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Abstract

Burt introduced 1983 'equivalent weighting function': \Iterative pyramid generation

is equivalent to convolving the image g0 with a set of 'equivalent weighting functions'

hl:" gl = hl � g0 = h � gl�1; l > 1. It allowed him to study the e�ects of iterated

reduction (e.g. the low-pass character of Gaussian pyramids) using the single parameter

hl without giving up the e�cient iterative computation.
A similar concept applies to graph pyramids built by dual graph contraction. This

new algorithm reduces the number of vertices and of edges of a pair of dual image graphs

while, at the same time, the topological relations among the 'surviving' components

are preserved. Repeated application produces a stack of successively smaller graphs:

a pair of dual irregular pyramids. The process is controlled by selected decimation

parameters which consist of a subset of surviving vertices and associated contraction

kernels. These play a similar role for graph pyramids than the convolution kernels

of Gaussian pyramids. Equivalent contraction kernels (ECKs) combine two or more

contraction kernels into one single contraction kernel which generates the same result

in one single dual contraction. The basic concepts are elaborated and discussed. The

new theory opens a large variety of possibilities to explore the domain of 'all' graph
pyramids.

1 Introduction

A raw digital image consists of a 2D spatial arragement of pixels each of which results from
measuring the light at a speci�c location of the image plane. Currently most of the arti�cial
sensors (e.g. CCD cameras) have the rigid structure of an orthogonal grid, whereas most
natural vision systems are based on non-regular arrangements of sensors [1]. Although arrays
are certainly easier to manage technically, topological relations seem to play an even more
important role for vision tasks in natural systems than precise geometrical positions.

A second aspect concerns the projection from the real (3D-) world into the 2D image.
Surfaces of 3D-objects re
ect the light in a very speci�c way that somehow 'codes' the
structure of the object: re
ectivity is a property of material and does not vary much along
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object surfaces, it changes abruptly between di�erent surfaces or from the object to its
background [15]. Image properties can be formally described (see Minsky and Papert [18])
by predicates  (X); X � I where X is the subset of pixels belonging to the image of an
object.

The topological structure on a visible surface patch is preserved in the image while
its geometry may be severly distorted. But also the arrangement of di�erent objects in
the 3D-world will be mapped to the regions in the image, be it regularly or irregularly
sampled. Hence the idea pursuit in this paper to start with arbitrarily but densely sampled
measurements of which only the topology is known and to successively shrink the number
of descriptive elements until the structure of the imaged scene becomes evident.

The third aspect addresses computer vision models. They have in general a parame-
tric and a structural component. While parameter optimization models quantitative image
properties well, the qualitative image and scene properties rely more on the structural com-
ponent.

The presented approach addresses a representation of pure structure, a hierarchy of
plane graphs, with a clear interface, the decimation parameters, to control generation and
modi�cation of the structure. Dual graph contraction is the basic process [10] that builds
an irregular 'graph' pyramid by successively contracting a dual image graph of one level into
the smaller dual image graph of the next level. Dual image graphs are typically de�ned
by the neighborhood relations of image pixels or by the adjacency relations of the region
adjacency graph. The above concept has been used for �nding the structure of connected
components [14, 13]. It also embeds Meer's stochastic pyramid [17], the adaptive pyramid [6],
and a further variant of Meer's approach, Mathieu's optimal stochastic pyramid [16] which
produced excellent segmentation results by decimating a minimal spanning tree instead of
the original graph.

The paper is organized as follows. We �rst review classical image pyramids and recall
the e�ect of Burt's equivalent weighting function (section 2). In the sequel graphs take
over the role of the regular grid structure of image arrays (section 3). Then we summarize
and illustrate the procedure of dual graph contraction in Section 4. The observation that
the parameters that control the process form forests is then generalized by the concept of
contraction kernels. Repeated dual contractions can be replaced by a single dual contraction
using equivalent contraction kernels (ECKs, section 4.2). ECKs are able to compute any
level of an irregular (graph-) pyramid directly from the base. Decimation parameters can
be designed now at the base without the need to �rst generate the lower pyramid levels.
The conclusion (Section 5) summarizes the major advantages of both regular and irregular
pyramids.

2 Image Pyramids

Classical image pyramids have been introduced 1981/82 [4, 20] as a stack of images of
decreasing resolutions. Since then several modi�cations and additions have been made to
the original concept [9] while main properties are still valid.

Let us de�ne a digital image as a function gk of a �nite set Lk of resolution cells [5] that
cover a limited area of the continuous image plane into a limited range of grey values. The
di�erent images gk : Lk 7! [0; 255] in the pyramidal stack are ordered according to their
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spatial resolution1

L0 � L1 � : : : � Ln:

In this ordering the individual images are called levels and are numbered from bottom L0

(highest resolution) to top Ln. Based on the neighborhood relations of an image, the notion
of reduction window is introduced for regular (e.g. square grid) structures. It relates
every cell ck+1 2 Lk+1 to a set of cells w(ck+1) � Lk, the children of cell ck+1. In a regular
pyramid all (interior) cells have the same number of neighbors and children.
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Figure 1: Regular pyramids: levels k (+) and k + 1 (�), reduction window

A second parameter describes di�erent types of pyramids: the reduction factor �. It
captures the rate by which the number of cells decreases

jLk+1j �
jLkj

�
for 0 � k < n

In the formal notation "2 � 2=4", 2 � 2 de�nes the size of the reduction window, and the
reduction factor 4 expresses that level k+1 contains only a quarter of pixels of level k. The
notation (reduction window)/ reduction factor characterizes the type of the regular pyramid.
Fig. 1 overlays two adjacent levels of four di�erent types of regular pyramids. Note that
adjacent reduction windows may overlap (see Fig. 1b, c, d).

If the information in a pyramid is transmitted only across parent-child links every cell
ck 2 Lk; k > 0 summarizes information from cells in the levels Li; 0 � i < k. In the level Lk�1

directly below the cell ck they form the reduction window w(ck). Every cell of the reduction
window in turn has children in lower levels. An equivalent window wj(ck) covers all cells
at a given level j < k that link to the same cell ck. Formally w

j can be de�ned recursively:

w0(�) := w(�)

wi+1(p) :=
[

q2w(p)

wi(q) for 0 � i < n (1)

wj(ck) de�nes the domain of measurements that are summarized as contents of ck.
The information stored in the cells of a pyramid range from single gray values up to

very complex descriptions of 'what the cell sees'. We consider also parameters of one or
more models, selected symbols from a vocabulary, simple symbolic descriptions de�ned by a

1The geometrical center of a cell may be shifted to the center of gravity of its reduction window, i.e. in

Fig. 1(a, c).
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formal language, and attributed graphs. The processes working on pyramidal representations
compute or modify either the contents of the cells or the structure of the pyramid.

Reduction functions gk+1 := R(g(w(ck+1))) compute the contents of cells ck+1 from
the contents of cells in the reduction windows. Typical functions used are convolutions with
prede�ned (e.g. Gaussian) kernels, �lters, interpolation, morphological operations, model
�tting (optimization), : : : . In a convolution the reduction function is a weighted sum

R(g(w(ck+1))) := �q2w(ck+1)cig(q)

where ci are prede�ned constant weights associated with q in the ordering of w(�). These
weights are called convolution kernels in the square grid arrangement.

In regular structures the top-down re�nement of a cell ck into equivalent windows
wj(ck) can be continued recursively. If the size of the cells is reduced (geometrically) ac-
cording to the reduction factor, the equivalent windows form shapes that converge towards
geometrical shapes (squares for n�n=4 type pyramids, octagones for n�n=2 type pyramids)
that depend only on the size of cell ck and the type of pyramid [8]. We call this geome-
trical region of the continuous image plane the receptive �eld of cell ck. Since equivalent
windows are monotonically increasing they are all contained in the receptive �eld. It also
characterizes the type of a regular pyramid.

2.1 Equivalent Weighting Functions

In any regular pyramid the number of neighbors is �xed. As a consequence any search in
the neighborhood of a cell has constant complexity independent of the type of pyramid. All
processes using only the contents of adjacent cells are local. In most cases the computation
of a pyramidal cell uses only data from its parents or from its children. Hence all processes
at one level may work simultaneously.

Both reduction and re�nement propagate data up and down in the pyramid. Hence their
computational complexity depends only on the number of levels in the pyramid, e.g. on the
log(image� diameter).

This computational e�ciency may even a�ect sequential processing: It can be shown
that the recursive computation of the n'th level of any overlapping pyramid needs less ope-
rations than direct computation by equivalent weighting functions. Burt [3] introduced the
'equivalent weighting function': \Iterative pyramid generation is equivalent to convolving the
image g0 with a set of 'equivalent weighting functions' hl:" gl = hl � g0 = h � gl�1; l > 1.
It allowed him to study the e�ects of iterated reduction (e.g. the low-pass character of
Gaussian pyramids) using the single parameter hl without giving up the e�cient iterative
computation. The following example shows on the right side the weighting function that
computes the second level of a 3� 3=4 Gaussian pyramid (weights on the left side) directly
from the base:
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Note that the resulting pyramid is of type 7� 7=16.

3 From pixels to graphs

Fig. 2 illustrates how a pixel grid can be represented by a neighborhood graph G(V;E)
and its dual face graph G(F;E). Vertices V correspond to pixels, geometrical properties
like coordinates or gray value are stored as attributes. Two vertices are joined by an edge
if the corresponding pixels are neighbors2. The faces of the dual graph are placed inside
the square formed by 4 vertices. Two faces are joined by a dual edge if the corresponding
squares are adjacent in G. There is a one-to-one relationship between E and E. This graph
representation extends the scope to any (planar) tesselation of the image plane.

r rr r

(a) pixel (b) G(f rg; f r r, rrg) (c) G(f g; f , g)

Figure 2: (a) pixel grid, (b) neighborhood graph G(V;E), (c) dual face graph G(F;E)

3.1 Computational Complexity

We now generalize the computations of a reduction by a transformation � : X 7! X 0 that
reduces the data size by a factor � > 1

jX 0j < jXj=� (3)

while the reduced data set X 0 preserves some image properties to compute:

 (X 0) =  (X) (4)

Such properties may be the range of grey values, the average grey value, but also the connec-
tivity of regions or their convexity. The application of � can be repeated on the reduced data
set X 0 until any further reduction would destroy property  . Assume that X(n) = �n(X) is
the result after n repetitions. From (3) follows that the overall size reduction is bounded by

�n < jXj

jX(n)j
and also the number n of repetitions:

n <
log jXj � log jX(n)j

log �
(5)

Together with constraints (3) and (4) and the assumption that � needs only local parallel
computations  (X) =  (X(n)) can be computed in O(log jXj) parallel steps.

Classical regular pyramids [7] possess property (3), but, in general, counter examples for
property (4) can be constructed [2]. It has been demonstrated [12] that adaptive pyramids
in which transformation � depends on the data X overcome the problem. The price to pay
is the loss of regularity.

24-neighbors are used because they make G planar.
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Figure 3: Dual Graph Contraction: (Gi+1; Gi+1) = C[(Gi; Gi); (Si; Ni;i+1)]

4 Dual Graph Contraction

Irregular (or graph) pyramids are constructed bottom-up level by level by repeatedly con-
tracting the image graph in the base: Dual graph contraction proceeds in two basic steps
(Fig. 3): dual edge contraction and dual face contraction. The base of the pyramid con-
sists of the pair of dual image graphs (G0; G0). Following decimation parameters (Si; Ni;i+1)
determine the structure of an irregular pyramid [11][Def.5]: a subset of surviving vertices
Si = Vi+1 � Vi, and a subset of primary non-surviving edges3 Ni;i+1 � Ei. Every non-
surviving vertex, v 2 Vi n Si, must be connected to one surviving vertex in a unique way.
The relation between the two pairs of dual graphs, (Gi; Gi) and (Gi+1; Gi+1), as established
by dual graph contraction with decimation parameters (Si; Ni;i+1) is expressed by function
C[:; :]:

(Gi+1; Gi+1) = C[(Gi; Gi); (Si; Ni;i+1)] (6)

The contraction of a primary non-surviving edge consists in the identi�cation of its endpoints
and in the removal of both the contracted edge and its dual edge. Fig. 4 shows the normal
situation (a), the situation where the dual edge contraction creates multiple edges (b) and
self-loops (c). Redundancies (lower parts) in cases (b) and (c) are decided through the
corresponding dual graphs and removed by dual face contraction4 ). Dual face contraction
simpli�es most of the multiple edges and self-loops, but not those inclosing any surviving
parts of the graph (see [11]). Two steps of dual graph contraction shows the example of
Fig. 5. They can be formally written as (G1; G1) = C[(G0; G0); (S0; N0;1)], and (G2; G2) =
C[(G1; G1); (S1; N1;2)]. Note that graph G2 in this example contains both a self-loop and a
double edge. [11] compares three di�erent types of graph contractions.

4.1 Contraction kernels

To de�ne the parameters that control the process of dual graph contraction we observe
that the subgraphs in our example graph (Fig. 5d, e, f, levels i = 0; 1; 2 resp.). form small
tree structures T (s) that collaps into surviving vertex s of the contracted graph. T (s) is

3Secondary non-surviving edges are removed during dual face contraction.

4In �gures, Si = f�g, Vi+1 = f g, Vi n Si = f�g, Vi n Vi+1 = f g and (�; �) 2 Ni;j are indicated by -.
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8



a spanning tree of the connected component of the surviving root vertex, or equivalently,
(V;N) is a spanning forest of graph G(V;E).

De�nition 1 A decimation of a graph G(V;E) is speci�ed by a selection of surviving vertices
S � V and a selection of primary non-surviving edges N � E such that following two
conditions are ful�lled:

1. Graph (V;N) is a spanning forest of graph G(V;E).

2. The surviving vertices S � V are the roots of the forest (V;N).

The trees T (v) of the forest (V;N) with root v 2 V are called contraction kernels.

The connectivity structure of the contracted graph is established by paths connecting
two surviving vertices:

De�nition 2 Let G(V;E) be a graph with decimation parameters (S;N). A path in G(V;E)
is called a connecting path between two surviving vertices v; w 2 S, denoted CP (v; w), if it
consists of three subsets of edges E (Fig. 6):

1. The �rst part is a possibly empty branch of contraction kernel T (v).

2. The middle part is an edge e 2 E nN that bridges the gap between the two contraction
kernels T (v) and T (w). We call e the bridge of the connecting path CP (v; w).

3. The third part is a possibly empty branch of contraction kernel T (w).

w - - e e� � w� � � � � �
v T (v) e T (w) w

Figure 6: Decomposition of connecting path CP (v; w)

Connecting paths CPk(v; w) in Gk(Vk; Ek) are strongly related to the edges ek+1 = (v; w) 2
Ek+1 in the contracted graph Gk+1(Vk+1; Ek+1): Two di�erent surviving vertices that are
connected by a connecting path in Gk are connected by an edge in Ek+1. For every edge
e0 = (v; w) 2 Ek+1 there exists a connecting path CPk(v; w) in Gk. Dual edge contraction
can be implemented by (1) simply renaming all the non-surviving vertices to their surviving
parent vertex, (2) deleting all non-surviving edges N and (3) their duals N .

4.2 Equivalent contraction kernels

(Gk; Gk) (Gk+1; Gk+1) (Gk+2; Gk+2)-(Sk; Nk;k+1) -(Sk+1; Nk+1;k+2)

(Sk+1; Nk;k+2)
6

Figure 7: Equivalent contraction kernel
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The combination of two (and more) successive reductions in an equivalent weighting function
allowed Burt to calculate any level of the pyramid directly from the base. Similarly we
combine two (and more) dual graph contractions (see Fig. 7) of graph Gk with decimation
parameters (Sk; Nk;k+1) and (Sk+1; Nk+1;k+2) into one single equivalent contraction kernel

(ECK) Nk;k+2 = Nk;k+1 �Nk+1;k+2 (for simplicity Gi stands for (Gi; Gi) ):

C[C[Gk; (Sk; Nk;k+1)]; (Sk+1; Nk+1;k+2)] = C[Gk; (Sk+1; Nk;k+2)]

= Gk+2 (7)

Equivalent contraction kernels (see example in Fig. 8) are constructed in the following way:
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Figure 8: Example of equivalent contraction kernels: (a) (S1; N0;2) = (S0; N0;1) � (S1; N1;2),
(b)of the apex: G0 [N0;4

1. Assume that the dual irregular pyramid ((G0; G0); (G1; G1); : : : ; (Gk+2; Gk+2)) is the
result of k + 2 dual graph contractions. The structure of Gk+2 is fully determined by
the structure of Gk+1 and the decimation parameters (Sk+1; Nk+1;k+2).

2. Furthermore, the structure of Gk+1 is determined by Gk and the decimation parameters
(Sk; Nk;k+1). Sk+1 = Vk+2 are the vertices surviving from Gk to Gk+2. The searched
contraction kernels must be formed by edges Nk;k+2 � Ek. This is true for Nk;k+1

but not for Nk+1;k+2 � Ek+1 if we would simply overlay the two sets of decimation
parameters. An edge ek+1 = (vk+1; wk+1) 2 Nk+1;k+2 corresponds to a connecting
path5 CPk(vk+1; wk+1) in Gk. By de�nition 2, CPk(vk+1; wk+1) consists of one branch
of Tk(vk+1), one branch of Tk(wk+1), and one surviving edge ek 2 Ek connecting the
two contraction kernels Tk(vk+1); Tk(wk+1).

5If there are more than one connecting paths, one must be selected.
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De�nition 3 Function bridge: Ek+1 7! Ek assigns to each edge ek+1 = (vk+1; wk+1) 2
Ek+1 one of the bridges ek 2 Ek of the connecting paths CP (vk+1; wk+1):

bridge(ek+1) := ek: (8)

Two disjoint tree structures connected by a single edge become a new tree structure.
The result of connecting all contraction kernels Tk by bridges ful�lls the requirements
of a contraction kernel:

Nk;k+2 := Nk;k+1 [
[

ek+12Nk+1;k+2

bridge(ek+1) (9)

The contraction kernels (V2; N0;2) in Fig. 8a are equivalent to the successive contraction
with kernels of Fig. 5d and e.

3. The above process can be repeated on the remaining contraction kernels until the base
level 0 contracts in one step into the apex Vn = fvng. The edges of the corresponding
spanning tree are contained in N0;n. Fig. 8 shows spanning tree N0;4 overlaid with the
base graph G0.

5 Conclusion

Rosenfeld [19] exposed the properties of two "variable-resolution representations" in 1982:
pyramids and quadtrees. Since then di�erent reduction functions have greatly enhanced the
computational power of pyramids. However in the pure bottom-up processing mode, pyra-
mids do not compute anything new, which could not be computed from the cells of the
receptive �eld. Equivalent weighting functions allow the computation of any pyramid level
directly from the base. The same role play the equivalent contraction kernels for irregular
pyramids. Why then use pyramids any more?

� Pyramids decompose an often very complex computation into a few relatively simple
processing steps.

� Global operators decompose into a few local operators which can be applied in parallel.

� Pyramids are computationally extremely e�cient.

� The limitation of a cell's storage capacity enforces abstraction, less important data are
neglected in higher levels.

� Exterior knowledge sources can be integrated at di�erent levels of abstraction. It could
de�ne the language of interpretation.

� Irregular pyramids can adapt their structure to the data rather than the parameters
of the underlying models.

� The graph structures of irregular pyramids provide a smooth transition to mid- and
high-level vision.
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� Decimation parameters control dual graph contraction, a process that iteratively builds
an irregular (graph) pyramid. The concept of contraction kernel preserves the graph's
structural properties, its connectivity, its planarity, and the face degrees of its dual
graph.

� Equivalent contraction kernels (ECKs) allow to skip the construction of intermediate
pyramid levels. The contents of aggregations of cells can be computed e�ciently and
in parallel through the tree structure of the contraction kernels. The ECK of the apex
is a spanning tree of the base graph.
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