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Abstract

Many image analysis tasks lead to or make use of graph structures that are

related through the analysis process with the planar layout of a digital image. This

paper presents a theory that allows to build di�erent types of hierarchies on top of

such image graphs. The theory is based on the properties of a pair of dual image

graphs that the reduction process should preserve, e.g. the structure of a particular

input graph. The reduction process is controlled by decimation parameters, i.e. a

selected subset of vertices, called survivors, and a selected subset of the graph's edges,

the parent-child connections. It is formally shown that two phases of contractions

transform a dual image graph to a dual image graph built by the surviving vertices.

Phase one operates on the original (neighborhood) graph and eliminates all non-

surviving vertices. Phase two operates on the dual (face) graph and eliminates all

degenerated faces that have been created in phase one. The resulting graph preserves

the structure of the survivors, it is minimal and unique with respect to the selected

decimation parameters. The result is compared with two modi�ed speci�cations, the

one already in use for building stochastic and adaptive irregular pyramids.

�This work was supported by the Austrian Science Foundation under grant S 7002-MAT
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1 Introduction

The need for hierarchies in image analysis has been expressed by many scientists, e.g.

recently by Nagy [14]. Multiresolution pyramids are already widely used in image anal-

ysis [15, 4, 19]. Hierarchies are motivated both by biological plausibility [18] and by

computational e�ciency [7].

Adjacency plays an important role in image analysis, too. Starting with the de�nition of

neighboring pixels in low level processes up to adjacencies de�ned between regions resulting

from segmentation processes, graphs can be used to represent these adjacency concepts.

Although regular neighborhood structures dominate the lower levels of image processing

and other data structures like arrays may be more e�cient, at later processing stages

regularity cannot be imposed.

Irregular pyramids combine graph structures with hierarchies. Similar to regular pyra-

mids, we distinguish ordered levels of decreasing sizes in an irregular pyramid. Each level

is a graph describing the image. Adjacent levels in decimation pyramids are related by the

fact that the vertex set of the reduced level is a subset of the vertices in the level below.

The methods for building irregular pyramids di�er in several aspects:

1. in the way they select the survivors;

2. in the way they derive the neighborhood relations of the reduced level.

The �rst aspect may heavily depend on the kind of application. A typical application

is in the �eld of image segmentation [13], for an overview over di�erent graph theoretical

approaches to clustering and segmentation see [20]. Also regular pyramids �t into this

general framework: Their survivors are predetermined and form a regular pattern. Regular

pyramids su�er from the rigidity of their structure that causes sensitivity to pixel shifts

and artefacts when used for segmentation [3] or for the analysis of line drawings [8]. The

abandonned regularity constraints in irregular pyramids allow random selections as used in

stochastic pyramids [12], but also very sophisticated methods that adapt the new structure

to the data such as adaptive pyramids [6]. But one could also imagine selection criteria
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that are in
uenced by a certain processing goal. Our approach decouples selection and

contraction by clearly specifying the decimation parameters that control the reduction and

by requiring a few constraints that these parameters should satisfy (see Section 3.1).

The second aspect allows several variations. Rosenfeld [16] has related parallel, degree-

preserving graph contraction to multiresolution techniques. The framework he presents

for parallel contraction operations depends on algebraic properties of regular graphs like

trees, hypercubes, arrays, etc. Our theory extends the scope of parallel, degree-preserving

graph contraction to irregular topologies. We de�ne "connecting paths" that relate the

edges of the reduced graph with paths between surviving vertices in the level below. The

basic operation that contracts the graphs either step-by-step or in a few parallel steps is

dual contraction. It contracts one edge and its two endpoints into one single vertex and

removes the corresponding dual edge. The contraction of a graph reduces the number of

vertices while maintaining the connections to other vertices. As a consequence self-loops

and double edges may occure. The elimination of such non-simple connections may lead to

con�gurations that corrupt the connectivity structure given in the input graph. We shall

overcome these problems by considering the dual graph.

The remainder of this paper is organized as follows. Section 2 recapitulates the basic

notions from graph theory and introduces the concept of dual image graphs. Considering

crossing of paths and interior vertices we de�ne the structure of a graph. Based on this

framework, we de�ne what we mean by a structure preserving contraction (Section 3).

Dual graph contraction proceeds in two phases, dual edge contraction and dual face con-

traction. Both of these two operations are de�ned and their respective properties discussed

in subsections 3.2 and 3.3 respectively. The introduced concepts are illustrated by means

of simple examples. Section 4 compares the structural properties of three related ways to

build irregular pyramids. The conclusion summarizes the results, o�ers several possibilities

for selecting the decimation parameters and for reducing the information stored in the cells

of the pyramid.
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2 Dual image graphs and their structure

This section assembles the terminology from graph theory that is needed to de�ne the type

of graphs and the notations that describe a structure in a digital image.

We use graphs G(V;E) consisting of vertices v 2 V and (non-directed) edges e 2 E.

An edge e connects two vertices v;w, ei = (v;w), an edge with v = w is called a self-

loop: ei(v; v) . A graph may contain more than one edge between the same end vertices

(i.e. e3(v1; v8) 6= e5(v1; v8) in Fig. 8a), they are called double edges1. Edges are uniquely

identi�ed by indices. The degree of a vertex v, deg(v), is the number of edges incident on

it. A vertex v 2 V is isolated if it has degree 0, i.e. deg(v) = 0. Formal de�nitions of

standard notions are taken from [17, 5], here, a simple example explains the basic terms.
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Figure 1: Graph G1(V1; E1) is disconnected by cutset fe10; e11; e12; e13; e15g.

Figure 1 shows a graph G1(V1; E1), with vertices V1 = fv1; : : : ; v8g and edges E1 =

fe1; : : : ; e15g. Edge e1(v1; v2) connects vertices v1 and v2. The degree of vertex v5 is

six, e.g. deg(v5) = 6, since the six edges e5; e6; e7; e9; e12; e15 are incident to v5. Path

1Another name is parallel edge.
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P63(v6; v3) = (v6; e11; v7; e12; v5; e6; v3) connects v6 with v3 traversing three edges. It has

length three, kP63k = 3, the same length as path P18(v1; v8) = (v1; e1; v2; e5; v5; e15; v8). The

circuit C1 = (v8; e13; v4; e7; v5; e15; v8) in Fig. 1(a) is a closed path in G1. Since any pair of

vertices ofG1 can be connected by a path inG1, graph G1 is connected. If edges are removed

from E1, the graph may become disconnected. After removal of Ec = fe10; e11; e12; e13; e15g,

graph G0

1(V1; E1 nEc) is disconnected (Fig. 1(b)) and consists of two connected components

fv1; v2; v3; v4; v5; v6g and fv7; v8g. The subset of edges Ec � E1 is called a cutset.

Graph G1(V1; E1) is planar since it is drawn in the plane without any edge crossing

another edge. A graph can be embedded in the plane in many ways. A graph already

embedded in the plane is called a plane graph. The planar embedding of G1 in Fig. 1(a)

divides the plane into 8 (�nite) regions which are called faces, f1; : : : ; f8, and one in-

�nite region, the background face f1. A cycle C(f) delimits exactly one face f , e.g.

C(f3) = (v2; e5; v5; e6; v3; e2; v2). The boundary of a (�nite) graph is the cycle delimiting

the background face, C1 := C(f1) = (v1; e1; v2; e2; v3; e6; v5; e15; v8; e13; v4; e3; v1). The

adjacency of the faces in G1 is expressed by the dual graph, G1(V1; E1), Fig. 7(b). There

exists a one-to-one correspondence between the edges ei of G1 and the edges ei of G1.

Furthermore, any set of edges is a circuit in G1 if and only if the corresponding set of

edges is a cutset in G1. E.g. the edges corresponding to cutset Ec � E1 form a circuit

(v7; e10; v5; e11; v6; e12; v8; e15; v1; e13; v7) in G1.

2.1 Graphs of images

Our graphs describe the neighborhood relations in a digital image. At low level processing,

a pixel of the sensor array is associated with a vertex and pixels adjacent either in a row

or in a column are joined by an edge (note that we use 4-connectivity). The gray value or

any more complex description is considered as an attribute of a vertex but is not directly

used in the algorithms of this paper. The resulting graphs have several properties, they

are �nite, connected, and plane. We consider both the neighborhood graph G(V;E) and its

dual graph G(V ;E) in parallel. Since the vertices of G are the faces of G we refer to G as
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the face graph. This pair of related graphs is the basis of all further considerations.

The same graph formalism as for the pixel array can be used also at intermediate

levels of image analysis: Region adjacency graphs (RAGs) are the result of segmentation

processes. Regions are connected sets of pixels, two regions are separated by the common

boundaries. Although RAGs are connected since the regions partition the image plane,

their geometric duals may cause problems. Consider the RAG, G2(f g; f �� g), of the
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Figure 2: A house: (a) RAG G2; (b) reconstructed G2; (c) corrected DIG (G0

2; G
0

2).

house example in Fig. 2(a). The �ve regions of the house, e.g. roof, window, door, front

side, and background, are indicated by dashed lines. To reconstruct the boundary graph

G2, i.e. the dual of G2, we insert a vertex (�) in each region of G2 and place them on

the dashed boundary, preferably at boundary intersections. Then we draw the edges of E2

by following the dashed boundary lines until crossing an edge of E2 (similar to [5][p.113]).

Two problems arise in this case:

1. The window is completely surrounded by the region of the front side. Hence its

boundary is not connected with the boundary of the front side. Where to place the

vertex of V2? If placed as shown in Fig. 2(b) the above algorithm terminates but
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does not �nd any edge crossing the window boundary. In the other placement the

algorithm does not �nd any correct solution.

2. The left hand boundary of the front side is not crossed by any edge of E2.

The problems are caused by the fact that the front side's boundary consists of two non-

connected pieces: the inner piece common with the window, and the outer piece being

further split into four segments: one segment separates it from the roof, another from the

door, and two distinct segments separate it from the background. In fact graph G2 does not

express that the window is completely within the front side and that the door creates the

two distinct boundary segments separating it from the background. A solution is shown

in Fig. 2(c): a self-loop around the window is added in G0

2, front side and background are

connected by a double edge in E0

2, and a 'bridge' edge in G0

2 connects the boundary of the

window with the boundary of the front side. The resulting pair of graphs are connected

and plane, but, unfortunately, in general not simple. E.g. they may contain self-loops

and double edges. However not all possible self-loops and double edges are necessary. The

necessary cases can be limited to those where the self-loop or the double edges enclose

non-neglectable details like the window or the door in the above example. Redundant

con�gurations will be characterized by degenerated vertices in the dual graph (section

3.3). The following de�nition summarizes the properties of dual image graphs.

De�nition 1 (Dual Image Graphs) The graphs (G(V;E); G(V ;E)) are called dual im-

age graphs (DIGs) if they have the following properties:

� both G and G are �nite;

� both G and G are connected;

� both G and G are plane;

� G is the dual of G;

� both G and G need not be simple in general.
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2.2 The structure of plane graphs

The structure of an image plays a fundamental role in image analysis because it is invariant

to any 2D image transformation and because it allows to identify objects in images by their

topological structure. But what do we mean by structure precisely? We have encountered

already several properties that characterize a structure and that allow to disambiguate

di�erent structures.

The two paths P63 and P18 in graph G1 of Fig. 1(a) intersect at vertex v5. More formally

we de�ne whether two paths cross each other in a given graph.

De�nition 2 (Crossing Paths) Let P1 and P2 be two paths in a plane graph G(V;E)

with a common path P0 � P1 \ P2, such that P1 = (P1a; P0; P1b) and P2 = (P2a; P0; P2b).

P0 can be as short as only one single vertex. Path P1 crosses path P2 if the four path tails

alternate in a clockwise enumeration around P0, e.g. (P1a; P2a; P1b; P2b) (Fig. 3).
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Figure 3: Crossing of two paths P1 and P2.

A substructure like a single vertex, a single face, a subgraph, : : : that is completely

surrounded by a circuit contributes also to the structure. Remember the window in the

house example. In Fig. 1(a) circuit C1 = (v8; e13; v4; e7; v5; e15; v8) completely surrounds

vertex v6. We call v6 interior vertex of C1 and de�ne this relation between a single vertex

and a circuit in a plane graph as follows:
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De�nition 3 (Interior Vertex) Let C 6= C1 be a circuit in a �nite, connected, plane

graph G(V;E). Furthermore, let C1 denote the cycle delimiting the background of G. A

vertex v 2 V is called an interior vertex of C if there is no path P (v; v1) connecting v

to any vertex v1 2 C1 n C without crossing C, e.g. P (v; v1) \ C 6= ; (Fig. 4). Circuit C

is said to 'surround' vertex v.
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Figure 4: Vertex v is interior of circuit C.

We describe an image's adjacency relations by a pair of plane graphs. The formal

de�nition of the structure of a plane graph collects all the above determining factors.

De�nition 4 (Structure of a Plane Graph) Let G(V;E) be a �nite, connected, plane

graph. Furthermore, let SG(v) denote the family of all circuits surrounding vertex v 2 V

in graph G. Then we de�ne as the structure of G the following set:

Struct(G) := f(v; SG(v))jv 2 V g

This de�nition captures the topological properties present in a DIG. As an example recall

Fig. 2c). The boundary between the wall and the background consists of two distinct parts

separated by the door. This fact is expressed in a pixel representation by two disjoint

sequences of edges and in the corrected DIG by a double edge between the corresponding

vertices. The preservation of an image's structure facilitates the recognition of objects by

their structure in a very condensed description.
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3 Dual Graph Contraction

In this section we present the algorithm that simpli�es the structure of a pair of dual image

graphs. The contraction process is controlled by decimation parameters. Selected subsets

of vertices and of edges of the original neighborhood graph de�ne the relation between

the contracted and the original graphs. Subsection 3.1 speci�es the required properties of

the contracted graphs. The structure modi�cation consists of two elementary operations

described in subsections 3.2 and 3.3 that are combined in the algorithm in subsection 3.4.

3.1 Structure preserving contraction

Stochastic decimation as proposed by Meer [12] is controlled by selecting surviving and

non-surviving vertices, and by de�ning receptive �elds that completely cover the input

data. Jolion and Montanvert [6] showed how this selection must be modi�ed such that

decimation is controlled by the image data in order to achieve an adaptive behavior of the

process.

De�nition 5 (Decimation Parameters) Consider a graph G(V;E). A decimation of

graph G is speci�ed by a selection of surviving vertices Vs � V and a selection of a

subset Esn of edges E. The sets (Vs; Esn) are called decimation parameters. We call

Vn := V n Vs non-surviving vertices. Esn must be a subset of (Vs � Vn) \ E and it

connects all non-surviving vertices to exactly one surviving vertex in a unique way:

8vn 2 Vn 9!vs 2 Vs 9!e 2 Esn e = (vs; vn) (1)

Subgraph (V;Esn) partitions G into the same number of connected components as there are

surviving vertices in Vs. Each component forms a tree structure connecting the surviving

vertex, the parent (�), to the non-surviving vertices, the children (�), by edges of Esn

(� ! �, see example in Fig. 5).

Note that our de�nition does not constrain the selection of surviving vertices, as does the

requirement of a maximum independent set (MIS) in stochastic pyramids [12]. Adaptive
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Figure 5: Decimation of G3(V3; E3) creates trees in graph (V3; Esn).

decimations as in [6] can be uniformly treated with the above de�nition. Only non-surviving

vertices must have a surviving neighbor.

Before de�ning the properties that characterize a contracted graph G0(V 0; E 0) we intro-

duce connecting paths in G(V;E) that relate edges of E0 with paths in G.

De�nition 6 (Connecting Path) Let G(V,E) be a graph with decimation parameters

(Vs; Esn). A path in G(V;E) is called a connecting path of two surviving vertices vb; ve 2

Vs, denoted CP (vb; ve), if one of the following conditions is satis�ed:

1. vb and ve are connected by an edge ebe in G: CP (vb; ve) = (vb; ebe; ve); ebe 2 E.

2. The path contains two edges, CP (vb; ve) = (vb; ebi; vi; eie; ve) with vi 2 Vn and one of

the two edges is in Esn.

3. The path contains three edges of E, CP (vb; ve) = (vb; ebi; vi; eij; vj; eje; ve) with both

vi; vj 2 Vn and both edges ebi; eje 2 Esn.

Connecting paths have lengths 1, 2, or 3. The end points of connecting paths are surviving

vertices. Every connecting path contains exactly one edge that is not in Esn. Connecting
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paths are the basis to de�ne neighbors in the contracted graph.

De�nition 7 (Structure Preserving Contraction) Graph G0(V 0; E0) is a structure

preserving contraction of a connected, plane graph G(V;E) controlled by decimation

parameters (Vs; Esn) if following conditions are satis�ed:

1. V 0 = Vs.

2. For all edges e0 = (vb; ve) 2 E0 there exists a connecting path CP (vb; ve) in G.

3. If CP (vb; ve) is a connecting path in G then vb = ve or (vb; ve) 2 E0.

4. Let C be any sequence of connecting paths CP (v0; v1); CP (v1; v2); : : : ; CP (vn; v0) in

G forming a circuit. If there exist surviving vertices interior of C they must also be

interior of the circuit C 0 = (v0; (v0; v1); v1; : : : (vn; v0); v0) in G0.

The �rst three conditions establish the correspondence between graph G(V;E) and the

contracted graph G0(V 0; E0). The selected survivors Vs are the vertices of the contracted

graph V 0. Edges in E0 correspond to connecting paths in G and vice versa, and, conse-

quently, circuits in G0 have corresponding circuits in G. Circuit C in the fourth condition

characterizes all circuits in G that have a corresponding circuit in G0. Let vs 2 Vs be

surrounded by C, then C 2 SG(vs) (cf. Def.4). Condition 4 requires that any 'surviving'

part (vs; C) of the structure of G is preserved in the structure of G0, e.g. C 0 2 SG0(vs).

Since this must be true for all circuits C 0 surrounding vs in G0, (vs; SG0(vs)) 2 Struct(G0).

3.2 Dual contraction of non-surviving vertices

Two vertices vi and vj in a graph G(V;E) are identi�ed by replacing both vertices by

a new vertex which is connected to all vertices that were incident on vi and vj before

identi�cation. Contraction of an edge e 2 E in a graph G(V;E) is the operation of

removing e from E and identifying its end vertices [17].
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De�nition 8 (Dual Edge Contraction) Let G(V;E) and G(V ;E) be dual image graphs.

Dual contraction contracts an edge e 2 E and removes its corresponding edge e 2 E

from G at the same time.

Theorem 1 Let G(V;E) and G(V ;E) denote dual image graphs and (Vs; Esn) the deci-

mation parameters. Dually contracting all edges of Esn collapses all non-surviving vertices

into their surviving parents and creates a contracted graph G0(V 0; E0) that preserves the

structure of G(V;E) (according to Def. 7). All connecting paths become edges of the con-

tracted graph G0(V 0; E0) connecting the surviving endpoints.

The proof of this theorem can be found in [10].

The above process can be implemented in parallel for two reasons: (1) because the

removal of edges Esn from E and Esn from E is independent of each other and (2) because

identi�cation simply renames all children to their parents' name in the remaining sets E

and E.

3.3 Dual contraction of redundant faces

Dual edge contraction of graph G(V;E) decreases the number of edges in E and, hence,

also the degrees of the vertices in G. Faces with degree one and two may result. They

correspond to self-loops and double edges in the neighborhood graph, they do not surround

any surviving vertex and, hence, they do not contribute to the structure of the graph. A

second (dual) contraction process 'cleans' the dual graph from such degenerated faces.

De�nition 9 (Dual Face Contraction) Consider a pair of dual image graphs G(V;E)

and G(V ;E). Let vi 2 V n fv1g be a degenerated face not being the background face,

deg(vi) < 3, and let ei(vi; vj) be an incident edge in E. Then ei is dually contracted,

identifying vi with vj, and eliminating edge ei 2 E corresponding to ei. Since vertices of G

correspond to faces of G, we refer to this process as dual face contraction.

Theorem 2 Let G(V;E) and G(V ;E) be a pair of dual image graphs. Dual face contrac-

tion preserves the structure of graph G(V;E).
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Proof : The two cases deg(vi) = 1 and deg(vi) = 2 (see Fig. 6) are discussed separately:

1. If deg(vi) = 1 then the edge ei 2 E corresponding to ei = (vi; vj) is the only edge in

the circuit surrounding face fi, i.e. ei = (v; v) is a self-loop in G. Clearly the removal

of a self-loop does not disconnect G. Self-loops in G that contain interior vertices are

not removed because any interior non-isolated vertex would increase deg(vi) > 1.

2. Let deg(vi) = 2, ei; ej 2 E being the two edges incident to vi. If ei = ej, ei = (vi; vi)

is a self-loop in G. Since G is connected, E = feig and V = fvig, vi being the only

face. Hence vi = v1 is the background face which is excluded from face contraction.

Therefore ei 6= ej are di�erent edges in G and, by duality, ei 6= ej are di�erent edges

in G. Face vi is surrounded by a circuit C with two edges in G: C = (vi; ei; vj; ej; vi).

Obviously both ei and ej connect the same vertices vi and vj in G. The removal of

one of such double edges preserves the connectivity of G. C does not contain any

interior vertex and any other circuit surrounds the same vertices before and after

contracting vi.

Note that the contraction of a face may lead to another degenerated face. Furthermore,

not all degenerated faces can be contracted in parallel. However a process similar to
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stochastic decimation can determine an independent set of degenerated faces which could

be contracted in parallel. For the remaining degenerated faces the process is repeated until

no further degenerated face exists in G.

3.4 Combining the elementary processes

In the previous subsections, we have gathered all subprocesses we need to de�ne the process

of dual graph contraction.

De�nition 10 (Dual Graph Contraction) Let G(V;E) and G(V ;E) be a pair of dual

image graphs. Given the decimation parameters (Vs; Esn) dual graph contraction con-

sists of the following sequence of processes applied to this pair of graphs:

1. Dually contract all edges e 2 Esn collapsing all non-surviving vertices into their

surviving parent vertex;

2. dually (face) contract all degenerated faces;

3. repeat step 2 until all degenerated faces have been eliminated.
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Figure 7: G1 and G1 before dual graph contraction.
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Figures 7, 8 and 9 illustrate dual graph contraction. Figure 7 shows a planar embedding

of graph G1(V1; E1) consisting of 8 vertices and 15 edges. The plane is divided into 9 faces,

with face f1 being the background face. Figure 7b) shows the dual of G1, G1(V1; E1), with

one vertex representing every face of G1. Note that all �nite faces form triangles, or equiv-

alently, deg(vi) = 3; i = 1; : : : ; 8. Figure 7a) illustrates the decimation parameters graphi-

cally: survivors Vs = f�g, non-survivors Vn = f�g, and Esn = f� ! �g = fe1; e13; e14; e15g.

The result of dually contracting all edges Esn is depicted in Figure 8: all parent-child
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Figure 8: Result of dual edge contraction: G�

1 and G�

1.

connections, i.e. all edges that are drawn as arrows in Figure 7a), have been dually con-

tracted. Graph 2 G�

1 contains three self-loops: e7; e10; e11. There are three edges connecting

the same two end vertices v1 and v8: e3; e4; e5; and also three edges connecting v6 and v8:

e8; e9; e11. Fig. 9 results from dually contracting all degenerated faces in G�

1 successively:

f7; f8; f1; f5; f6. Note that v6 is interior both to circuit (v1; e1; v2; e5; v5; e15; v8; e13; v4; e3; v1)

in G which becomes (v1; e5; v8; e3; v1) in G0, and to (v8; e13; v4; e7; v5; e15; v8) in G becoming

a self-loop (v8; e7; v8) in G0. Hence self-loop e7 as well as double edge e3; e5 must survive

2G� identi�es the result of dual edge contraction, G0 the �nal result.
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Figure 9: Result of dual graph contraction: G0

1 and G0

1.

to satisfy condition (4) of Def. 7.

Theorem 3 Let (G(V;E); G(V ;E)) be a pair of dual image graphs and (G0(V 0; E0); G0(V 0; E0))

be the result of dual graph contraction with decimation parameters (Vs; Esn). Then

1. G0(V 0; E0) is a structure preserving contraction of G(V;E).

2. (G0(V 0; E0); G0(V 0; E0)) is minimal, i.e. no further contraction is possible.

3. (G0(V 0; E0); G0(V 0; E0)) is unique.

Proof :

1. (G0(V 0; E0); G0(V 0; E0)) is a structure preserving contraction of G(V;E) since all the

involved operations, e.g. dual edge contraction and dual face contraction, preserve

the structure given in G(V;E), as proved in Theorems 1 and 2.

However, connectivity of G0 has not been shown yet. Connectivity of graph G is

preserved when degenerated faces are contracted. Therefore, G could be disconnected

only by dual edge contraction. Let ei 2 Esn be the last edge the dual contraction of
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which would split G into two components. Hence ei is the only connection between

the two parts before splitting and, as a consequence, ei must be a self-loop in G. This

contradicts the assumption that ei 2 Esn connects a surviving with a non-surviving

vertex.

2. (G0(V 0; E0); G0(V 0; E0)) is minimal if any further contraction would destroy the desired

properties of G0. Since V 0 = Vs, no further vertex can be removed by dual edge

contraction. After step (3) of dual graph contraction there are no degenerated faces

other than the background face in G0, e.g. deg(vi) > 2 for all vi 2 V 0 n fv1g.

Let us consider the consequences of dually contracting a face with deg(vi) > 2 by

dually contracting an incident edge eij = (vi; vj). The removal of edge eij from G0

would either disconnect two vertices that were connected before (and, hence, were

also connected in G by a connecting path) or it would open a circuit build by a

double edge that surrounds a surviving subgraph. This substructure exists because

otherwise the double edge would include a degenerated face with only two sides.

3. G0(V 0; E0) is unique. It is clear that the result after step (1) is unique since it removes

all non-surviving vertices and since the individual operations are independent.

Now let us assume we have derived two di�erent results (G0

1(V
0

1 ; E
0

1); G
0

1(V
0

1 ; E
0

1)) and

(G0

2(V
0

2 ; E
0

2); G
0

2(V
0

2 ; E
0

2)) by dually contracting the faces in a di�erent order. V 0

1 = V 0

2

because face contraction does not change vertices. The connectivity in G0 is deter-

mined by the connecting paths and not by the order of face contractions. Hence also

E0

1 = E0

2 and G0

1 = G0

2. The dual graphs may di�er only by a di�erent planar embed-

ding. But this is determined by the structure of the graphs before dual contraction

and preserved by dual face contraction.

4 Three di�erent ways to build irregular pyramids

Def. 7 speci�ed four properties that relate the original graph G and its contraction G0. It

was argued that these conditions should preserve certain structural properties of graph G.
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With some slight modi�cations of the requirements other results can be achieved. This

section compares the introduced version with two modi�cations. In the examples we shall

use graph G3 from Fig. 5(a) as our original graph.

The following property has been observed �rst in [11] but the present formulation allows

a much clearer proof.

Theorem 4 Let (G(V;E); G(V ;E)) be a pair of dual image graphs and (G0(V 0; E0); G0(V 0; E0))

the result of dual graph contraction. Then the degree of vertices of G0 is less or equal to

the degree of vertices of G.

Proof : Dual edge contraction removes dual edges in G, but the number of faces remains

the same as in V . However the degrees of the two adjacent faces decrease by one when a

dual edge is removed. Dual face contraction eliminates degenerated faces. Contraction of

a face of degree one reduces the degree of the other adjacent face by one. Contraction of a

face with degree two leaves the degrees of the two adjacent faces the same. Hence all faces

of G0 can �nd a face in G with at least the same degree.

If we relaxe the requirement to preserve structure (fourth condition in Def. 7), the

resulting graphs need no self-loops nor any double edges. The minimal graph satisfying

conditions (1), (2), and (3) is simple, it has been used in the previous works of Meer [12],

Montanvert [13] and Jolion [6]. The such de�ned simple graph is a subgraph of a structure

preserving contraction. Since the structure preserving contraction preserves planarity this

is also the case for the simple graph. Let us refer to this type of contraction as simple

contraction. The only drawback of the simple contraction is that the degrees of faces

cannot be garanteed to shrink in certain cases, e.g. when there exists a vertex with degree

one (see Fig. 10b).

The second modi�cation further relaxes the de�nition of connecting paths. In simple

contraction connecting paths are not longer than 3, but not all paths of lengths less than

four are connecting paths. This last extension allows all such paths to create an edge in

the reduced graph G0: E0 := f(u; v) 2 Vs � Vsj9P (u; v) 2 G such that kP (u; v)k < 4g. Let

us refer to this graph reduction as path length contraction although it does not necessarily
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involve a contraction operation. With this simpli�cation, the selection of Esn is no more

necessary. In addition, planarity cannot be preserved. This is illustrated in Figure 10

which shows the result of the three di�erent contractions of the same graph G3 shown in

Fig. 5. Although the original graph is planar the graph in Fig. 10(a) contains the complete

graph K5 as subgraph. Table 1 compares properties of the three contractions.
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Figure 10: Three di�erent contractions of G3.

5 Conclusion

Dual graph contraction transforms a pair of dual image graphs into a pair of smaller

dual image graphs. The contraction is controlled by decimation parameters. Surviving

vertices can be chosen as an arbitrary subset of vertices, only non-surviving vertices must

satisfy a minor constraint. It is shown that the result preserves the structure given before

contraction. Furthermore it ful�lls all requirements for dual image graphs to be contracted

again. Applied recursively, the algorithm builds an irregular pyramid.

20



Table 1: Comparison of three contractions G(V;E)! G0(V 0; E0).

path length simple structure preserving

V 0 := Vs V 0 := Vs V 0 := Vs

kCP (u; v)k < 4 CP (u; v) (Def. 6) CP (u; v) (Def. 6)

(u; v) 2 E0 , 9kP (u; v)k < 4 2 G (u; v) 2 E0 , CP (u; v) 2 G (1){(4) of Def. 7

no double edge no double edge some double edges

no self-loop no self-loop some self-loops

planar ! non-planar planar ! planar planar ! planar

connected ! connected connected ! connected connected ! connected

preserving lengths of cycles(?) not preserving face degrees preserving face degrees

Our experience with the di�erent approaches for reducing graph structures and the new

approach presented in this paper extends the scope of the presented theory to three and

higher dimensions. We observed that contraction led to degenerations both in the original

and in the dual graph (self-loops, double edges). When removed in the original graph the

structure could not be preserved. However the removal of degenerations in the dual graph

nicely removed all degenerations that did not destroy the structure of the graph. In 3D

space duality can be introduced between points and volumes, and between lines and faces.

A similar dual contraction scheme could be applied to build 3D irregular pyramids.

How to select the decimation parameters has not been discussed in this paper. There

are several possibilities to determine these parameters, each criterium following a di�erent

objective:

� Random selection as in Meer's stochastic pyramids [12];

� MIS determination by a Hop�eld neural network [2, 1];

� Adapting the pyramid structure by data dependent local voting like in [6];
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� Enforcing certain model-guided subgraph structures that could be predetermined by

the vocabulary of interpretation.

Besides their structural information the vertices and edges of dual image graphs carry

additional information as do the pixels of a picture array. Semantic information can be

added to the graphs by attributes or labels. During contraction these attributes must

be calculated also for the reduced graph. In analogy to regular pyramids reduction func-

tions [9] serve this purpose. They take as input the attributes of all children to compute the

parent's attribute. Subsampling or averaging would be simple examples. The real poten-

tial of irregular pyramids lies probably in the e�cient combination of reducing information

and adaptively contracting the structure.
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