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Minsky and Papert proved in 1969 that connectivity of an arbitrary pixel set X
cannot be computed locally in general. Their theorem essentially depends on their
two stage architecture. The present paper introduces a pyramidal strategy to solve
similar complex problems with the major difference that the data are not orga-
nized in a regular grid but in planar graphs and that the repeated transformations
depend adaptively on the data. The algorithm is demonstrated by two exam-
ples: (1) Finding connected boundary segments and how they are connected with
each other; (2) Given two arbitrary non-intersecting curves in an image determine
whether two marks ’x” are placed on the same or on different curves. In both cases
computational complexity depends on log|X|. It is made possible by controlling
the contraction process in a way that does not destroy the desired global property.

1 Introduction

The analysis of shapes often involves checking properties like connectivity,
convexity, circularity, arrangement of curvature extrema along the boundary
etc. (see Nagy ’ for many other shape extraction methods). Minsky and
Papert’” describe such properties formally by predicates ¢(X) of a subset X of
pixels belonging to the shape. Our approach allows the domain of X to be any
subset of regions of a partition of the continuous image plane I. A given shape
boundary intersects the partition cells X C I which we shortly call boundary
segments.

The connectivity predicate ¥connrcren(X ) = true if the set of boundary
segments X is connected in the image I. Checking the connectivity of a set
X involves finding connected paths between any pair of elements in X. This
is a difficult task even for humans. A simplified psychological test lead to
conjectures about the type of visual routines used in human perception. The
image contains two separate curves and two marks 'X’, placed on the same or
on different curves (Fig. 1). The two curves C1,C> C I do not intersect each
other but may have complicated intertwinned shapes. The task is to decide,
as rapidly as possible, whether the two Xs are on the same curve expressed by
Yoz (X) = true or on different curves, 1., (X) = false .

Psychophysical experiments * suggest that people can trace curves inter-
nally at high speed, and that curve tracing is a ’visual routine’. Fig. 1(a)
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Figure 1: Are the 2 x on the same curve?

approximates the configuration of the experiments used by Jolicoeur *. Se-
quential curve tracing was hypothesized from their experiments because (1)
‘more time was required ... when longer distances along the curve separated
the two curves’ and because (2) ’response times were slower, on average, for
"different” trials than for ”same” trials’.

The complexity of the task is related to a principle problem of ¥ connecTEDaS
pointed out by Minsky and Papert *: WeonneerentS not conjunctively local of
any order.” They assume a two stage computation: in stage I many proper-
ties are computed in parallel and each individual property accesses maximally
k < n =|X] elements of X; Stage II combines all results of stage I in a simple
way (e.g. by logical AND). The above theorem refers to this two stage compu-
tation scheme and it means that the computational complexity of computing
the connectivity of an arbitrary set X C I needs O(]X]) steps.

In this paper we show a computational solution that needs less complex
computations. In our case one computation stage consists in a transformation
7: X — X' that reduces the data size by a factor A > 1

| X' < |1XT]/A (1)

while the reduced data set X' preserves the property to compute:
P(X') = p(X) (2)
The application of 7 can be repeated on the reduced data set X’ until any
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further reduction would destroy property . Assume that X (" = ™(X) is
the result after n repetitions. From (1) follows that the overall size reduction

is bounded by A" < % and also the number n of repetitions:

log | X| — log | X ()
< log| X[ —log|X(")

log A (3)

Together with constraints (1) and (2) and the assumption that 7 needs only
local parallel computations (X) = (X)) can be computed in O(log|X|)
parallel steps.

Classical regular pyramids’ possess property (1), but, in general, counter
examples for property (2) can be constructed *. It has been demonstrated *
that adaptive pyramids in which transformation 7 depends on the data X
overcome the problem. The price to pay is the loss of regularity. Section 2
shortly reviews the transition from regular pixel grids to graph structures and
the specific transformation 7 to contract graphs: dual graph contraction. Then
selection rules are described (in section 3) that preserve the connectivity of
the boundary based shape representation. Section ?7? relates the efficiency
of the method with results from psychophysical experiments. The conclusion
summarizes the paper and gives an outlook to several related issues.

2 From Pixels to Graphs

Fig. 2 illustrates how a pixel grid can be represented by a neighborhood graph
G(V,E) and its dual face graph G(F,E). Vertices V correspond to pixels,
geometrical properties like coordinates or gray value are stored as attributes.
Vertices containing curve information will be called cells to highlight this fact.
Two vertices are joined by an edge if the corresponding pixels are neighbors®.
The faces of the dual graph are placed inside the square formed by 4 vertices.
Two faces are joined by a dual edge if the corresponding squares are adja-
cent in G. There is a one-to-one relationship between E and E. This graph
representation extends the scope to any tesselation of the image plane.

Dual graph contraction (G',G') = C[(G,G), (S, N)] is the transformation
7 that reduces the size of the pair of dual graphs using contraction kernels
(S, N) as parameters . Contraction kernels can be any spanning subgraph of
G without cycle. The roots of the forest (V, N) are called surviving vertices
and they constitute the vertices of the contracted graph G', V' = S C V.
The contraction process contracts all edges N into the root in V', edges E’
are established in G’ if the two surviving endpoints are connected in G by a

%4-neighbors are used because they make G planar.
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Figure 2: (a) pixel grid, (b) neighborhood graph G(V, E), (c) dual face graph G(F, E)

connecting path consisting of two branches of the two contraction kernels and
one edge e € E\ N which is called a bridge. We shall control this process by
a data dependent selection of the contraction kernels such that the predicate
1) is preserved.

The stack of successively reduced graphs ((Go,Go), (G1,G1), ..., (Gn,Gr)),
Gop = G, is called a dual irregular pyramid. Any number of contraction ker-
nels can be combined together in an equivalent contraction kernel (ECK) that
contracts the base graph G directly into the top graph. Every tree of the ECK
spans the complete receptive field of its root vertex i.e. all vertices of 15 that
have been contracted into this root.

3 Connectivity Preserving Boundary Contraction

The following solution combines the concepts of curve relation and dual irregu-
lar pyramid. In contrast to the irregular curve pyramid’, here, the cells where
the curves are represented are contracted and not the dual graph. Like in the
regular curve pyramid’, curve and cell may be related by several cell classes:

0-cell ... denotes an empty cell (no curve within the receptive field)

2-cell ... one single curve crosses the receptive field; it enters and exits the cell
at two particular boundary segments (e.g. across two edges e, ez € E).

1-cell ... a curve ends in this cell (a filled circle marks 1-cells in the figures);
it enters the cell at a particular boundary segment.

*_cell ... a cell where more than one curves meet. °

Fig. 3(a) overlays a pixel grid and a curve network. In a first phase all cells
in the base (squares in Fig. 3(a)) are assigned to one of the four cell-classes.
A simple algorithm starts with edges between 4-adjacent pixels: If a curve

bSince both YoonnecTEDANd ¥z, do not need any differentiation between different types
of crossings, it is considered also as the end of all curves that meet there.
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crosses the edge the edge receives an attribute 1 otherwise 0. Then all pixels
sum the attributes of their incident edges. Sums 0, 1, and 2 correspond the
0-cell, 1-cell, and 2-cell, respectively, cells with a sum higher than 2 are *-cells.
It is assumed that

1. the cell classes are consistent, i.e. if a curve crosses a boundary segment
both cells adjacent to this segment are in the correct class;

2. all curves are well distinguishable in the base, e.g. there are no more
than one single curve in one single cell of the base (except at *-cells).

3.1 Selecting the Contraction Kernels

Fig. 3b,c,d illustrate three successive contractions. Since contraction of vertices
corresponds to merging receptive fields these are drawn as closed lines. Root
vertices are indicated by circles.

Selection rules: 1-cells and *-cells must always survive. *-cells are not
allowed to have children. This prevents the area of unclear information ¢ from
growing. Branches of contraction kernels follow the curves if possible and are
selected in following order: 1-cell, 2-cell, 0-cell. Receptive fields of contracted
edges merge and collect the information from the individual parts:

1. A 1-cell can merge with its adjacent 2-cell (this is the only neighbor con-
nected to the 1-cell by an edge with attribute 1), then with any adjacent
0-cell and will become an 1-cell again;

2. a 2-cell can merge with both adjacent 2-cells (connecting edges must have
attribute 1!) or with any adjacent 0-cell and remains a 2-cell;

3. a 0-cell can merge with any adjacent cell and remains a O-cell only if it
is merged with another 0-cell.

Random selection (like in adaptive pyramids ’) applies whenever the above
rules do not determine the contraction kernels completely. If surviving cells
form a maximum independent set connecting paths have at least length two
and hence cells along boundaries are reduced by a factor A\ > 2.

During contraction the bridges of connecting paths inherite their attribute
to the new edge. It can be easily verified that the above merging rules pre-
serve the consistency between edge attributes and cell classes, i.e. the sum of
attributes of incident edges determine the class of cells. When a 1-cell meets
another 1-cell (the other end!) we have found a complete curve segment.

¢Curves may intersect or may be just close to each other.
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Figure 3: Three step boundary contraction preserving YconNNECTED




3.2 The Final Graph

Above selection criteria determine the parameters with which we dually con-
tract the graphs until no further contraction is possible. The resulting graph
has following properties (verify in Fig. 3d):

e The number of 1-cells (4 in Fig. 3d) and the number of *-cells (7 in
Fig. 3d) correspond to the base graph.

e No more 0-cells are present with one exception: An empty area com-
pletely surrounded by *-cells leaves an isolated 0-cell.

e 2-cells may appear in only two cases:
(a) between two *-cells (7 in Fig. 3d), or
(b) forming a self-loop.

Curves remain in separated cells if they are distinct in the base. In this final
graph all empty space has been contracted, and all curves have been contracted
to minimal length, but all connectivity information of the base is still present.
The receptive fields depend the cell classes in the top level:

*_cells correspond to *-cells in the base one-to-one;

e the receptive field of a 2-cell located between two *-cells consists of the
sequence of 2-cells in the base that connect the two *-cells plus some
0-cells on both sides of the curve;

e the receptive field of a 2-cell self-loop accumulates all 2-cells forming the
closed curve in the base, the complete interior area of 0-cells if there is
no other curve inside, and some 0-cells outside;

e the receptive field of two adjacent 1-cells collects all cells the correspond-
ing curve crosses in the base plus some 0-cells at the sides;

e the receptive field of a 1-cell adjacent to a *-cell is the complete set of
2-cells that connect the 1-cell in the base with the other *-cell plus some
0-cells at the sides.

The method finds a topologically correct (¢coxnrcren(G) = Yconnreren(G(n)))
and minimal description for all possible (planar) configurations of curves as
complicated the layout may be, as long as the sampling allows discrimination
of curves in the base. Even strange cases as space filling curves can be treated
since the receptive fields may have arbitrary shapes as long as they are planar
and connected. In those cases there exist spanning trees covering the curve
that can serve as kernels for contraction.
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Figure 4: Step 1 and 3 of boundary contraction preserving .. = false.

4 Contracting Two Xs On a Curve

We use 0-, 1-, and 2-cells as introduced for computing ¥connecren, F-cells do
not appear in the 2x problem. X-marks can be implemented as additional
numeric labels of cells, e.g. label(2-cell)=k,k € {0,1,2,...} if k¥ x-marks are
found in the receptive field of the 2-cell. Labels greater than 0 are displayed in
figures 7?7 and 77 in the left bottom corner of the box delineating the receptive
field. All cells are filled with the appropriate labels in the base. It is assumed
that, in addition to the two consistency conditions for ¥coxnecten, the two
x-marks are correctly detected and entered as label(cell)=1.

Contraction proceeds as in the general case with following additions: If
two 2-cells or 1-cells are merged their labels are summed. The two curves
remain in two separated cells if they are distinct in the base. Note that dual
graphs need not be considered in this case because we know that the image
contains two separate curves and, consequently, no cycles can appear that give
rise to faces in the final result. The second example of Figure 1(b) leads to
ez = true after four contractions (Fig. ??(a)-(d)).

Our proposal offers a computational solution to this problem that needs
O(log(curvelength)) parallel steps. This is consistent with experimental ob-
servations: if both x are on the ”same” curve, the response can be given after
the time needed to contract the arc in between both x whereas the ”different”-
response needs at least the shorter curve to be completely contracted.

8



Ja—N

O
L

s Fﬁ
amiAn

o
o—4—-=e O o%c
K ~——o—o
o) o o /
(b)

Figure 5: Steps 1 and 4 of example ”same” with ¢z, = true

5 Conclusion and Outlook

Dual graph contraction transforms graphs into a hierarchy of smaller graphs
without destroying properties like connectivity: %coxnscrepand ., can be
computed in O(log|X]) steps. Hierarchical aggregation replaces sequential
search and speeds up the computational complexity.

The generality of the approach lies in a clear separation between the con-
traction process and the choice of control parameters that can be adapted to
many different predicates ¢. The efficiency is based on the fact that the con-
traction can reduce the data by a factor A > 1 without loosing any piece of
information necessary for computing the predicate 1.

The presented contour segmentation complements the universal region seg-
mentation’. Both partition the image plane completely but in a different way:
Contours remain in the interior of ECK in the contour segmentation, whereas
they separate regions in the region segmentation. Regions in the contour seg-
mentation are split among the contour segments that surround them. The
bridges of the contour segmentation that fall inside a region form a sort of axis
of the region.
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