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Abstract

Dual graph contraction reduces the number of verti-
ces and of edges of a pair of dual image graphs while, at
the same time, the topological relations among the 'sur-
viving' components are preserved. Repeated application
produces a stack of successively smaller graphs: a pair
of dual irregular pyramids. The process is controlled
by selected decimation parameters which consist of a
subset of surviving vertices and associated contraction
kernels. Equivalent contraction kernels (ECKs) com-
bine two or more contraction kernels into one single
contraction kernel which generates the same result in
one single dual contraction. This is the basis to the
proof that any segmentation can be represented in one
single level of such a pyramid. Experimental results de-
monstrate the applicability on synthetic and real images
respectively.

1 Introduction

Pyramids, considered as a stack of interrelated
images with decreasing resolution, are useful when de-
aling with image processing tasks and feature extrac-
tion. Among the inherent properties of pyramids [7]
are: reduction of noise and computational cost, resolu-
tion independent processing, processing with local and
global features within the same frame, irregular pyra-
mids adapt their structure to the data.

In the paper of Bister et al. [1], properties of py-
ramid segmentation algorithms were investigated. The
main conclusion of the paper is that " classical pyra-
mids have to be rejected as general-purpose image seg-
mentation algorithm, due to several problems such as
shift-variance". In the same paper Bister et al. reject
the use of irregular pyramids because "we do not know
how many levels we will have, thus e.g, eliminating the
use of pyramid architectures for implementation of this
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approach. Many attempts were undertaken to over-
come the problem of classical pyramid segmentation
algorithms by using irregular structures [10, 9, 11]. We
propose to address the problem of pyramid segmen-
tation algorithm using a uni�ed scheme that embeds
the already cited approaches and that overcomes their
problem. This will allow us to have a shift-invariant py-
ramidal segmentation algorithm with a bounded num-
ber of levels for the pyramid. Moreover we obtain an
algorithm that is invariant under all transformations
preserving connectivity. The presented approach ad-
dresses a representation of pure structure, a hierarchy
of plane graphs, with a clear interface, the decimation
parameters, to control generation and modi�cation of
the structure. Dual graph contraction is the basic pro-
cess [5] that builds an irregular "graph" pyramid by
successively contracting a dual image graph of one le-
vel into the smaller dual image graph of the next le-
vel. Dual image graphs are typically de�ned by the
neighborhood relations of image pixels or by the ad-
jacency relations of the region adjacency graph. The
above concept has been used for �nding the structure
of connected components [8]. It also embeds other ap-
proaches ([10], [3], [9]).

The paper is organized as follows. We �rst summa-
rize and illustrate the procedure of dual graph contrac-
tion in Section 2. The observation that the parameters
that control the process form forests is then generali-
zed by the concept of contraction kernels. Originally
of depth one, deeper forests are now permitted and al-
low bigger contractions. They are necessary if repeated
dual contractions are to be replaced by a single dual
contraction using equivalent contraction kernels (ECK)
(section 2.2). ECKs are able to compute any level of an
irregular pyramid directly from the base. Decimation
parameters can be designed now at the base without
the need to �rst generate the lower pyramid levels. The
main properties of ECK are used in section 3 to derive
the main result of this paper. The results in section 4
include an example from Bister et al. [1] that demons-



trates shift-variance with regular pyramid linking and
is stable in the new scheme.

2 Dual Graph Contraction

The base of the pyramid consists of the pair of dual
image graphs (G0; G0). We repeat the de�nition of the
parameters determining the structure of an irregular
pyramid given in [5][Def.5]:

De�nition 1

In a pair of dual image graphs (Gi(Vi; Ei); Gi(Vi; Ei)),
following decimation parameters (Si; Ni;i+1) deter-
mine the contracted graphs (Gi+1; Gi+1): a subset of
surviving vertices Si = Vi+1 � Vi, and a subset of
primary non-surviving edges1 Ni;i+1 � Ei. Every
non-surviving vertex, v 2 Vi n Si, must be connected to
one surviving vertex in a unique way:

8v 2 Vi n Si 9s 2 Si : (v; s) 2 Ni;j : (1)

The relation between the two pairs of dual graphs,
(Gi; Gi) and (Gi+1; Gi+1), as established by dual graph
contraction with decimation parameters (Si; Ni;i+1) is
expressed by function C[:; :]:

(Gi+1; Gi+1) = C[(Gi; Gi); (Si; Ni;i+1)] (2)

For more details see [13].

2.1 Decimation with Contraction kernels

De�nition 2 A decimation of a graph G(V;E) is spe-
ci�ed by a selection of surviving vertices S � V and
a selection of primary non-surviving edges N � E

such that following two conditions are ful�lled:

1. Graph (V;N) is a spanning forest of graph
G(V;E).

2. The surviving vertices S � V are the roots of the
forest (V;N).

The trees T (v) of the forest (V;N) with root v 2 V are
called contraction kernels.

Instead of joining non-surviving vertices by an edge to
their corresponding surviving parent vertex, the new
concept establishes this connection via paths of non-
surviving edges (e.g. branches of the trees). The con-
cept of connecting path as introduced in [5][Def.6] is
adapted accordingly:

1Secondary non-surviving edges are removed during dual face

contraction.

De�nition 3 Let G(V,E) be a graph with decima-
tion parameters (S;N). A path in G(V;E) is cal-
led a connecting path between two surviving verti-
ces v; w 2 S, denoted CP (v; w), if it consists of three
subsets of edges E:

1. The �rst part is a possibly empty branch of con-
traction kernel T (v).

2. The middle part is an edge e 2 E nN that bridges
the gap between the two contraction kernels T (v)
and T (w). We call e the bridge of the connecting
path CP (v; w).

3. The third part is a possibly empty branch of con-
traction kernel T (w).

Connecting paths CP (v; w) in G(V;E) are strongly re-
lated to the edges in the contracted graph G0(V 0; E0):
Two di�erent surviving vertices that are connected by
a connecting path in G are connected by an edge in E0.
For every edge e0 = (v; w) 2 E0 there exists a connec-
ting path CP (v; w) in G. Dual edge contraction can
be implemented by (1) simply renaming all the non-
surviving vertices to their surviving parent vertex, (2)
deleting all non-surviving edges N and (3) their duals
N .
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(a) (V2; N0;2) (b) (V0; E0 nN0;2)

Figure 1. Example of equivalent contraction
kernel.

Fig. 1a shows di�erent decimation parameters: Sur-
vivors S = V2 are selected and the contraction kernels
N0;2 cover G0. Like in a maze the edge-contracted face
graph (Fig. 1b), G�

0(V0; E0 nN0;2), �lls in the holes left
between the contraction kernels. Dual face contrac-
tion deletes all degree-one faces and shortens redun-
dant connections established by the degree-two faces,
resulting in G2.



2.2 Equivalent contraction kernels

Burt [2] introduced the 'equivalent weighting func-
tion': \Iterative pyramid generation is equivalent to
convolving the image g0 with a set of 'equivalent weigh-
ting functions' hl:" gl = hl�g0 = h�gl�1; l > 1. It allo-
wed him to study the e�ects of iterated reduction (e.g.
the low-pass character of Gaussian pyramids) using the
single parameter hl without giving up the e�cient ite-
rative computation.

C[C[Gk�2; (Sk�2; Nk�2;k�1)]; (Sk�1; Nk�1;k)] = Gk

Gk = C[Gk�2; (Sk�1; Nk�2;k)] (3)

Equivalent contraction kernels are constructed in the
following way:

Assume that the dual irregular pyra-
mid ((G0; G0); (G1; G1); : : : ; (Gk; Gk)), k > 1, is the
result of k dual graph contractions. The structure of
Gk is fully determined by the structure of Gk�1 and the
decimation parameters (Sk�1; Nk�1;k). Furthermore,
the structure of Gk�1 is determined by Gk�2 and the
decimation parameters (Sk�2; Nk�2;k�1). Sk�1 := Vk
are the vertices surviving from Gk�2 to Gk. The
searched contraction kernels must be formed by ed-
ges Nk�2;k � Ek�2. This is true for Nk�2;k�1 � Ek�2

but not for the contracted edges, e.g. Nk�1;k 6� Ek�2.
An edge ek�1 = (vk�1; wk�1) 2 Nk�1;k corresponds
to a connecting path2 CP (vk�1; wk�1) in Gk�2. By
de�nition 3, CP (vk�1; wk�1) consists of one branch of
Tk�2(vk�1), one branch of Tk�2(wk�1), and one survi-
ving edge ek�2 2 Ek�2 connecting the two contraction
kernels Tk�2(vk�1); Tk�2(wk�1).

De�nition 4 Function bridge: Ek�1 7! Ek�2 assi-
gns to each edge ek�1 = (vk�1; wk�1) 2 Ek�1 one
of the bridges ek�2 2 Ek�2 of the connecting paths
CP (vk�1; wk�1):

bridge(ek�1) := ek�2: (4)

Two disjoint tree structures connected by a single edge
become a new tree structure. The result of connec-
ting all contraction kernels Tk�2 by bridges ful�lls the
requirements of a contraction kernel:

Nk�2;k := Nk�2;k�1 [
[

ek�12Nk�1;k

bridge(ek�1) (5)

The above process can be repeated on the remaining
contraction kernels until the base level 0 contracts in

2If there are more than one connecting paths, one must be

selected.
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Figure 2. Example of ECK of apex: G0 [N0;4.

one step into the apex Vn = fvng. The edges of the cor-
responding spanning tree are contained in N0;n. Fig. 2
shows spanning tree N0;4 overlaid with the base graph
G0. The apex, v4 2 V4, is marked by a �lled circle and
the edges of the spanning tree N0;4 are di�erentiated
from edges E0 by triple lines.

3 Contracting a segmentation set

One step to recover the structure of the scene from
the projected structure in the image is to �nd the adja-
cency relations between the regions of a segmentation
[8]. Pyramids are computationally very e�cient and
can be used for segmentation. (details in [4]).

Pyramid (re-)linking allows a �ne tuning of region
shapes by removing certain cells of the receptive �eld
because they link to another ancester. But the resul-
ting regions always �t inside the original region. Besi-
des the restrictions imposed by the limited number of
neighbors (due to regularity all interior cells have the
same number of neighbors) the classical pyramid lin-
king may also destroy the connectivity of the receptive
�elds [11]. Nacken's modi�cations not only preserve
the connectivity of the receptive �elds, but they also
extend the original linking concept: links may move to
any neighbor of a (newly) chosen parent even if it is not
a neighbor of its original parent. As a consequence the
number of neighbors of a cell may grow higher than in
the initial state, and also the receptive �elds can grow
beyond the borders in the regular pyramid. The new
concept of contraction kernels allows di�erent factors
of contraction at di�erent image regions. The following
proposition proves that all possible segmentations (as



de�ned in [12]) can be represented using contraction
kernels. Note that any homogeneity predicate can be

used to de�ne the segmentation
nS

i=1

Ri.

Proposition 1 Let
nS

i=1

Ri = V0; Ri \ Rj 6= ; be

a partition of the vertex set into connected regi-
ons Ri. Then there exists a dual irregular pyramid
((G0; G0); (G1; G1); : : : ; (Gk ; Gk)) built by dual graph
contraction such that

1. All vertices vk 2 Vk in the top level appear in ex-
actly one region Ri.

2. card(Vk) = n.

3. card(Ri \ Vk) = 1 for all regions Ri.

4. Let vi 2 Ri \ Vk and vj 2 Rj \ Vk, i 6= j; then
(vi; vj) 2 Ek , Ri and Rj are adjacent.

The detailed proof is presented in [6].

4 Results

In this section we present some experimental results.
The �rst example Fig 3(a) was taken from [1]. This
example shows how classical pyramid segmentation al-
gorithms are sensitive to shift-variance. Figure 3(b)
shows the output of the segmentation processed by the
classical relinking algorithm 3(b) and our algorithm
3(c). As pointed out by [1] and [11] the connectivity
is not preserved with the classical relinking algorithm.
The output of our algorithm preserves the connectivity.
The result is shown with 2 surviving cells de�ning the
2 segmented regions.
Figure 4 shows the shift-variance problem of the clas-
sical relinking algorithm. The original image (Figure
3(a)) was shifted by 1 pixel in the horizontal direction
and the result is Figure 4(a). In the other example
Figure 4(b) the image was shifted in both vertical and
horizontal direction. As it was expected there is no sta-
bility for the segmentation result when using the clas-
sical relinking algorithm with a rigid structure. Our
algorithm gives exactly the same output as on Figure
3 showing hence its stability.
We applied in Fig 5, Fig 3(d), also the segmentation
process of our algorithm on real data images. The re-
sults shown are satisfactory.

(a) (d)

(b) relinking (e) relinking

(c) ECK (f) ECK

Figure 3. Segmentation produced by "relin-
king algorithm" and "ECK algorithm".

(a) Horizontal shift (b) Diagonal shift

Figure 4. Shift variance segmentation of the
"pyramid relinking algorithm".



(a) (d)

(b) ECK (e) ECK

(d) Relinking (f) Relinking

Figure 5. Original image and segmented
images.

5 Conclusion

The proposed algorithm overcomes the problems of
classical pyramid segmentation algorithms cited by [1]
within a uni�ed framework in which we give the formal
proof that irregular (graph) pyramids can be used for
general purpose image segmentation. The method re-
constructs the segmentation in a single step using the
Equivalent Contraction Kernel principle. The method
is computationally [13] e�cient and is highly parallel.
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