
September 16, 2023 17:8 ws-book9x6 ICPRAI book page 1

Chapter 1
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Abstract

Since the beginning of the use of pyramidal structures for processing im-

ages some 40 years ago several different operations have been applied for

a large variety of different applications. The basic advantage of the pyra-

mids is the progressive reduction of the data, level by level by a reduction

factor that limits the pyramid’s height to the logarithm of the diameter

of the base level. Differently from the classical (Gaussian) pyramids we

focus on pyramids where the basic data structure is not an array but a

graph structure embedded in the image space. In this chapter we target

(1) topological issues of objects in images like holes in a region, (2) what

operations can be used to propagate image information from the input

to the high levels as well as in the opposite direction, (3) what specific

properties can be generalized by what operations, (4) how to achieve the

logarithmic computational complexity, and last but not least, (5) how to

coordinate the different processes. In the second part we focus on a new

type of pyramid, the LBP-pyramid, that uses a variant of the local binary

patterns to recognize critical points and contracts lowest contrast edges

during the bottom-up phase. Not only the topology among the relevant

parts of the image is preserved but, as experiments have shown, it allows

the reconstruction of images with only a few colors that are often hard to

distinguish from the original.

1
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1.1 Introduction

In this chapter we describe a hierarchical structure that has its origins

in the classical image pyramids like Gaussian or Laplacian pyramids but

with the big advantage that the data structure for the individual levels

of the pyramid are no more rigid grids or arrays but are based on planar

embedded graphs. This enables the pyramid to adapt its structure to the

needs of the data: parts of the data that are considered important for the

processing can survive to higher levels while redundancies in the data like

homogeneous regions can be reduced during the bottom-up construction

phase. Graphs are used here because they are widely known as versatile

data structures although the proper representation of topological relations

needs the dual graphs. However there are other less known data structures

like combinatorial maps [1] or generalized maps [2], or cell complexes [3, 4]

that can replace the graphs in the pyramid.

All these data structures do not only describe the topological arrange-

ment of the data but can also describe the complex arrangements of seman-

tic objects of different sizes and shapes that should appear as results of the

processing. An important issue in dealing with the huge amounts of data is

the possibility to process them in a massive parallel way to reach reasonable

processing efficiency. A requirement for parallelism is the independence of

the operations such that the result does not depend on the order of the

applied operations.

Controlling the big variety of possible choices in the general concept

of irregular pyramids is one of the main issues of this chapter. There are

several choices in the bottom-up construction of the pyramids but also

parameters that have an influence on the abstract concepts surviving to the

higher levels need to be chosen or even optimized and adapted to the data.

But not only the bottom-up processes are important, irregular pyramids

allow also a top-down expansion processes that provides an insight into the

visual information at the higher levels by, i.e., visualization but also enable

to better tune the repeated bottom-up processes with a better overview of

what objects with known properties are where in the input. In such cases

attention could be put on particular object details in a repeated bottom-up

phase. These up and down phases also provide explanations of what the
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pyramid has found in its higher levels.

At some places we also relate the presented concepts to the very popular

methods of machine learning (ML) and artificial intelligence (AI). There are

differences but also similarities, advantages as well as drawbacks. We see

the irregular pyramids not as a competitor of the ML approaches but see

possibilities for fruitful combinations.

Section 1.2 starts with five subsections giving motivations and some

background of the presented concepts. It follows a recall on irregular pyra-

mids in Section 1.3, the processes for propagating data from the base level

to the top as well as in the opposite direction, the expansion from top down

to the base. Section 1.4 discusses the many options for controlling the pro-

cesses, the tasks, and the properties that have been explored in different

applications (Section 1.4.5).

In Section 1.5 we adapt the local binary patterns (LBP) to the basic data

structure: the graphs and study their relation to the critical points of curves

and surfaces. Monotonic paths, curves and profiles through an image show

that these 1D manifolds have invariant LBPs. On this basis we construct

the LBP-pyramid (Section 1.6) and show reconstructions with only a small

percentage of the original input. These reconstructions are visually difficult

to distinguish from the original data. We draw the conclusion that the

structure of the critical points and their adjacencies extracted by the LBP-

pyramid is extremely important while the actual gray levels or colors of the

image are visually less relevant. This raises the question about the space

between the critical points (Section 1.6). We give a simple definition of

the concept of a ’slope’ with several interesting properties leading to future

directions of research addressed in the conclusion.

1.2 Motivations and background

In this section we mention five different motivations for the use of irregular

pyramids. We start with some requirements described by Leonard Uhr,

1986. We continue with some facts about biological plausibility often used

as arguments to justify approaches in recent AI. We then shortly mention

a recent project: there we study biological images with extremely high res-

olutions. The next motivation addresses the problem that not all problems

can be solved by the same architecture. Psychology has identified so-called

insight problems that cannot be solved by simply optimizing a universal

architecture. Finally we shortly summarize some crucial insights of a sem-

inal paper by Jan Koenderink, 1984. They gave us the strong motivation



September 16, 2023 17:8 ws-book9x6 ICPRAI book page 4

4 ICPRAI

for the research presented in this chapter.

1.2.1 The problem of biological perception

Leonard Uhr [5] summarized the problem of human visual perception 1986

with a few facts and some conclusions: Each human eye has about 107 cones

and 108 rods sensing the light entering the human eye. The measured in-

tensities and frequencies are processed by a large number of synapses where

each one takes about 1.5µ−seconds allowing about 1000 serial operations

in one second. In order to ”‘see”’ and to accurately react on the visual

stimuli no more than 600 serial steps are available. This can be achieved

by the human brain only by massively parallel processes that converge in

logarithmic complexity towards the location where decisions are taken.

Leonard Uhr proposed pyramidal data structures as the only chance

to solve the vision problem. But he also clarified that ”pyramids are not

(only) multiresolution, parallel bottlenecks, low level, array processors, or

trees.” He further states that ”a pyramid needs augmentation”, and ”...

any connected (data-flow) graph could be used.” Furthermore they need to

”combine bottom-up and top-down” processes to solve the complex vision

problems.

1.2.2 The human retina is irregular

Most neural network architectures claim biological plausibility. This is

partly true for the general functionality of the signal processing (weighted

averages, activation functions) but it certainly does not apply to the under-

lying architecture: both the sensors for the visual input as well as the many

other sensors providing valuable input for the information processing of the

human brain are not regular grids in contrast to most of the artificial neural

networks that are currently popular. Figure 1.1 shows a small segment of

the retina of a monkey’s eye1. It is very similar to the human retina and it

is clearly not an array! The natural arrangement of sensors in the human

eye needs data structures such as graphs to properly represent the irregular

embeddings and to learn more about the benefits of these irregular sensor

arrangments. In particular the relationship to saccadic eye movements that

certainly are not just an accident of nature but may have a considerable

importance for the reliable processing of noisy visual data.

1Data of the monkey’s retina have been gratefully provided by Peter Ahnelt
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Fig. 1.1 A section of rods and cones in the retina

1.2.3 Project Water’s gateway to heaven

Fig. 1.2 3D µCT image with color labels

This research project2 that our group started 2020 together with two

groups in Biology raised some very essential problems typical for the trend

to use extremely high resolutions and also temporal changes in three di-

mensions (Fig. 1.2).

The project studies 3D imaging and modeling of transient stomatal

responses in plant leaves. Input to these studies are high-resolution X-ray

2https://waters-gateway.boku.ac.at/
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micro-tomography (µCT) and fluorescence microscopy images. µCT images

have the challenging dimensions ranging up to 2000 × 2000 × 2000 ≈ 233

voxels and are taken at 2 to 4 instances of time. Visible objects are different

cells, water ways, and the airspace in between. Leaves are not rigid but to

a certain extent deformable. Consequently rigid matching may not work so

well when comparing different images of the same speciman. In particular

if the concentration of water is different in the two acquisitions.

The main goal in this project is to understand the causality of opening

and closing of stomata. These are cells that can open to allow gases to enter

(e.g. CO2) for photosynthesis and water to leave.

The huge amount of data and the complexity of the models describ-

ing the processes require a very efficient processing of the data. We are

confident that pyramids provide the requested performance.

1.2.4 Critical/stationary points are relevant

Jan Koenderink [6] draws some important conclusions in his seminal con-

tribution ”The Structure of Images” (1984). He considers intensity images

as a function in three dimensional space Φ(x, y, t), where (x, y) are the

spatial coordinates and t is the scale dimension. He considers the scale

as generated by convolution with a Gaussian kernel Φ(x, y, 0) ∗ G(t). The

Diffusion ∆Φ = Φt is the basis for his scale space theory. He requests

that ”Any feature at a coarse resolution is required to possess a ’cause’ at

finer resolution.” He considers stationary (critical) points by setting the

spatial derivatives to zero: Φx = Φy = 0. Among those satisfying these

constraints, the Hessian distinguishes between the different critical points:

ΦxxΦyy − Φ2
xy ≥ 0 for extrema and (1.1)

ΦxxΦyy − Φ2
xy < 0 for a saddle point (1.2)

We shall find a solution in Section 1.5.4 for both decisions without the

noise-sensitive partial derivatives. A particular observation of Jan

Koenderink could be verified after the new identification of critical points:

Extrema and saddle points disappear pairwise when t increases. It turns

out to be useful to eliminate pairs of critical points that are not persistent

(i.e., very close peaks with similar height separated by a saddle not much

below the peaks).
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1.2.5 An insight problem

In this fifth motivation we discuss the limitations of solutions found by

optimization processes. In his book, Pizlo [7] demonstrates impressively

that there exist problems that cannot be solved simply by optimization

(the most frequent strategy for most machine learning approaches). He

gives a very simple example:

Create n equilateral triangles (△) with m matchsticks:

m=3

rrr
=⇒ 1 △:

✟✟✟✟
❍❍❍❍

r
r

r
Fig. 1.3 Three match sticks form one triangle

(1) create one triangle with three matchsticks (Fig. 1.3).

This has the obvious solution in Fig. 1.3.

(2) Make 2 triangles with two more matchsticks (Fig. 1.4).

m=5

rrrrr
=⇒ 2 △: ❍❍❍❍

✟✟✟✟

✟✟✟✟
❍❍❍❍ r
r

rr
Fig. 1.4 Five matchsticks form two triangles

(3) Can you produce 4 triangles with one more matchstick?

For the solution consider the Euler-Poincaré characteristic to balance the

number of points (•), the number of matchsticks (m) and the number of

triangles (△):

Euler-Poincaré characteristic

#P - #E + #F = 1

case • - m + △ = 1

1. 3 - 3 + 1 = 1

2. 4 - 5 + 2 = 1

3. ? - 6 + 4 = 1

The last case would suggest that the solution has 3 points that seems im-

possible. This is the characteristic of an ’Insight-problem’: An ’Insight
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Problem’ is typically difficult to solve.

Ref. [7] shows an elegant solution with a change in representation: ”If

you exclaim ’aha!´ at the moment the solution suddenly occurs to you, you

had an insight.“ Once the solution strategy is understood it is easy to

explain. However the above Euler-Poincaré characteristic shows that the

optimization would not find a proper solution. A similar reasoning could

be applied to several machine learning solutions.

1.3 Recall on irregular pyramids

The irregular pyramid consists of a stack of graphs with decreasing size.

Each graph of this stack is called a level of the pyramid and the lowest

level is the base graph corresponding to the input image where pixels cor-

respond to the graph’s vertices and two vertices are joined by an edge if

the corresponding pixels are 4-connected. This base graph is also called

the neighborhood graph G(V,E) of the image. 4-neighborhood is preferred

since edges between diagonal neighbors of 2×2 pixels would intersect, with

the consequence that the 8-connected graph is not planar. The pixel value

is an attribute to the corresponding vertex and it can range from a single

gray value to a vector of either spectral channels or additional information

like filter responses, lengths and distances. In order to properly describe

the embedding in the image plane we use the dual graph G = ( V , E)

that is implicitly given by the embedding of the image. The dual vertices

V identify the face formed by any 2× 2 block of pixels and the dual edges

E correspond to the boundary segment between any two adjacent pixels.

1.3.1 Extended region adjacency graph

Image segmentation typically assigns each pixel a label identifying the set

of pixels having the same or a similar property. The adjacencies of these

regions are typically described by the region adjacency graph (RAG) where

each vertex represents a connected set of pixels with the same label and two

vertices are connected in the RAG if two regions with two different labels

share a common boundary.

Most approaches consider the RAG as a simple graph without multiple

edges and without self-loops. But the simple graph cannot describe all the

topological configurations that these regions can be related to in practice:

The left and right riverbank of a river may be connected by more than one

bridge. The simple RAG just states that the two riverbanks are connected
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but not by how many bridges. This can be resolved by simple RAGs by

subdividing each riverbank into as many segments as there are bridges.

This is not only increasing the size of the graph but it is also difficult to

handle since the characteristic features of the segments may be similar if

not identical such that they cannot be easily classified.

A second example where the simple RAG has problems describes the

relationship between a lake and its islands. The outer boundary of the

lake is a closed curve and each island is also bounded by a closed curve:

a typical inclusion relationship, the islands are completely surrounded by

the lake. Let us describe the mainland with a vertex of the RAG, the lake

with a vertex and each island also with a vertex. Clearly the mainland is

connected to the lake and the lake is connected to each of its islands. But

what expresses the fact that the lake surrounds all islands? One solution

is to introduce a separate data structure, an inclusion tree. It works in 2D

but what about a tunnel in 3D?

We found the extension of the simple RAG a good solution to solve

both problems: the multiple bridges can be represented by multiple edges

without the need to arbitrarily subdivide the homogeneous riverbanks and

self-loops that surround the islands can represent the inclusion relation. To

distinguish the more frequently used RAG from the non-simple RAG we

denote the extended version by E-RAG.

1.3.2 Overview of the bottom-up construction

apex −→ apex

✻
❄

input image −→ reconstruction

Fig. 1.5 Bottom-up and top-down processes in an irregular pyramid

Fig. 1.5 gives an overview of irregular pyramids. The base level is the

4-neighborhood graph of the image and each level above the base represents

an E-RAG G = (V,E).

The next higher level is reached by contracting selected edges while pre-

serving certain relevant points. They form the contraction kernel. The

smaller graph contains less vertices and less edges, but some edges have

become multiple and some even self-loops. Therefore the next step is to
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simplify the graph from unnecessary multi-edges and self-loops. Before

repeating the contraction the attributes of the newly generated, smaller

graph needs to be derived by reduction functions taking as input the

receptive field of each surviving vertex and edge and computing the at-

tributes of the elements of the higher level graph. Then this process can be

repeated until a termination criterium is satisfied and the apex of the

pyramid is reached. The overall process is controlled by following steps:

• the selected contraction kernel;

• the simplification process;

• the reduction function; and

• the termination criterium.

If the reduction process reduces the graph from level to level by a constant

reduction factor ≥ 2 then the height of the pyramid is bound by the log-

arithm of the diameter of the base graph. This contributes to the efficiency

of the pyramid when the level by level processing can be massively parallel

(compare with Uhr [5] and Section 1.2.1).

1.3.3 Overview of the top-down reconstruction

The apex graph of the pyramid is a very abstract representation of the

visual entities of the image and their spatial and topological relations. For

the purpose of explaining what has been derived from the given input image

the high levels can be successively down-projected to the lower levels and

to the base in order to show the entities that have been derived above.

For this purpose we keep some information about the bottom-up process

that enables then to reverse the construction and to propagate downwards

the insights gained at the higher levels hopefully explaining what and why

certain entities have been found.

The basis for the reconstruction is the canonical representation of Tor-

res and Kropatsch [8]. It stores the contraction kernels and simplification

parameters in chronological order together with links that enable to un-do

edge contraction by edge de-contraction, edge removal by edge re-insertion

and the attributes at input for the reduction function.

The following subsections introduce more details about these processes

with the purpose of showing some interesting properties.
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1.3.4 Contracting an edge

Definition 1.1 (edge contraction). The operation of contracting an

edge e = (v1, v2) ∈ E, v1 6= v2 ∈ V , of a graph G = (V,E) consists in

first identifying the two end points v1 7→ vs, v2 7→ vs of the edge e into a

new ’surviving’ vertex vs ∈ {v1, v2}, and replacing v1, v2 in all edges by vs.

Finally, the edge e is removed.

The graph after the contraction of edge e has one less edge and one less

vertex: G′ = G/e = (V \{v1, v2}∪{vs}, E \{e}). Notice that the condition

v1 6= v2 excludes self-loops (v, v) from being contracted.

Contraction preserves the connectivity of G in G′. As the dual operation

of contracting an edge in G/e the corresponding dual edge is removed from

G: G′ = G \ e. Consequently the dual graph of G′ needs only the dual

operation applied to G and the duality is preserved.

As a result of contraction, G′ may contain parallel edges and even self-

loops. Most of them can be removed in the successive simplification step in

Section 1.3.6. The remaining parallel edges and self-loops identify special

topological properties like the inclusion of holes.

Independent edges can be contracted simultaneously in parallel. All

edges that are simultaneously contracted form a contraction kernel.

1.3.5 Contraction kernel

In order to be able to execute many contractions in parallel (with many

processors) they must be independent of each other. In other words, the

order in which the set of edges is contracted should not affect the result.

Several methods have been used to create contraction kernels (CK) with in-

dependent edges: maximal independent vertex set (MIS), Meer (1989) [9],

maximal independent edge set (MIES) and maximal independent, directed

edge set (MIDES), Kropatsch et al [10] with different properties and ad-

vantages.

Definition 1.2 (contraction kernel). Let G(V,E) be the input graph

to be contracted . A contraction kernel K ⊂ E is a subset of edges that

forms a spanning forest of G. Each tree of the forest contains one surviving

vertex, in some extreme cases, the tree can even be a single (surviving)

vertex.

There may be different criteria (examples will be given in Section 1.4) for

selecting concrete edges to contract and for selecting vertices to survive.
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The surviving vertices are the vertices of the next pyramid level, the edges

are the result of the contraction processes. If each connected component

of the contraction kernel covers at least two vertices of Vn, the number of

vertices Vn+1 will be less than |Vn|/2. We call this the reduction factor of

2. Isolated vertices can be compensated by larger trees in different parts

of the graph. Both selection methods, MIES and MIDES above, have this

property. If the trees of the contraction kernel are independent of each

other all can be contracted in parallel while the edges of each tree may

need sequential processing. The most efficient contraction kernels are many

small trees with more than one vertex.

Consequently, if the height of the pyramid has h levels, then the base

graph has |V0| ≥ 2h vertices. If all the trees of the forest are independent

and a sufficient number of processors are available the next pyramid level

can be computed in O(max{deg(v)|v ∈ Vn}) parallel steps.

1.3.6 Simplifying multiple edges and self-loops

✈ ✈
❢

❢

f1

f2

❅
❅

❅
❅❅

�
�

�
��

�
�

�
��

✠

❅
❅

❅
❅❅

■

−→ ✈ ❢f1

f2

✛ −→ ✈ f1

f2

Fig. 1.6 Creation of multiple edges and self-loops

The contraction of one edge of a triangle leads to the creation of a double

edge or even multiple edges. The contraction of one of multiple edges creates

self-loops (Fig. 1.6). Note that the dual faces f1, f2 are preserved. Before

the first two contractions the degree of the faces, deg(f1) =deg(f2) = 3.

Inside the triple edges the degrees shrink to 2 and the self-loops surround

faces with degree 1. This example also shows that a simplification after the

first contraction would simplify the further processing.

Multiple edges and self-loops are not topology relevant if they don’t

surround any further (sub-)structure. This can be decided by looking at

the dual graph G( V , E) where the degree of a face ∈ V provides such a

decision:

Definition 1.3 (topology-relevant). A face of the dual graph G is
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topology relevant for G if its degree is higher than 2: deg( v) > 2 for

v ∈ V .

Multiple edges and self-loops surrounding topology-irrelevant faces are

not relevant for topology, self-loops can be removed without disconnecting

either a hole nor any substructure in the dual graph. Multiple edges can

be removed as well, as long as the last remaining edge is preserved to keep

the connectivity. The remaining edges are called pseudo-edges since they

have the same face on both sides (see example in Fig. 1.7). Let us denote

all the edges that can be removed as the removal kernel (RK).

Definition 1.4 (Removal kernel). Let G′(V ′, E′) = G(V,E)/K be the

graph after contracting all edges of the contraction kernel K and let G′ be

its dual.

R′(G′) = {(v, v) ∈ E′|f ∈ (v, v) ⊂ V ′, deg(f) = 1} (1.3)

∪ {e1 = e2 = (v, w) ∈ E′|f = e1 ∩ e2 ⊂ V , deg(f) = 2} (1.4)

The set of edges in R′ can be removed without modifying the topology-

relevance of the graph. Note that removing the edges of the removal kernel

may create further redundant edges. For the complete simplification a few

more iterations of simplification may be needed, since the removal of an

edge may decrease the degree of adjacent faces and may create further

edges that can be removed. The complexity of this process has been shown

to be the inverse of the Ackermann-function [11]. A faster version has been

proposed by Banaeyan and Kropatsch [12] by anticipating the contractions

and removing the redundant edges in parallel before actually executing the

contractions.

1.3.7 Example with a hole and a pseudo-edge

Edges that are not relevant for topology are often called redundant. There

is one exception: if the removal of an edge would disconnect the graph or

its dual graph. Consider the example in Fig. 1.7(a). It shows the 24 pixels

with the colors red, black, blue and white. The white pixel is completely

surrounded by the black connected component. Fig. 1.7(b) shows the con-

traction kernels for the three colors red, black, and blue together with

the selected surviving vertices. The white pixel survives and is indicated

in Fig. 1.7(b) by two concentric circles. The removal kernels are shown in

green with surviving dual vertices (these are the intersections of the bound-

aries) marked by green squares. The background is the larger square in the

left bottom corner.
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(c) resulting E-RAG and E −RAG (d) 4 colored regions with pseudo edge

Fig. 1.7 A pseudo edge connects the white island

Fig. 1.7(c) shows the pair of dual graphs after contracting and simpli-

fying the CK and RK. The fact that the black region completely surrounds

the white pixel is expressed by the self-loop attached to the black vertex in

G(V,E). The edge dual to this self-loop is the pseudo-edge which connects

the boundary of the white pixel with the intersection of the three connected

components of the red, black, and blue regions. We call it ”pseudo”-edge

since both sides have the same color black while all other dual edges have

different colors on both sides. The geometric placement of the pseudo-edge

can be any connection of the boundary of the white with any intersection

of the black region with other colors. It is illustrated by the white line in

Fig. 1.7(d).

The main role of the pseudo edge is to keep the graph G(V,E) con-

nected. The pseudo edge is a bridge in G(V,E), the dual of which expresses

the fact that black surrounds white.

If there are multiple holes in a region each hole creates one pseudo

edge. Since their placements just need to cross the surrounding region both

can connect to the outer boundary of the surrounding region or, equiva-

lently, only one connects to the outer boundary and the other connects the

two holes. Together with the pseudo-edges the surrounding region remains
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homeomorphic to a topological ball. And reversely, each pseudo-edge indi-

cates the presence of a hole in 2D. Extensions to higher dimensions exist

but are not treated here.

1.3.8 The bottom-Up construction of the irregular pyramid

The bottom-up construction of an irregular pyramid is an iterative paral-

lel process that can be repeated until all the properties to be transferred

bottom-up are application-relevant and any further shrinking would destroy

relevant properties or relations. This process generates an abstraction of

the base level graph.

Given graph G0(V0, E0) and its dual graph G0( V0, E0),

iteration count n = 0.

While further abstraction is possible do

(1) select contraction kernels Kn ⊂ En as in Def. 1.2

(2) perform contraction G′ = G/Kn, n = n+ 1;

(3) select removal kernel R′(G′) as in Def. 1.4;

(4) and simplify Gn = G′ \R′

(5) apply reduction functions RF (·) : G(Kn−1)→ new reduced content

attr(vn) = RF (NV (vn−1)), vn ∈ Vn and

attr(en) = RF (NE(en−1)), en ∈ En.

Each iteration creates a new level Gi(Vi, Ei), i = 0, . . . n of the pyramid.

1.3.9 Preserving topology

Already in Section 1.2.5 we used the Euler-Poincaré characteristic refering

to the relationship between the number of points P , of edges E, and of

faces F in a 2D plane graph. Let us now consider the changes ∆ created

by the primitive operations, edge contraction and edge removal:

change of Euler-Poincaré characteristic

operation ∆#P - ∆#E + ∆#F = 0

contraction 1 - 1 + 0 = 0

removal 0 - 1 + 1 = 0

That means that the characteristic does not change after the application

of our primitive operations. More generally: any number of contractions

and removals do NOT change the characteristic!

We have seen that regions surround their holes by a self-loop the dual of
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which is a pseudo-edge. By keeping these pseudo-edges, the characteristic

of the region is not changed since together with the pseudo-edges the region

remains homeomorphic to a topological ball.

1.3.10 Equivalent contraction kernels

Similar to the equivalent weighting functions in Burt’s regular pyramid,

Ref. [13] introduces equivalent contraction kernels. Contraction kernels

cover the receptive field of the surviving vertex. For every edge en in a

higher pyramid level n there exists one edge ei, 0 ≤ i < n in the levels

below that survives to en in the sense that if en is contracted at level n+1

then edge e0 can be added to the contraction kernel K0(vn+1) at the base

level such that the receptive field is covered by K0(vn+1) for vertex vn+1.

With the same argument the equivalent contraction kernel of the top vertex

is a spanning tree of the receptive field in the base level of the pyramid.

1.3.11 The top-down expansion process

Top-down expansion has been used effectively in classical Laplacian pyra-

mids by Burt and Adelson [14]. In regular pyramids the structure of the

pyramid depends only on the size of the base image and hence the size

of the different levels above the base does NOT vary for images with the

same input size. For irregular pyramids the structure of the graphs of the

different levels depends strongly on the content of the data. The selection

the contracted edges as well as the other control parameters may depend

on the content of the image. Hence irregular pyramids on different images

may have a completely different graph structure. However we built them

bottom-up, level by level, and with only two different operations: contrac-

tion and removal of edges.

In Ref. [8] we have shown that there are (1) inverse operations to the

two basic operations and (2) that we need to remember only a few param-

eters of the bottom-up process to reconstruct the higher resolution graph.

We call the inverse operations de-contraction of a contracted edge and

re-insertion of a removed edge (Fig. 1.8). In this canonical encoding of

the irregular pyramid we store the parameters of the contracted and re-

moved edges in the order they have been applied. These re-cycled garbage

parameters allow us in the top-down reverse process to recover the graphs

at the lower levels.

The canonical encoding enables first of all to reconstruct the levels below

the top level. However, more importantly, we can down-propagate the
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Fig. 1.8 Inverse operations: contract and de-contract, remove and re-insert

abstract attributes collected in the higher levels. Different options will be

discussed in Section 1.4.4.

1.4 Control by the Content

The previous section covered the main components for constructing an ir-

regular pyramid and for expanding the abstract information from the top

level down to the pixels of the original image. We can identify four cate-

gories of control over the general process, influencing either the constructed

structure or architecture of the hierarchy or preserving certain real world

properties of objects to be represented in the base level image: The selec-

tion of contraction kernels identifies the surviving vertices and some of the

incident edges that are not relevant for the main properties of the objects.

The simplification strategies ’clean’ the graph after each contraction phase.

Also here there are possible choices e.g., what parallel edges should sur-

vive. Reduction functions use the attributes of the survivor’s children to

compute a more abstract description of the content of the receptive field.

Once a certain number of levels of the pyramid has been generated the ex-

tracted high level description can be expanded to the lower levels in order

to (1) display the abstract content of any higher level in form of an image,
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(2) probably revise some decisions taken at the bottom-up process in order

to make the content of the complete pyramid consistent with the abstract

findings at the higher levels.

1.4.1 Select Contraction Kernels

The simplest choice of contraction kernels is a random choice for construct-

ing the stochastic pyramid of Meer [9]. In the adaptive pyramid of Jolion

and Montanvert [15], the random choice is replaced by choosing the ir-

regular sampling from the content of the data. Such adaptation could be

convolution filters of which a local maximum identifies the surviving vertex.

Notice the high similarity to common ’max-pooling’ layer in deep learning

architectures. But also rules can be used to select edges to be contracted.

In connected component labeling (CCL) a simple rule is to contract only

edges connecting vertices with the same label. A more complicated rule for

selecting contraction kernels has been used for closing gaps in scanned line

drawings [16, 17](see example in Fig. 1.9). Even parametric models could

be used for determining the important vertices to preserve and the edges

to contract. This could be as simple as by correlating the data with the

model or by finding the best ’goodness of match’. Finally the matching of

graphs that is in general NP hard could be done using the fact that using

the same selection rules for two images is likely to generate much simpler

and similar graphs at higher levels of the two pyramids in this case [18].

1.4.2 Simplification Strategies

There are two different criteria for selecting the removal kernels: either the

content based choice in choosing the surviving edge of multiple edges ac-

cording to the attributes of the edge (e.g. shortest accumulated arc-length)

or the attributes of the two adjacent faces of the dual graph (e.g. distance

to the outer most parallel edge) or the computational choice how many iter-

ations of simplification should be done. Complete simplification after each

contraction needs O(a−1(n, n)) steps in the worst case where a(n, n) is the

Ackermann function. Alternatively only one simplification pass is executed

after contraction, leaving the remaining multiple edges and self-loops for

simplification at higher levels. This may of course indirectly slow down the

construction since neighborhoods with non-simplified redundant edges are

larger. The last alternative is to do all simplifications after all contractions.

Under certain conditions (having a total order of all vertices) simplifi-

cation can be anticipated before contraction.
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A noteworthy alternative has recently been proposed by Banaeyan [19].

This approach can achieve simplification prior to contraction under certain

conditions, specifically when a total order of all the vertices exists. In

the case of a binary image, independent edges (i.e., edges not sharing an

endpoint, [20]) are encoded to allow for the removal of redundant edges

originally at an upper level, at the current level with parallel constant

complexity [12]. This method accelerates the construction of the pyramid

and transforms it into an efficient tool for computing the distance transform

of a binary image with parallel logarithmic complexity [21], provided that

there is a sufficient number of processing elements for parallel computations.

1.4.3 Reduction functions

The role of reduction functions is to propagate the image content to a

lower resolution while at the same time increasing the degree of abstraction.

While a pixel in the base may have the color, i.e., red, it may be aggregated

at a higher level into a red ball.

The simplest reduction function is used in CCL: all the vertices in

the contraction kernel have the same color hence the surviving vertex

will inherit the same color. The second most frequently used choice is

a (weighted) average, or more generally, a convolution filter (as frequently

used in DCNN3). A more sophisticated reduction uses the transitive closure

Fig. 1.9 Technical drawing of a motor engine

of a set of relations (i.e. describing the layout of curves in line drawings

such as Fig. 1.9 [16]). Both in the processing of line drawings as in the

closing of gaps [22], i.e., between the dashes of a dashed line, the introduc-

tion of an isolated blob q❝ allows to establish neighbor relations between

3Deep Convolutional Neural Network.
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❢ ❢ ❢

❢r❢ r❢ r❢r❢r❢r❢
r❢ r❢ r❢

binary dashed line graph ({ s, ❝, q❝}, E) receptive fields

Fig. 1.10 Recognizing a dashed line

the dashes rather than connecting all the dashes to the common (white)

background. Fig. 1.10 shows an example: the input image, the resulting

graph and the receptive fields of the different isolated blobs. The survivor

received an additional symbol q❝ for dashed/dotted lines if the black dashs appears completely surrounded by the white background ❝ . The rule

for contraction is then extended by the isolated blob q❝ : in addition to the

fact that the same categories s , ❝ can be merged as in CCL, we allow q❝
to merge with ❝ but not with q❝ . The growth of the isolated blobs hap-

pens concurrently to the growth of the (empty) background ❝ such that

close-by q❝ neighbors are detected before all the background merges into

a large region where the individual blobs are all surrounded by individual

self-loops.

But also parametric models may determine the parameters best describ-

ing the receptive field of the surviving vertex. Of course models can become

more complex and parameters that best match the data [23] can be used

to describe the vertex by the name of the model and its parameters. All

these models offer opportunities for optimization and learning.

There is no need to use the same reduction function when reducing one

level to the next. Of course it is the simplest choice if no other source of in-

formation is available. But if you consider the dynamic processing of visual

data or have a target segmentation available, there may be previous labels

and features available such that the reduction function can be adapted for

the general model from the previous image frame. And not only concern-

ing the parameters of the reduction function but also the principle type of

function, e.g. switching from a filter to inheritance or the transitive closure

of the boundary segments.
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1.4.4 Controlling the top-down expansion

As with the classical Laplacian pyramid [14] a first motivation is to show

that the original image can be reconstructed from the higher levels. But

even more, a simple inheritance expansion where children inherit their at-

tributes from its parents, without trying to reconstruct the original at-

tributes, provides some insight into what has been aggregated in the higher

levels. In the Laplacian expansion the high frequencies of the lower levels

have not been added.

In the irregular pyramid the expansion has become feasible by the in-

verse operations [8] de-contraction for contraction and re-insertion for re-

moved edges. Originally these inverse operations were applied in reverse

order to be able to re-establish properly the links to the already expanded

graphs. However this strict order, which would prevent parallel applica-

tion, can be relaxed since also the bottom-up operations were independent

and create layers of contracted edges (by one contraction kernel) alternat-

ing with removed edges through simplification. Similar to the concept of

wavelets this process can be memory neutral in the sense that the active

level where the current top level graph is stored complements the passive

part where links of the contracted and removed edges are kept. Together

they occupy the same memory as the base level.

The recovery of structure of the lower levels of the pyramid offers a wide

variety of possibilities to propagate high level information (refered to as the

parents, the surviving vertex together with its neighbors) to the lower levels

(refered to as the children). Options that have been used are

• interpolating the attributes of the children from the attributes of the

parents,

• or using convolution filters applied on the parent’s level,

• or inheriting the parent’s attributes (as for CCL),

• or refining the high level model and potentially updating the bottom-

up model by properties like straightness of a dotted line that cannot

be done locally during the bottom-up process,

• or re-insertion of curve segments to re-establish connectivity

• or generative models like fractals.

We give examples for some of the operations in the following section.
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1.4.5 Preserving relevant properties

In the following Table 1.1 we give examples of the different choices of the

control decisions used by specific applications together with citations to

papers with the details and results. In nearly all cases, empty faces, with

deg < 3 are considered redundant in the simplification and merged with

one adjacent face (corresponding to the removal of the separating edge).

Table 1.1 Overview of control for specific applications
Application Important

elements survive
Negligible
elements are merged

CCL 1 repr/CC(lab) (L, L)

segmentation 1 repr/ region similar, end points

2x on curve X, ends empty space,
connections

line images ends, junctions empty space,
connections

matching discrim.template,
object boundary

simil.inside object

motion foreground,
static background,
articulations

occluded backgr.
moving foregr.

gap closing 1 repr/lab
incl. background

(L, L)

E − RAG Hierarchy max.ext.Contrast, MST min.int.Contrast

Connected component labeling (CCL) [17,24–26] has as input a labeled

image. It could be a hand-labeled ground truth or the result of a segmenta-

tion, and the task is to find the connected components of the different labels

together with their adjacencies. One vertex of every connected component

should survive to the top (1 repr/CC(lab) in Tab. 1.1) while edges connect-

ing vertices with the same label can be contracted (denoted by (L,L) in

Tab. 1.1).

There are numerous studies of segmentation, i.e., [27–30]. In this case

every connected region will be represented by one surviving vertex in the

top level and edges connecting similar vertices are contracted to the edges

of the RAG. For thin regions it may be useful to keep the end points to

some higher levels.

The psychological test of ”2X on a curve” consists in finding out

whether two X placed on two complicated but non-overlapping curves are

on the same curve or on different curves. It was argued that humans need a

time proportional to the length of the curves. In our paper [31] we showed
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that the pyramid can solve it in logarithmic time by (1) preserving the ”X”

vertices and (2) contracting the empty space without curve segments and

contracting connected curve segments.

In processing line images (e.g. technical drawings, Fig. 1.9), the preser-

vation of line ends and of junctions is important [32–34]. Similar to the pre-

vious application, contraction applies to the empty space and to connected

curve segments. For line images there was an additional constraint that the

face should not touch any curve because it would establish a wrong connec-

tivity. Here the adaptivity of the irregular pyramids is a great advantage.

In the application of finding matchings between two images [18,35,36],

as in stereo or in image mosaics, the most discriminative template should

survive together with the object boundaries while edges connecting similar

vertices inside an object can be contracted.

The problem of detecting motion in image sequences involves more

than a single or a pair of images [37–39]. In this application the task is

to identify a moving object in front of a static background and to identify

the moving parts of an articulated movement (walking, hand gestures). It

is important to keep one vertex of each connected foreground object and

the static parts of the background. In addition the articulation points need

to be preserved in order to derive e.g. a proper walking pattern. Con-

traction can be applied to edges inside the background or inside a moving

foreground object. Expansion can be used to build a more complete back-

ground model by inserting parts that have been temporarily occluded by a

moving foreground as well as the tracking the moving foreground objects

over time.

The gap closing application [40, 41] has been discussed together with

the drawing of line images in Section 1.4.3. We have shown that the intro-

duction of a new label q❝ for isolated blobs can be determined locally by

the given graph structure (the self-loop surrounding a blob) and can be ef-

ficiently used as new entity to control the growth of the different categories

of labels.

The last example in Table 1.1 is entitled ”E-RAG hierarchy” [42–44].

The preservation of topology enables the classical region adjacency graph

to allow also self-loops and multiple edges. These are necessary to properly

represent the inclusion of holes in a large region, and the fact that two

regions may be connected by more than one connected boundary. The

criteria used in this application were that vertices with the highest external

contrast (according to [45]) survive and the edges of a minimal spanning

tree of the internal contrast are contracted.
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A last application, the LBP-pyramid, will be discussed in Section 1.6.

1.4.6 Properties of Topological Pyramids

Let us call topological the pyramids that preserve the topological proper-

ties of the data/images. In particular it concerns holes of regions and the

related inclusion relationships. Topological properties are to a large extent

invariant to geometric deformations like different view points, perspective

projection, articulated movements, etc. But topological properties are also

sensitive to noise and care must be taken when removing noise.

Concerning the data structure for storing the topological pyramid, the

matrix structure of a regular pyramid is definitely not able to properly

represent all relevant topological features explicitly. For example a small

hole may quickly be too small to be represented at lower resolutions. But

more importantly, thin structures like roads or rivers in a remotely sensed

image are likely to disappear when their width drops below the sampling

distance. That is why we have focussed on embedded graphs as a primary

data structure, although there are less known representations like combina-

torial maps, generalized maps, or cellular complexes that suit the purpose

for preserving topology as well.

We already addressed an important aspect of graphs: simple graphs

without multiple edges and self-loops cannot capture holes and multiple

connected boundaries. We showed that graph pyramids can be constructed

with only two operations: edge contraction and edge removal.

We have seen also the particular importance of preserving key vertices

to higher levels, they allow to keep the overview of the main components of

an image and often relax particular details that may not be necessary once

the object has been identified.

Top Top

←→

primal graph G(V,E) ←→ dual graph G( V , E)

Fig. 1.11 Dual graph pyramid

In two dimensions plane graphs represent the graph embedded in the

(image) plane. The base of the primal graph corresponds to the 4-

neighborhood of the image while the dual graph has an important role
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in deciding the removal kernels without long search processes.

The bottom-up construction is controlled by application specific prop-

erties. It preserves the connectivity and the relevant inclusions during the

bottom-up process. Pseudo-edges are bridges in the dual graph that con-

nect a hole with the remaining graph. Their deletion would disconnect the

graph and removes the information about what end point is included in

the receptive field of the other. Its dual edge is a self-loop indicating the

inclusion. Each hole can be associated with one pseudo-edge. This remains

true also in higher dimensions, i.e., a pseudo face characterizes a tunnel

through a volume, a typical example is a torus.

The concept of equivalent contraction kernel (ECK) relates the higher

levels to the lower levels directly without need to propagate across several

levels. The ECK(v) of any vertex of the pyramid covers the complete

receptive field of vertex v. This becomes of particular interest for color

images where each color channel creates a separate pyramid structure. In

this case it is very difficult to compare the higher levels of the three pyramids

directly. However through the ECK each vertex can be down projected to

the common image structure where the comparison could be done.

Another important aspect of pyramids is that many operations can be

executed in parallel on different processors. We have shown ways to iden-

tify independent operations, making the computational complexity even for

large images as those mentioned in Section 1.2.3 feasible [19].

1.5 Local Binary Patterns (LBP)

Local Binary Patterns have been introduced by Ojala and Pietikainen [46]

1996 as an efficient descriptor for textures in images. The eight neighbors of

the center of a 3×3 window compare their gray value with the center and set

a 1 if the neighbor is higher in value and a 0 otherwise. The resulting eight

bits are concatenated in a pre-defined (clockwise) order and form a value

in [0,255]. This works very well for the eight neighbors of an 8-connected

grid of an image.

It fails if the number of neighbors varies like in a graph with vertices

of different degrees. However a graph has also edges in addition to the

vertices. We therefore store the result of the comparison not with the

(center) vertex but with the edge connecting the center vertex with the

neighbor by simply orienting the edge such that it always points to the

lower valued vertex. In this case the characteristic bit switches of LBPs

translates into an orientation switch of the edges surrounding a vertex.
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This way not only relaxes the degree of the vertices but also saves more

than 50% of the memory. In addition all the characteristics of LBPs like the

differentiation of critical points (minima, maxima, saddle points) translate

1-1 to the new representation.

LBP identify the class of uniform codes: these are codes that contain

maximally two bit-switches when turning around the center. In our new

representation these are local configurations that are either extrema (0 bit

switches) or their neighborhood splits into a higher connected part and a

lower connected part separated by a level curve across the center. The two

bit-switch configurations roughly form a slope (precise definition will follow

below). Non-uniform LBP correspond to saddle points.

1.5.1 Critical Points of a height Profile

Let us first consider an LBP along a one-dimensional (1D) curve (Fig. 1.12)

or a profile across a two-dimensional (2D) surface. Basic mathematics tells

⊖

⊕

⊖

⊕

⊖

⊕

⊖

✻

✻

❄

❄ ✻

❄

Fig. 1.12 A smooth curve with seven critical points

us that critical points are characterized by horizontal tangents. In 1D crit-

ical points are local extrema: local maxima ⊕ and local minima ⊖. From

Fig. 1.12 we see that the curves between the critical points are monoton-

ically increasing from the minima towards the maxima while they mono-

tonically decrease from the maxima towards the minima.

Definition 1.5 (monotonic). A function f(x) : D 7→ R is called mono-

tonically increasing in the domain D ⊂ Rn if f(y) ≤ f(x) for all x ≤ y

in D, and it is called monotonically decreasing in the domain D ⊂ Rn

if f(x) ≤ f(y) for all x ≤ y in D. It is called strictly monotonic for strict

inequalities.
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Fig. 1.13 A 1D curve between a local minimum and a local maximum

1.5.2 LBPs along a monotonic curve

LBPs compare a central point f(x) with its neighbors N (x) = {n|δ(n, x) ≤

∆}. In 1D we use δ(x, y) = |x − y| and ∆ = 1 and in 2D the Euclidean

distance

δ

((

x1

y1

)

,

(

x2

y2

))

=
√

(x1 − x2)2 + (y1 − y2)2. (1.5)

LBP stores a binary value of 0 if the neighbor is smaller or equal and a

value of 1 if the neighbor is greater than the central point:

LBP (x) = b0, b1 with (1.6)

bi(x) =

{

0 . . . iff f(ni) ≤ f(x)

1 . . . iff f(ni) > f(x)
and i ∈ {0, 1} (1.7)

In 1D every point has two neighbors, one (n0) with lower x and one (n1)

with higher x. Consequently there are four different LBP codes:

code meaning

00 local maximum (⊕)

01 monotonically increasing curves

10 monotonically decreasing curves

11 local minimum (⊖)

1.5.3 Monotonic Curves/Paths π

Fig. 1.14 shows a curve with two sharp peaks (local maxima) and a flat min-

imum. Below it shows the corresponding graph G(V,E) where V represents

the critical points/segments (⊕,⊖) of the curve and the edges between are
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1D curve:

G(V,E)

flat minimum

⊕ ⊕ ⊕ ⊕⊖ ⊖ ⊖ ⊖⊖

✻
g

✲ ✲✛ ✲✛ ✛✛✲

Fig. 1.14 A 1D curve with its oriented graph G(V, E)

oriented such that the end point is lower than the begin of the correspond-

ing curve segment. Along the monotonic curves the orientation of all the

edges remains the same, hence they can be collapsed into a single edge if a

varying steepness does not matter. The critical points in a 1D continuous

curve can be determined by a 1D-LBP without computing derivatives and

even at non-smooth locations (like the two sharp peaks in Fig. 1.14). At

sharp corners there are multiple orientations of tangents and the derivative

cannot be computed.

The curve segments between the critical points correspond to the edges

and they are all oriented towards the minimum: ⊕ −→ ⊖ is monotonically

decreasing, ⊖ ←− ⊕ is monotonically increasing. Note that the curve need

not be smooth with the only requirement that the sampling satisfies the

Nyquist-Shannon theorem (at least for the critical points [47]).

A discrete monotonic path π(p1, pn) = (p1, . . . , pn), pi ∈ Rn is a poly-

gon in Rn without self-intersection. Formally we can state that the orien-

tation of a monotonic sequence of edges (pi, pi+1) ∈ E can be derived from

the sign of σ in (1.8).

(f(pi+1)− f(pi))σ ≤ 0 ∀i ∈ [1, n− 1], σ ∈ {−1,+1} (1.8)

The sequence is increasing with σ = +1 and decreasing with σ = −1.

The original LBP bits associated with the vertices in V are transferred to

the orientation of the respective edges. Turning around any vertex v ∈ V in

a plane graph4 we can derive the corresponding LBP-bit 0 if the edge is e =

(v, w) ∈ E and 1 for e = (w, v) ∈ E. The change in orientation corresponds

to a bit-switch in the LBP-code and enables vertices with different degrees.

Flat regions introduce an asymmetric LBP-code in the original defini-

tion of Ojala et al [46] giving raise to a local ternary pattern (LTP) in Tan

and Triggs [48]. The drawback is that 2 bits are necessary instead of 1

bit doubling the size of the code and there is no obvious translation into

orientation. Since flat edges do not contribute to the detection of critical

points we propose to contract flat edges in the graph. This preserves the

4A plane graph is an embedded planar graph such that the order of edges around every
vertex in the embedding is given.
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connectivity and converts monotonicity into strict monotonicity. There is

one exception: self-loops are crucial for describing holes in a region. But

self-loops are easy to detect by the fact that both end points are the same

vertex. As we will explore later a small extension to edges with the smallest

contrast allows to remove most flat edges. As a side effect it also shortens

the paths π and preserves the critical points.

1.5.4 Critical Points in 2D ...

Critical points in 2D can be recognized by (LBP) [46]. As in 1D, bit

switches translate into a change in orientation of the edges between adjacent

neighbors. We keep the downwards orientation as in 1D. Hence there are

no change in orientation of an extremum and two changes for saddle points

(see examples in Fig. 1.15). Even a third category of local configurations

with 2 bit switches can be described by ’uniform’ LBP codes: slopes.

⊕✛
��✠ ❄

❅❅❘

✲�
�✒✻❅❅■

⊖✛
��✠❄❅❅❘✲

��✒ ✻❅❅■
⊗✛ ❄ ✲
✻
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❅❅❘
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⊗✛ ✛
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❆❆❯ ✁✁✕

✁✁✕

a) local max. ⊕ b) local min. ⊖ c) local saddle ⊗ with degrees 4, 8, 6

Fig. 1.15 Examples of critical points in 2D

1.6 The LBP-Pyramid

This section follows the general principles laid out in Section 1.3. Refs. [49,

{⊕,⊖,⊗ } −→ slope regions

✻
❄

primal and dual graphs (G(V,E), G( V , E))

input image −→ reconstruction

Fig. 1.16 Bottom-up and top-down processes in the LBP-pyramid

50] focus (see overview in Fig. 1.16) on the particular choices of the LBP-

pyramid. We have seen in the previous section that the binary coding of

local binary patterns (LBP) can be transferred to an oriented graph and

that the LBP along a monotonic path shows the same pattern, e.g., the
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orientation of edges along a monotonic path is the same. Critical points

can be determined from the number of orientation changes around a vertex,

in most cases by a local process. In case of flat regions the detection of

critical points is postponed until all the flat regions are represented by a

single vertex. Then the detection is local.

There is one special case for a ’hidden’ saddle point. This is a saddle

point that falls between the sampling points of the data and is characterized

by a condition related to the non-well-composed 2 × 2 configurations of

Latecki [51]:

| | | |

−− A −−− B −− −− A −−− B −−

| | | � � |

| × | −→ | ⊗ |

| | | � � |

−− D −−− C −− −− D −−− C −−

| | | |

(1.9)

The block of pixels A,B,C,D is not well-composed if either

L = max(A,C) < H = min(B,D) or (1.10)

L = max(B,D) < H = min(A,C) (1.11)

In all such cases an extra saddle vertex ⊗ is inserted in the center of the

2× 2 block of the neighborhood graph, connected to all four vertices A, B,

C, and D of the 2 × 2 pixels by edges and with a gray value f(⊗) in the

interval (L,H).

1.6.1 Bottom-up construction and top-down expansion

As contraction kernels we select edges with the locally lowest contrast and

choose the critical points as survivors. If an edge with lowest contrast is

not incident to a critical point any incident vertex can be chosen. There

are two main arguments for this choice:

(1) Since low-contrast edges are visually nearly indistinguishable we use

the following selection criterium for edges to be contracted: Contracting

edges of contrast zero shrinks successively flat areas until reaching a sin-

gle vertex for each connected flat area5. After zero-contrast edges have

5Care must be taken if these flat areas connect non-connected parts of the boundary of
the graph since the remaining vertex becomes an articulation point the removal of which
would disconnect the graph. This can be avoided by first contracting and simplifying
the boundary and then the inner flat areas while preserving the boundary. This enables
treating subgraphs separately and stitching them together after contraction.
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been contracted, the remaining edges with contrast > 0, e = (v, w) ∈ E

are downwards-oriented, i.e., f(v) > f(w) and the contrast of e is the

difference between the end points: contrast(e) = f(v)− f(w). In order

to satisfy the independence condition one can first determine a maxi-

mal independent vertex set starting with the critical points and then

choosing trees of incident edges with locally lowest contrast.

(2) Each connected component of the contraction kernel contains one crit-

ical point, if possible. It remains critical even after contraction, and,

consequently, the critical point survives the contraction process. Pre-

serving the critical points ⊕,⊖,⊗ of the base graph does not shrink

the range of values (in contrast to smoothing or interpolation). To-

gether with a strong contrast they contribute to the high visual quality

of the reconstructed image. In case of dense clusters of critical points

or in case of critical points generated by noise the rule of preserva-

tion may be relaxed for generalization by allowing lowest contrast pairs

(⊕,⊖), (⊕,⊗), (⊗,⊖) to be contracted (as in [6]).

The attributes of the base level are the gray values of the pixels. An

alternative would be to use the contrast as an attribute of an edge where

the orientation encodes the sign of the contrast. With this encoding only

a few gray values need to be kept with some vertices since the other gray

values can be recomputed by propagation along the edges of the graph.

In the simplification of multiple edges the longest equivalent path in the

base can be chosen. This length can be easily integrated in the bottom-up

process by first initializing a length attribute of each edge by the value 1

and after each edge contraction the length of the edge becomes the sum of

the lengths of the two involved edges.

As reduction function, surviving vertices inherit the value of the level

below. Since critical points are primarily chosen for survival, the range of

gray values is preserved.

The top-down expansion can be done using the canonical representa-

tion [8] by edge de-contraction and (removed) edge re-insertion. During

the expansion process the children of the lower level either retrieve their

value from the status of the bottom-up process or they inherit the value of

their parent from the level above. In the experiments we chose the option

of inheritance to judge the quality of the reconstruction with only a few

values of the top level.
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1.6.2 Main Properties of the LBP-pyramid

Coral Cat

0.08 · 154401 = 1235 regions 0.06 · 154401 = 9264 regions

Which one is the original image Fish?

6%? or 100%?

Fig. 1.17 Three reconstructions with the LBP-pyramid

The bottom-up construction preserves relevant critical points (see Ta-

ble 1.2), that are determined by LBP [50,52,53]. Hidden saddle points are

inserted in the original neighborhood graph6. The selection of edges with

6This is easy in a graph but would require an increase of the resolution of an array.
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Table 1.2 Control of LBP-pyramid
Application Important

elements survive
Negligible
elements are merged

LBP-pyramid critical points, texture,
high freq.

lowest contrast

the lowest contrast also preserves the original contrast of the image as well

as the quality of fine details like the grass in Fig. 1.18. Monotonic paths

remain monotonic if no critical point is removed. LBP codes are known

for their texture representation and this property is clearly visible in the

reconstructions.

The reconstruction quality of the LBP-Pyramid has been tested in

Refs. [50,52,53] with a variety of images from the Berkely data base. The re-

constructions use much less colors and preserve very well the structure and

topology of the image. Selected pictures in Fig. 1.17 are from the Berkeley

image data base [54]. More examples can be found in PRIP TR-133, the

Master Thesis of Martin Cerman 7.

1.6.3 ’Image = Structure + Few Colors’

In Ref. [55] we investigated the reasons why the LBP-pyramid reconstructs

images with surprisingly high visual quality. We could confirm the main

observation of Koenderink [6], although he used Gaussian type smooth-

ing for the construction of the lower scales that cannot preserve so well

thin structures as the LBP-pyramid does. This can be visually verified in

Fig. 1.18 where 3 reconstructions with the LBP pyramid are compared with

a classical Gaussian pyramid with a reduction window of 5 × 5 Pixels and

a reduction factor of 4, corresponding to a stride of 2 in x and y directions.

GE stands for one Gaussian reduction and one expansion, GGEE for two

Gaussian reductions and two expansions. Table 1.18 summarizes the num-

ber of vertices or pixels at the apex of the pyramid and the corresponding

reduction from the base to the top. Most of the critical points survive to

the low resolutions at high levels and contracting the lowest contrast first

preserves the high contrast in the image. And, in contrast to ALL smooth-

ing reductions involving convolutions, it preserves high frequencies in the

image (small, thin details). Reconstructions with only a few highest levels

give good results. Reconstructions with only 30% down to 3% of the regions

of the original number of pixels are shown in Fig. 1.18.

7https://www.prip.tuwien.ac.at/publications/technical reports.php
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Original with 30% = 51 467 Regions

with 10% = 15 440 Regions with 3% = 5 147 Regions

1 level Gaussian 25% = 38 801 Regions 2 levels with 6% = 9 801 Regions

Pyr(Picture) pixels |Vn| reduction by

SCIS(Pheasant) 154401 46320 70%

GE(Pheasant) 154401 38801 75%

SCIS(Pheasant) 154401 15440 90%

GGEE(Pheasant) 154401 9801 94%

SCIS(Pheasant) 154401 4632 97%

|Vn| is the number of vertices/pixels at top

’reduction by’ is the reduction of the vertices from the base to the top level.

Fig. 1.18 Pheasant, Berkely# 43074, three reconstructions, two 5× 5/4 Gaussian
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In Ref. [55] we qualitatively and quantitatively compared the results on

100 images of the Berkeley data base with four other methods. For the

assessment of the quality we used the Structural Similarity Index Measure

(SSIM) [56]the Feature Similarity Index Measure (FSIM) [57]and the Peak

Signal to Noise Ratio (PSNR).

1.7 The Space Between Critical Points

After constructing an irregular LBP-pyramid most of the vertices corre-

spond to critical points of the base level. Hence Ref. [58] ask the question:

What are the spaces between the critical points? In this section we give an

overview about the concept of slopes and its interesting properties with

some outlook for future research directions. This concept relates the differ-

ent levels of the pyramid by covering the regions at different levels with such

slopes. Since the critical points determine a partition into slopes it enables

the interpretation of the information at different levels of the pyramid.

We have seen in Fig. 1.13 that the curve between extrema in 1D are

monotonic curves or profiles. Now we extend this concept to two dimen-

sions. We define the 2D counterpart of a monotonic curve as a slope:

Definition 1.6 (Slope). A connected region R of a continuous surface is

a slope region iff all pairs of points ∈ R are connected by a continuous

monotonic curve ∈ R.

The smallest slope in an image is a single pixel. Locally a slope can be

characterized by a uniform LBP8. Def. 1.6 defines the slope in continuous

Euclidean space but it is also valid in discrete spaces like images or graphs.

We recall some of its properties and refer to our previous publications

for proofs and further examples. The domain of the image function f can be

partitioned by slopes. Critical points determine the structure of a slope S :

Every slope can contain one local maximum (⊕) and one local minimum

(⊖). Saddles (⊗) appear exclusively on the boundaries between slopes [59].

All level curves9 in a slope are connected. Level curves of f may be open

when intersecting the boundary of the domain of f or closed. Level curves

can intersect exclusively at saddle points, never inside R (more in Ref. [60]).

We distinguish between two types of slopes:

8A uniform LBP has maximally two bit switches, or equivalently, maximally two
changes of orientation when turning around the center.
9also called contour lines or isolines.
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• Slopes bounded by level curves; and

• slopes bounded by monotonic curves.

1.7.1 Slopes bounded by level curves

The complete boundary is a level curve at the level f(× ) of the saddle

point10 with following constraints if a local maximum ⊕ and/or a local

minumum ⊖ exists inside the slope (Fig. 1.19(a)):

f(⊕) > f(×) > f(⊖) (1.12)

The region including the ⊕ will be higher than the boundary, and the

⊕

✛
✚

✘
✙

✬
✫

✩
✪✻✻

❄❄

⊖

✛
✚

✘
✙❄❄

✬
✫

✩
✪✻✻

✛✲ ✲×
✻ ❄

❄ ✻
×

✛✛✛✛✛

⊕

✛
✚

✘
✙✻
❄

⊖

✛
✚

✘
✙❄
✻

+

✻
❄

−

❄
✻

≪ ≪
≪≪

≪
≪

(a) A level-bounded slope (b) A slope bounded by two monotonic curves

Fig. 1.19 Two basic types of slopes

region with ⊖ will be below the boundary if both minimum and maximum

are inside the slope. This implies that there exists a curve inside the slope

at the level f( × ) that separates the higher from the lower part of the

slope. This level curve connects the two saddle points ⊗ having the same

level. These two saddle points of identical level are necessary to prevent

the slope from having an articulation point.

Both the boundary and the separation curve meet at the two saddle

points. All other level curves inside the slope are closed. Orienting level

10× denotes a saddle point along the boundary, + and − a local maximum and a local
minimum along the boundary while ⊕,⊖ denote local extrema in 2D.
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curves such that the right side is higher than the left side, the level curves

opposite × have opposite directions (see Fig. 1.20). Each extremum inside

S is surrounded by closed level curves. Regions around × alternate higher

and lower parts of f (Fig. 1.20; ≪ indicates that the edge increases

from left to right). As a consequence there are two ways to group the higher

×

⊕

⊕

⊖

⊖

slope group (a)

✲✛
✻

❄❅
❅❅

❅
❅❅

�
��≪

≪

≪

≪
�

��

✬
✫

✬
✫ ✩

✪

✩
✪ ×

⊕

⊕

⊖

⊖

✲✛
✻

❄❅
❅❅

❅
❅❅

�
��≪

≪

≪

≪
�

��

×

⊕

⊕

⊖

⊖

slope group (b)

✲✛
✻

❄❅
❅❅

❅
❅❅

�
��≪

≪

≪

≪
�

�� ✝ ✆✝ ✆

✞ ☎✞ ☎

Fig. 1.20 orientations around a saddle point

and the lower parts into two slopes with maximal extension: (a) using

horizontal neighbors in Fig. 1.20 or (b) using vertical neighbors. Such

grouping can be related with certain semantic properties like size, shape

or texture. It can be established at the top level of the pyramid and then

successively refined top-down, level by level, to the base level.

1.7.2 Slope with a monotonic boundary

This is most likely the more frequent type of slope since the bounding

saddle points have different levels and are connected by monotonic curves.

Fig. 1.19(b) shows a prototype of such a slope. We draw boundary curves

in green, and monotonic curves with ≪ pointing downwards the

levels.

Level λ curves inside a slope are connected and can be open or closed

with following constraints:

⊖ ≪ − ≪ + ≪ ⊕

[ closed ]( open )[ closed ]

Level curves around the 2 extrema are closed for levels λ satisfying:

f(+) ≤ f(λ) ≤ f(⊕) (1.13)

f(⊖) ≤ f(λ) ≤ f(−). (1.14)

All level curves f−1(λ) with f(−) < f(λ) < f(+) are open and connect the

two monotonic branches of the boundary (except −, +).
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Slopes can partition any continuous surface [59]. However, partitioning

into slope regions is not unique. Monotonic boundaries have some degree

of flexibility to grow or shrink within the limits of the level curves through

the saddle points. This opens also the possibility to introduce a limited

overlap between two slopes where the boundary is not clearly determined.

1.7.3 Outlook on Slopes

Besides the receptive fields of high level vertices and faces, slopes provide

a further tool to explain the derived structure and attributes of the higher

levels at the higher resolutions in the levels below. One target could be

to derive a covering of the base level with a minimal number of slopes.

Together with features derived for each slope it could be used to recognize

similar image regions, or objects in the image.

Since saddle points appear exclusively along the boundary of slopes and

the level curves inside have characteristic patterns we could consider the

level curves that pass through saddle points. The connected components

between these level curves form a hierarchical structure that has great sim-

ilarity with the topological tree of shapes [61]. These similarities would be

interesting to study not only due to the continuous and the discrete concept

but also where the two concepts match and whether there are differences.

Finally any hill-climbing inside a slope region reaches the peak, and any

steepest descent inside a slope region reaches the minimum in all cases.

There is definitely a potential for optimization processes to avoid being

trapped in intermediate local extrema.

1.8 Conclusion

In this chapter we first give an overview of the main components of irregular

pyramids. They differ from the classical (regular) pyramids in that they

are based on irregular data structures like graphs. This enables them to

adapt their internal structure to the input data in the base level or to the

target structures important for the application.

Irregular pyramids preserve the intrinsic (cell-)structure11 at higher lev-

els. In this chapter we have used plane graphs as basic topological data

structure because graphs can be assumed to be widely known. But several

other data structures can be used with varying advantages in particular for

11The term ”cell” is just a coincidence with the biological cells in Section 1.2.3, here an
abstract cell is meant
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dimensions higher than two: combinatorial maps [1], generalized maps [2],

or CW complexes [3, 4].

Irregular pyramids have a strong biological motivation: They satisfy

the biologically motivated architectural and functional requirements of L.

Uhr [5]. The basis of an irregular pyramid need not be an array but any

irregular graph as the Delaunay-triangulated [62] human retina (or any sub-

graph of it). Also the neural connections in the brain differ strongly from

the artificial counter parts that are currently very popular, they are neither

fully connected bipartite graphs nor regular local connections. However,

there is some similarity in the functionality of the connections with the

significant difference that natural neurons are much slower than massively

parallel architectures or modern GPUs. This efficiency of the parallel ar-

chitecture has become very important in the project ’Water’s gateway to

heaven’ where the 233 data can be processed in parallel up and down the

only 33 levels of the irregular pyramid.

The irregular pyramids accept as input an image, data from a retina,

any plane graph, combinatorial map, or generalized map. The main goal

is:

to reduce the huge amount of data while preserving certain

properties.

The construction and expansion in irregular pyramids is controlled by:

• selected contraction and removal kernels;

• massive parallel graph contraction;

• different reduction functions (de-coupled from the flexible architec-

ture!);

• inverse operations of contraction and removal: de-contraction and re-

insertion;

• and termination criteria.

Let us repeat here that the choice of reduction functions cannot only vary

between different levels of the pyramid but also within the same level in

the case that there is a strong hypothesis that a certain object with specific

properties is located at a particular location. In this case a concept similar

to the object-oriented programming paradigma can be applied.

For the LBP-pyramid we first translate the binary LBP-code into the

orientation of edges. This enables the recognition of critical points ⊕,⊖,⊗

and slopes without the need of derivatives. This follows the principle of

changing the representation to solve an insight problem (section 1.2.5). The
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observation that continuous curves between extrema are monotonic inspired

the choice of the lowest contrast for contracting edges. Experimental results

showed that in images the arrangement of critical points play a dominant

role and images can be reconstructed with only a few colors if the structure

is preserved. Finally, monotonicity also led in 2D to the novel concept

of a slope, opening possibilities to explain the achieved results through

integrating bottom-up and top-down processes and the relations between

the receptive fields at different levels of the pyramid.

In contrast to many machine learning approaches, like deep convolu-

tional neural networks, which have some architectural similarities with the

pyramid but have a strong association between the layer and the applied

functionality (i.e., convolution layers, pooling layers), irregular pyramids

separate their architecture and functionality. In addition the construction

of the hierarchy enables the architecture to adapt the representation to the

structure of the data.

The algorithms operating in the irregular pyramid are designed to work

(also) on massively parallel architectures with a parallel complexity of

O(log( diameter )) following parent-child links.
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