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Abstract

A pyramid is a stack of images with exponentially decreasing resolutions. Many image

processing algorithms run on this hierarchical structure in O(logn) parallel processing steps

where n is a side of the input image. Perturbations in the structure may disturb the

originally regular neighborhood relations and also the stability of the results. On the other

hand, biological vision is based on piecewise regular patches in the retina, e.g. of a monkey

or a human. P. Meer's stochastic pyramid is such an irregular structure. The parallel

generation of the structure is governed by two \decimation rules" that also characterize a

maximal independent set on the neighborhood graph of the image pixels. In general, the

number of neighbors in the decimated graph may increase. It is shown that the decimation

G

0

(V

0

; E

0

) of any neighborhood-graph G(V;E) preserves the degrees in the corresponding

dual graphs. However the dual of G

0

is not always a \good" decimation of the dual of G.

Investigating in parallel dual decimations of regular graphs, one �nds unique solutions that

have interesting properties for image pyramids. Besides the above theoretical motivation

for irregular structures, we can �nd similar strutures in the retinas of monkeys (and also of

humans). This report combines the results published in the proceedings of two conferences

[10, 9] with a few additional �ndings.
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1 Introduction

Current vision systems are based on two di�erent types of sensing structures: digital

cameras produce regular square grids, whereas humans or monkeys build their `images' in

the retina, a sensing structure which shows a certain degree of irregularity (Fig. 1). A closer

(a) (b)

�

Figure 1: Section of (a) monkey's retina and of (b) digital image

look shows that the hexagonal impression of the biological structure also contains cells with

more and with fewer than six neighbors. Although technical systems claim to `see', they do

not reach the performance of humans or even of monkeys by order of magnitude [22]. In this

paper we concentrate on these structural di�erences and we investigate in the theoretical

background of also allowing a certain degree of irregularity in technical systems.

Mathematically, an image is de�ned by a function f(x; y) : R

2

7! R of two variables

in the image plane [20, Vol.I, chapter 1]. A digital image is formed by a sampling process

that extracts a discrete set of numbers (e.g., gray values). This set has two possible

interpretations: either a) as measurements at discrete points in the image plane; or b) as a

collection of `cells' that partition the image plane. Interpretation (b) describes the contents

of the respective image in terms of the regions that are covered by the respective cells.

The sampling structure of a digital image is de�ned by the distribution of the sampling

points in the case (a), and by size, shape, and topology of the partition cells in the case

(b). Let us describe the structure of a digital image by the neighborhood-graph, G(V;E),

with vertices V and edges E.Two vertices, p; q 2 V are connected in G, (p; q) 2 E, if they

are neighbors in the structure. We shall denote the neighborhood of a vertex p 2 V by

�(p) := fpg [ fq 2 V j(p; q) 2 Eg. A structure is called regular if a well-de�ned neighbor-

relation holds for all vertices (except on the boundary).

In geometry, a pyramid is de�ned as a polyhedron with a polygonal base and (triangular)

faces meeting in a common vertex. In image analysis, an image pyramid is a stack of digital

images (the levels V

i

of the pyramid) with local level-to-level relations. A regular pyramid

structure can be de�ned by three parameters [8]: (1) pixels of the reduction window are

input to (2) a reduction function , that outputs one pixel of the next level. It has to be

computed for every cell of the next level. (3) The reduction factor determines the rate

by which the number of cells decrease from level to level.

1



In a regular pyramid, the reduced resolution representations can be distorted when the

input is shifted [21]. Bister et al [2] show that most classical pyramids, which are regular

and consequently rigid structures, have problems in segmenting an image, e.g., when the

input image is shifted, rotated, or di�erently scaled. This shift-dependence problem will

appear whatever the neighborhoods which are used to built the pyramid (that is non-

overlapping or overlapping neighborhoods). It is a forseeable phenomenon since an input

picture is a random process (position and shape of the objects) that we try to match on a

rigid grid at di�erent resolutions (the rigid pyramid). Trials to solve these problems, such

as iterative modi�cations of parent-child links or of link weights, remain partial solutions

[6][18].The main idea of irregular pyramids is to allow the structure to be 
exible enough to

match with the input data, such that the image contents controls the aggregation process.

The �rst step in image analysis, segmentation, produces a set of (connected) regions

that correspond to objects in the image. The adjacency relations among these regions are

described by the region-adjacency-graph (RAG), which is in general not regular.

How to build a structure that relates the digital input image with a generalized graph

will be explained in section 2. This procedure can be applied on both binary pictures

and grayscale pictures (section 3). In the case of binary pictures, it performs connected

components extraction in O(log(largest component-diameter)), and provides at the top of

the pyramid the adjacency graph between the components (RAG). In the case of grayscale

pictures, it performs image segmentation; at the top-level, each object is represented by one

vertex and the neighborhood relations between them provide the region adjacency graph.

Regular pyramids show several properties that contribute to their e�ciency. Irregular

pyramids have di�erent properties (section 4). In addition we will focus on the following

property of all regular pyramids (section 5): The structural parameters are constant, espe-

cially the number of neighbors (e.g., the degree of the neighborhood-graph) remains the

same at all pyramid levels. In general, irregular pyramids do not have this property. A

weaker property requires the degree of the neighborhood-graphs to remain bounded by a

pre-speci�ed value. If we consider the corresponding dual graphs, we �nd that the degrees

of the dual vertices do not increase. Based on this observation, parallel dual decimations

are found for new types of regular pyramids (section 6).

2 Bottom-up Construction of Pyramids

There are two main ways to build a pyramid from a digital image in its base: a) by graph

contraction or b) by decimation.

2.1 Parallel graph contraction

Parallel graph contraction [19] represents every level of the pyramid by the neighborhood-

graph. The nodes of the graph are the pyramidal cells. Higher level graphs are created by

successively merging a certain number of nodes in the lower level graph.
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Rosenfeld [19] explores di�erent sorts of cellular hierarchies in a general theory. His

focus is on methods that allow a parallel generation of the structure. He states the problem

to �nd a parallel contraction scheme such that the degree of the contracted graph

remains bounded. This important property would, for example, allow to simulate large

networks of processors by smaller ones. For some special, regular cases parallel contrac-

tion is possible: hypercube, k-dimensional array, hexagonal array. However the degree of

triangular array increases.

2.2 Decimation

Decimation divides the cells of a pyramid level V

i

into two categories: cells that survive

the decimation process and form the cells of level V

i+1

; and cells v 2 V

i

that do not appear

at higher levels, v =2 V

i+1

; v =2 V

i+2

; : : : (non-surviving cells). In a rigid pyramid it is

known a priori which cells survive. Relaxing this rigidity, the selection of surviving cells

depends on the input, but it will be decided by a bottom-up process (starting from the

input picture). Non-surviving cells (v 2 V

i

� V

i+1

) have to give a contribution to de�ne

the level i. This contribution is provided by the construction of son-father links, that

is, assignment of non-survivors to survivors. The resulting structure is a multiresolution

graph. At a given level i, a vertex v

i

2 V

i

has some children on level i�1, a father on the

level i+ 1 above, FV

i

(v

i

) 2 V

i+1

, and some neighbors on level i, �

i

(v

i

) � V

i

. All children

of a vertex form its receptive �eld RF

i

(v

i

) � V

i�1

.

To build an irregular pyramid by decimation, three sub-problems have to be solved: (1)

how to select the survivors, V

i+1

� V

i

; (2) how to assign the survivors (son-father links),

RF

i+1

, FV

i

; (3) how to de�ne the neighbors of a survivor, �

i+1

. Then the same process

will be applied to build the whole pyramid level after level, starting from the bottom.

Peter Meer de�ned such a process in which problems 1 and 2 were solved by a stochastic

process following two rules [12, 13]: a) two neighbors on level i cannot survive both; b) a

non-survivor must be a neighbor of a survivor.

These two rules are equivalent to saying that the vertices V

i+1

of the graphG

i+1

(V

i+1

; E

i+1

)

on level i + 1 de�ne a Maximum Independent (vertex) Set (MIS) of the graph G

i

(V

i

; E

i

)

[3, chapter 3], [11].The main interest of the MIS is that it can be computed in parallel

for a graph, and using only local operations, what is a key point in pyramid concepts.

The reduction in size of the irregular pyramid is provided by this MIS extraction. The

process developed is di�erent from other parallel processes in the sense that it will choose

the survivors without errors (that is, without having to remove some of them in case one

of the two rules is not respected).

Algorithm: Stochastic decimation

1. Assign uniformly distributed random numbers to all cells v

i

2 V

i

: g(v

i

) 2 (0;M) � R.

2. Select local maxima as surviving cells: v

i

2 V

i+1

if g(v

i

) > g(v

j

) for all v

j

2 �

i

(v

i

).

3



3. Fill holes: a) set g(v):=0 for all v 2 V

i

: �

i

(v) \ V

i+1

6= ;; b) repeat step 2 if not all

g(v

i

) = 0.

4. Every non-surviving cell v

i

2 V

i

� V

i+1

selects a father FV

i

(v

i

) 2 V

i+1

\ �

i

(v

i

). This

construction also de�nes the receptive �elds: RF

i+1

(v

i+1

) := fv

i

2 V jFV

i

(v

i

) = v

i+1

g.

5. A surviving vertex p

i+1

2 V

i+1

becomes a neighbor of vertex q

i+1

2 V

i+1

at level i+1,

p

i+1

2 �

i+1

(q

i+1

), if there exists a vertex p

i

2 RF

i+1

(p

i+1

) that has a neighbor in

RF

i+1

(q

i+1

); i.e. �

i

(p

i

) \RF

i+1

(q

i+1

) 6= ;.

6. Set i := i + 1 and repeat steps 1 - 6 until card(V

i

) = 1

1

.

3 Segmentation by Decimation

Pyramids are made to work on an input picture. From this stochastic process of building

an irregular structure, a process guided by the data can now be de�ned. We would like

the reduction to occur in each object, whatever its location in the picture. When we reach

the apex of the pyramid, each object should be represented by one survivor. This will be

done as we explain below �rstly on binary images and secondly on grayscale pictures. (For

more detail, see [16, 17].)

3.1 Connected components extraction

When a vertex has to decide if it will survive or not at the next level, it looks at its

neighbors; rather than checking all its neighbors, a vertex will only check its neighbors

which share its color (black or white). This is equivalent to computing a MIS inside each

connected component, but it is performed just by adapting the previous process with some

local constraints. In the second step, a non-survivor chooses a neighbor surviving which

shares its color; due to the constraints, such a vertex always exists. The third step doesn't

have to change. So the reduction is performed inside each connected component, but

involving only local and parallel operations. Each individual hierarchy, down projecting a

vertex from the top to the bottom provides a connected component of the initial picture

(Fig. 2).

3.2 Grayscale image segmentation

The technique described above is based on a binary decision. Two neighbor vertices are

put in the same similarity class if they have the same color.

Starting with a grayscale picture at the bottom, the decision cannot be so clear to take.

We have to analyse the neighborhood of a vertex more precisely. We will not give here too

many details, the important point is that each vertex will analyse its neighborhood to sort

its neighbors into bad, not very similar and similar classes. And each vertex will take the

1

The cardinality cardfSg of a set S is the number of elements in S.
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Figure 2: Two segmented binary images

decision to survice due to a local process. The non-surviving vertices are assigned to their

most similar surviving neighbor. The survivors have to carry information related to their

receptive �elds, that is the average gray level. The changes compared to the binary case

are that now the similarities computed between the vertices might not be symmetric, and

that connected components are no more well-de�ned. Indeed we will reach the apex of the

irregular pyramid with a segmented picture, which is not a priori known.

Due to the stochastic contribution in the MIS computation, receptive �elds down pro-

jected on the bottom (that is the segmentation of the initial picture) might change when

running several times the process. But the main components are always well extracted.

More than that, this de�nes a way to measure the quality of each extracted region by

con�rming its presence in the �nal segmentation [14].

4 Some Properties of Irregular Pyramids

Properties that are trivial for regular pyramids are not obvious in irregular structures, some

are even not present. In this section, we study the geometric ground distance between

neighbor cells at a given pyramid level. This is related to the sampling (Nyquist) distance

corresponding to the chosen level.

In any regular n � n=f pyramid the distance between neighbors at level i is f

i=2

. We

will show that in 1D irregular pyramids, 2

i

and 3

i

are the bounds for 1D neighbors at level

i. Note that these bounds depend on the level i but not the structure of the pyramid.

We will derive a decimation in 2D where geometrical distances between neighbors do not

necessarily increase at the decimated levels.

5



Another important property is the decimation ratio (this is equivalent to the reduction

factor for regular pyramids) between adjacent pyramid levels. For stochastic pyramids

Meer [12] has found an average decimation ratio greater than 4 in his experiments. We

have found decimations that achieve a decimation ratio of 2. Even ratios as low as 4=3 are

possible and can be realized for certain graph structures.

4.1 Distances in Irregular 1D-Pyramids

On a 1D regular sampling grid V

0

we de�ne a distance d by 8x 2 L

0

: d(x; x) = 0, and

d(x; y) is the minimum number of steps to go from x to y such that all cells on that path

are neighbors of each other. Note that such a path is unique in 1D. Since all decimated

levels V

i

are subsets of base level V

0

, we can measure the distance between every two cell

in any level i by their distance in the base.

Theorem 1 The distance between two neighbors P

i

, Q

i

at level V

i

of the 1D irregular

pyramid is bounded by following inequality:

2

i

� d (P

i

; Q

i

) � 3

i

(1)

Proof:

i = 1: At the �rst level, P

1

and Q

1

are not allowed to be neighbors in the base, hence

d (P

0

; Q

0

) > 1.

The two receptive �elds of P

1

and Q

1

must touch each other because P and Q are

neighbors at level 1. Therefore there exist cells A and B in the receptive �elds RF (P

1

)

and RF (Q

1

) such that A and B are neighbors in the base. Allowing maximum

distances the sum is 3: P

0

� A� B �Q

0

.

n! n + 1: Let P

n+1

and Q

n+1

be neighbors at level n + 1. Then they are not allowed

to be neighbors at level n, hence there exists a non-surviving cell T

n

on the path

from P

n

to Q

n

. Assuming d (P

n

; T

n

) � 2

n

and d (T

n

; Q

n

) � 2

n

it is concluded that

d (P

n

; Q

n

) � 2

n

+ 2

n

= 2

n+1

.

The two receptive �elds of P

n+1

and Q

n+1

must touch each other because P

n+1

and

Q

n+1

are neighbors. The maximum number of non-surviving cells at level n between

P

n

and Q

n

is therefore two. Let the con�guration be P

n

� A

n

� B

n

�Q

n

.

d(P

n+1

; Q

n+1

) = d(P

n

; A

n

) + d(A

n

; B

n

) + d(B

n

; Q

n

) � 3

n

+ 3

n

+ 3

n

= 3

n+1

(2)

These distances are measured along the base line of the 1D-pyramid in units of the

original sampling (in number of chain codes in the chain pyramid [15]).

6



4.2 Distances in Irregular 2D-Pyramids

In 2D we use the Euclidean distance between two cells in the base. This case is not as

easy as the 1D case because in 2D the sum of lengths of two straight line segments is not

necessarily the distance between the end points:

A

�

�

�

�

�

�

�

�

��

l

1

H

H

H

H

H

H

H

H

Hj

l

2

�

�

�

�

�

�

�

�

�

�

�

�

�1

l < l

1

+ l

2

B

As in [12], 8-neighborhood is assumed in the base level of the decimation process.

Theorem 2 The distance between two neighbors P

i

, Q

i

at level i > 0 of the 2D irregular

pyramid is bounded by following bounds:

2 � d (P

1

; Q

1

) � 3

p

2 (3)

p

5 � d (P

i

; Q

i

) � 3

i

p

2 ; i > 1 (4)

and these bounds can be reached.

Proof:

Upper Bound: The largest distance between two 8 connected neighbors in a square grid

is

p

2. As in the 1D case the maximum distance between two surviving cells is reached

by the con�guration P �A�B�Q. Allowing maximum distances between each pair

d (P

1

; Q

1

) = 3

p

2.

The adjacency graph of level 1 is in general not regular. But the topological con�-

guration P � A � B � Q measured along a straight line gives still an upper bound

for the distance between P and Q, hence d

max

(P

i+1

; Q

i+1

) � 3d

max

(P

i

; Q

i

).

Lower Bound, i = 1:

n n n

n n n

n n

P

Q

In an 8-connected square grid, P has eight neigh-

bors ('n'). Q is the closest non-neighbor cell to P :

d (P;Q) = 2.
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Lower Bound, i � 2: Two cells P and Q that are not neighbors at level n may both

survive to level n+1 and, hence, their distance remains the same. At level 1 two cells

(�) may become neighbors in following con�gurations of level 0 using 8-connectivity

to de�ne the neighborhood (symmetric and rotated versions are not enumerated):

� �

�

�

�

�

� �

�

�

�

�

�

�

d(�; �) = 2

p

5 2

p

2 3

p

10

p

13 3

p

2

The neighborhood at level 1 depends on the choice of receptive �elds R. Two geo-

metrically possible neighbors P

1

and Q

1

may not become neighbors in V

1

if all cells

of �(P

0

) \ �(Q

0

) are assigned to receptive �elds other than RF (P

1

) and RF (Q

1

).

Then the two receptive �elds, RF (P

1

); RF (Q

1

), have no common boundary segment

and both, P

1

and Q

1

, can survive to level 2.

For d(P

1

; Q

1

) = 2, we consider cell a in between P

0

and Q

0

which is in �(P

0

) and in

�(Q

0

):

n

n

n

n

n

n

P

a

Q

B

The possible surviving cell closest to a other than P

0

or Q

0

is B. But a 62 �(B) so

that a may be only assigned to either RF (P

1

) or to RF (Q

1

). Therefore P

1

2 �(Q

1

)

cannot survive to level 2 if Q

1

survives.

For d(P

1

; Q

1

) =

p

5, P

1

need not become a neighbor of Q

1

if RF (P

1

) and RF (Q

1

)

are chosen as follows (cells P;Q; � survive to level 1):

P

Q

�

�

� � �

� � �

� �

�

+

+

+

� � �

� � �

P

1

Q

1

�

�

H

H

H

H

H

H

J

J

J

J

J

J

neighbors at level 1

In this case, both P

1

and Q

1

survive to level 2 and higher levels as long as the

common neighbors can be assigned to receptive �elds other than RF (P

i

) and RF (Q

i

).

Therefore the minimum distance remains

p

5 and does not increase in such cases.
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4.3 Decimation Ratios in Irregular 2D-Pyramids

We de�ne the decimation ratio D

i

between two levels i and i+ 1 as follows:

D

i

=

card(V

i

)

card(V

i+1

)

(5)

Since the minimum distance does not necessarily increase during the decimation process

(Theorem 2), and since, on the other hand, the decimation eliminates a certain number of

cells, we search for bounds of the decimation ratio. Meer [12] found an average decimation

ratio greater than 4. We found examples that achieve lower ratios.

Theorem 3 A decimation ratio of D

i

= 2 at levels i greater than 0 is possible in the 2D

irregular pyramid even if 8-connectivity is used in the base level.

Proof:

Base level 0

P

Q

�

�

� � �

� � �

�

+

� � �

� � �

�

�

level 1

P

Q

�

�

@

@

neighbors

P and Q are not neighbors at level 1, hence they can both survive to level 2. The

decimation ratio for this regular grid V

1

is D

0

= 4 . For a larger number of cells the

neighbor relations take the following (regular) structure (Figure 3):

Let the degree of a cell be the number of its neighbors. Then there is an equal number

of cells with degree 4 (�) and with degree 8 (
) in this structure (Fig. 3a). The average

degree is 6. The cells of degree 4 are all non-adjacent and can be chosen to survive the

decimation. Hence a possible decimation ratio is D

1

= 2. This can be achieved if the re-

ceptive �elds are chosen as indicated in Fig. 3b. The corresponding neighborhood relations

at level 2 (Fig. 3c) have the same structure as in level 1. Hence this decimation process

can be repeated while maintaining a decimation ratio of 2. The geometric relation is a 45

0

rotation between two successive levels and the number of cells at the higher level is 1/2

of the level directly below. Note that this regular pyramid structure is equivalent to the

2� 2=2 pyramids used by Crowley [4] and later by Kropatsch [7].
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c)

Figure 3: Square grid with decimation ratio 2

On a 2D-square lattice, two is the smallest decimation ratio that ful�lls the �rst deci-

mation rule, e.g. two neighbors should not both survive. Hence two surviving cells must

be separated in the level below by at least one non-surviving cell. This must be true for a

row of the square lattice:

� � �� �

. But it also implies some of the

non-surviving cells in the rows above and below:

�

�

�

�

�

�

� � �� �

One surviving cell in a row needs a non-surviving cell in the adjacent row. Since

the number of surviving cells equals the number of non-surviving cells in the �rst row

and if all the non-determined cells survive the row-by-row propagation, half of the cells

will survive. Hence the smallest decimation ratio on a square lattice is two. Note that

additional neighborhood relations are not explicitely excluded by this construction and

that the diagonal neighbors of the minimal graph still obey the decimation rules. Therefore

a decimation ratio of 2 can be realized.

4.3.1 Decimation Ratios less than Two

So far we only considered neighborhood structures that are de�ned on square grids. But

higher levels can become general graph structures. And for those even lower decimation

ratios can be achieved. Since we do not derive the proposed graph structure from a square

grid it is not clear if this would be possible in all cases.
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We observe that the decimation ratio is lower if the degree of the surviving cells is

small. We further assume that there is at most one arc between any pair of nodes in the

graph, we exclude multiple neighbors. Since degree 1 does not seem reasonable we consider

a graph where all surviving cells have degree 2 at level i. Cells with higher degrees would

produce greater decimation ratios. This addresses the problem of preserving the maximum

degree in parallel graph contraction. Rosenfeld [19] describes solutions based on algebraic

constraints but a general solution is not available.

The neighborhood graph is assumed to be planar. Simply connected planar graphs

can be decomposed into primitive cyclic paths. We construct our neighborhood graph by

putting together such primitive cycles that consist of alternating sequences of surviving and

non-surviving cells (Fig. 4a). If these cycles are joint at non-surviving cells, all intermediate

surviving cells have degree 2. The primitive cycles may consist of any number of surviving

cells (e.g. 4 in Fig. 4b or 6 in Fig. 4c). Cycles with di�erent numbers of cells may also be

combined.
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Figure 4: Graph construction by cycles

4.3.2 Triangular Network

We calculate the decimation ratio for the case of Fig. 4c. The non-surviving cells of this

structure form a (regular) hexagonal network, the dual of which is a regular triangular

network. Every surviving cell is located on one triangle side which we call edge of the

neighborhood graph. We now derive formulas that relate the number of triangles F ('faces')

with the number of vertices P ('points') and the number of edges E of the corresponding

graph structure. Since we consider �nite structures we di�erentiate between edges and

vertices on the boundary, BE and BP , and inside the structure, IE and IP . The boundary

is a closed cycle on which vertices and edges alternate:

card(BP ) = card(BE) (6)

The Euler number for the planar graph can be expressed as follows:

card(IP )� card(IE) + card(F ) = 1 (7)
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Every triangle is formed by three edges, every inner edge has one triangle on each side, and

a boundary edge delimits only one triangle, the other side faces the background (which we

do not count here):

3 card(F ) = 2 card(IE) + card(BE) (8)

The number of cells at level V

i

is therefore the following sum:

card(V

i

) = card(�) +card(�) = (9)

= card(IP ) + card(BP ) +card(IE) + card(BE) (10)

At V

i+1

only the edges carry a surviving cell (�):

card(V

i+1

) = card(�) = IE +BE (11)

Taking card(F ) and card(BP ) as parameters of a given network, the decimation ratio can

be expressed in terms of these two parameters:

D

i

= 1 +

1 +

card(F )+card(BP )

2

card(F ) +

card(F )+card(BP )

2

= 2�

2

3

+

2

3

3 + card(BP )

3 card(F ) + card(BP )

(12)

This decimation ratio is less than 2, as can be veri�ed easily, but also greater than

4

3

(because card(BP ) � 0 always). For large networks this lower bound is closely approached.

Note also, that the regularity of the network is not a necessary requirement.

4.3.3 A lower limit

In the previous section the network generating cycle was formed by three edges. If we build

networks with cycles of d edges and vertices (like d = 4 in Fig. 4b) only equation (8) has

to be modi�ed:

d � card(F ) = 2 card(IE) + card(BE) (13)

Then the decimation ratio becomes

D

i

= 1 +

(d� 2) card(F ) + card(BP ) + 2

d � card(F ) + card(BP )

= 2�

2

d

+

2

d

�

card(BP ) + d

d � card(F ) + card(BP )

(14)

For large values of card(F ), D

i

approaches 2�

2

d

which becomes smallest for small d. Since

d = 3 is the smallest, D

i

�

4

3

for all other combinations as well.

�
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Figure 5: Dual graphs of monkey's retina and its decimation

5 Decimating image graphs

We apply the above decimation procedure to the data points obtained from a monkey's

retina and we derive a stochastically decimated retina (Fig. 5). We observe that both are

triangulations. We therefore investigate in this section whether there is a general principle

behind this observation.

Let graph G(V;E) describe the structure of a digital image and let G(F;E) be its

dual graph consisting of faces f 2 F which are surrounded by edges e 2 E of G. Two

faces f

1

; f

2

2 F are connected in G, (f

1

; f

2

) 2 E, if they are separated in G by an edge

e = (v

1

; v

2

) 2 E. In our monkey's retina, Fig. 1 a) corresponds to G(V;E) and Fig. 5 a)

corresponds to G(f; E).

We start with some common de�nitions from graph theory. A cycle is an ordered

sequence of connected vertices, C = (v

0

; v

1

; : : : ; v

n

); v

i

2 V; i = 0; : : : ; n, (v

i

; v

i+1

) 2 E; i =

0; : : : ; n� 1, with the �rst and the last vertex being the same, v

0

= v

n

. A primitive cycle

in G consists of the vertices of all edges e 2 E that surround one face of G. The degree

of a face f 2 F , deg(f), is the number of adjacent faces in G, or equivalently, it is equal

to the number of edges that constitute the corresponding primitive cycle in G.

We can now observe the consequences of decimating G into G

0

on the corresponding dual

graphs G and G

0

.

Theorem 4 Let G(F;E) be the dual graph of G(V;E), G

0

(V

0

; E

0

) be a non-overlapping

decimated graph of G(V;E), and G

0

(F

0

; E

0

) the corresponding dual graph (Fig. 6). For

every face f

0

2 F

0

there exists a face f 2 F such that deg(f

0

) � deg(f) .

Proof:

Let face f

0

2 F

0

have degree deg(f

0

) = n. Then f

0

corresponds to a primitive cycle

C

0

= (p

0

; p

1

; : : : ; p

n

); p

i

2 V

0

; i = 0; : : : ; n; p

0

= p

n

, being composed of n edges (p

i

; p

i+1

) 2

E

0

; i = 0; : : : ; n� 1. From (p

i

; p

i+1

) 2 E

0

follows that there must exist vertices s

i

2 RF (p

i

)
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