pp.269–294, March 1989.

Pattern Recognition and Image Processing Group

[MFTM01] David R. Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In 8th International Conference on Computer Vision, ICCV 2001, volume 2, pages 416–423, 2001.

- [MK95] Herwig Macho and Walter G. Kropatsch. Finding Connected Components with Dual Irregular Pyramids. In Franc Solina and Walter G. Kropatsch, editors, Visual Modules, Proc. of 19th ÖAGM and 1st SDVR Workshop, pages 313–321. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 1995. Band 81.
- [MKH04] Jocelyn Marchadier, Walter G. Kropatsch, and Allan Hanbury. The Redundancy Pyramid and its Application to Segmentation on an Image Sequence. In Carl Edward Rasmussen, Heinrich H. Bülthoff, Martin A. Giese, and Bernhard Schölkopf, editors, DAGM Symposium 2004, volume LNCS 3175 of Lecture Notes in Computer Science, pages 432–439, Tübingen, Germany, September 2004. Springer, Berlin Heidelberg.
- [OPH96] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture measures with classification based on featured distributions. *Pattern recognition*, 29(1):51–59, 1996.
- [Piz22] Zygmunt Pizlo. Solving Solving: Cognitive Mechanisms and Formal Models. Cambridge University Press, Cambridge, August 2022.
- [PKJ98] Jean-Gerard Pailloncy, Walter G. Kropatsch, and Jean-Michel Jolion. Object Matching on Irregular Pyramid. In Anil K. Jain, Svetha Venkatesh, and Brian C. Lovell, editors, 14th International Conference on Pattern Recognition, volume II, pages 1721–1723. IEEE Comp.Soc., 1998.
- [TK14] Fuensanta Torres and Walter G. Kropatsch. Canonical Encoding of the Combinatorial Pyramid. In Zuzana Kúkelová and Jan Heller, editors, *Proceedings of the 19th Computer Vision Winter Workshop 2014*, pages 118–125, Křtiny, CZ, February 2014. ISBN: 978-80-260-5641-6.
- [Uhr86] Leonard Uhr. Parallel, hierarchical software/hardware pyramid architectures. In Virginio Cantoni and Stefano Levialdi, editors, *Pyramidal Systems for Image Processing and Computer Vision*, volume F25 of *NATO ASI Series*, pages 1–20. Springer-Verlag Berlin, Heidelberg, 1986.