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Abstract. Irregular pyramids organize a sequence of partitions of im-
ages in such a way that each partition is deduced from the preceding
one by union of some of its regions. In this paper, we show how a single
pyramid can be used to encode redundant subparts of different partitions.
We obtain a pyramid that accounts for the redundancy of the partitions.
This structure, naturally called the redundancy pyramid, can be used
for many purposes. We also demonstrate and discuss some applications
for studying image sequences.

1 Introduction

Image segmentation is an important component of many machine vision appli-
cations such as object recognition and matching for stereo reconstruction. In
general, segmentation techniques aim to partition an image into connected re-
gions having homogeneous properties.

A major issue with segmentation algorithms is their stability. The partitions
produced by different segmentation algorithms will be to some extent different.
The same is true when a single segmentation algorithm is applied on an image
sequence of a static scene under varying illumination. Comparing and merging
several partitions seems an obvious way to partially solve the problem of stability.

Several techniques in computer vision and pattern recognition handle sev-
eral partitions of images. A combination of different segmentations to obtain the
best segmentation of an image has been suggested by Cho and Meer [2] based
on the cooccurrence probabilities of points in partitions. However, they make
use of small differences resulting from random processes in the construction of
a Region Adjacency Graph (RAG) pyramid to generate their segmentations.
Matching segmentations of different images is usually addressed as a pairwise
problem, without exploiting the redundancy inherent to highly redundant im-
ages. Recently, Keselman and Dickinson [4] have proposed a method for comput-
ing common substructures of RAGs, called the lowest common abstraction. They
try to find isomorphic graphs obtained from different RAGs by fusing adjacent
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regions. While their approach is attractive, it suffers from a certain number of
drawbacks. When handling real world segmentations, noise can split or merge
arbitrary regions and the lowest common abstraction can not cope with these
processes.

Basically these approaches try to exploit the redundancy of observations,
which is widely used in robust estimation, and more generally, but implicitly, in
robust computer vision techniques. In (robust) estimation, redundancy is defined
as the difference between the number of parameters of a functional model, and its
number of equations [3]. When the redundancy increases, the computed model
is not only more precise but also more reliable [3].

Our approach is based on basic topology. We exploit the redundant struc-
tures of topological partitions. The use of this formalism guarantees that the
proposed theoretical results are independent of the dimension of the space being
partitioned. In section 2, we propose a set of definitions. After having recalled
standard definitions in topology, we introduce new basic tools for comparing
several partitions, the greatest common multiple and the lowest common di-
visor of partitions, whose definitions and properties are analogous to classical
definitions on the set of integers. We then propose the definition of a pyramid
in this framework. In section 3 we propose a fundamental theorem which en-
ables the definition, based on these concepts, of a structure that plays a key
role in the comparison of several partitions. We also propose an efficient method
for constructing an approximation of the redundancy pyramid on a digital im-
age of dimension 2. In section 4, we propose a proof of concept. The analysis
of the redundancy of the structure of a segmentation of images in a sequence
of moving objects in a static background leads to interesting results discussed
in this section. Very redundant parts are part of a good segmentation of the
background. Moderately redundant parts are moving objects, with a certain tol-
erance to pauses during the object’s displacement. This lead to a very reliable
process of background segmentation on image sequences with drastically varying
illumination.

2 Basic Definitions

We recall here basic definitions from topology and propose new definitions that
will help to define partitions, pyramid of partitions and the redundancy pyramid.

2.1 Topology

A topology on a set E is a family T of subsets of E (the “open” subsets of E)
such that a union of elements of T is an element of T , a finite intersection of
elements of T is an element of T , and ∅ and E are elements of T . E equipped
with a topology T is called a topological space.

A topological space is connected if it cannot be partitioned into two disjoint,
nonempty open sets. A (topological) subspace G of a topological space E is a
subset G of E such that the open sets in G are the intersection of the open sets



of E with G. The complement of F ∈ T is the set F = E/F . The sets F are
called closed sets.

The interior int(e) of a subset e of E is the largest open set contained in e.
The closure cl(e) of a subset e of E is the smallest closed set containing e. The
boundary of a subset e of E is the intersection of its closure and the closure of
its complement.

We call region a closed connected subset r of E such that int(r) 6= ∅. We
define the following relations for regions. If r ∩ r′ 6= ∅ and int(r ∩ r′) = ∅ and
int(r ∪ r′) is connected, we say that regions r and r′ are adjacent. r and r′ are
overlapping if int(r ∩ r′) 6= ∅. If r and r′ are neither adjacent nor overlapping,
we say that they are disjoint. These definitions are illustrated in Figure 1. In
the example 1.c, the interesection of the two regions is composed of a single
point which is on the boundary of the union. Thus the interior of their union is
composed of two connected components, and we say that the regions are disjoint.

a) Adjacent regions b) Disjoint regions c) Disjoint regions d) Overlapping regions

Fig. 1. Relations between regions

2.2 Regional covers, divisors, multiples and pyramids

We define a regional cover of a region I (e.g. the support of an image) as a set Pi
of regions rj ∈ Pi such that two different regions from Pi are either disjoint or
adjacent and I = ∪Pirj . A regional cover of I is a ”partition” of I into regions
whose overlapping parts are thin.

We will now introduce new concepts that can be interesting when comparing
several regional covers. Let Pi and P ′i be two regional covers of I. We say that
Pi divides P ′i if and only if each region of P ′i has a regional cover in Pi (i.e.
each region of P ′i is equal to the union of adjacent regions of Pi). We note, for
convenience, Pi|P ′i . Pi is called a divisor of P ′i , and P ′i is a multiple of Pi. A
divisor of a regional cover can be obtained by splitting its regions whereas a
multiple can be obtained by merging its regions.

The least common multiple of n regional covers Pi,1≤i≤n of a region I is the
multiple P of Pi,1≤i≤n such that any regional cover P ′i with Pi|P ′i |P is not a
multiple of one or more covers Pj,j 6=i. The greatest common divisor of n regional
covers Pi,1≤i≤n of a region I is the regional cover P of Pi,1≤i≤n such that any
regional cover P ′i of I with P |P ′i |Pi is not a multiple of one or more regional
cover Pj,j 6=i. The least common multiple (resp. the greatest common divisor) of
a set of regional covers can be seen as the regional cover obtained by intersecting



(resp. merging) two by two the boundaries of the initial regional covers. These
definitions are illustrated in Figure 2.

a) Two regional covers b) Greatest Common Divisor c) Least Common Multiple

Fig. 2. The least common multiple and the greatest common divisor of two regional
covers.

Irregular pyramids are well studied data structures in computer vision [5,
1]. They enable the representation of hierarchies of partitions of images. Our
definition of a pyramid differs slightly from the existing ones in that we use
regional covers instead of cellular partitions or graphs. This definition, although
based on the same structure, leads to a simple and elegant formulation, which
is expressed in a topological framework rather than in a graph framework.

We define for our purpose a pyramid P as a set of n regional covers P =
{L1, ..., Ln} satisfying L1|L2|...|Ln. The regional covers Li are the levels of the
pyramid, L1 is its base level and Ln its top level. An example of a pyramid with
three levels is depicted in Figure 3.

Fig. 3. A pyramid of regional covers.

3 The Redundancy Pyramid

Segmentation processes are noisy processes which can remove arbitrary regions
or boundaries. The smallest common multiple of a set of covers obtained by
segmentation is not stable. However, a more reliable manner to analyze common
substructures of m “noisy” regional covers is to compute all the smallest common
multiples of certain number i of regional covers. The smallest common multiples
depend on the covers used to compute them. It then makes sense to compute their
greatest common divisor Li, which can be seen as the union of their boundary
points. In this section, we will show that the Li form a pyramid. We will give
an efficient way to compute this pyramid using digital 2D images.



3.1 Definition

The following lemma simply results from the definitions. It enables one to un-
derstand how the structure of the redundancy pyramid is built.

Lemma 1. Let F be a set of regional covers P 1
i,1≤i≤m1

. Let L1 be their greatest

common divisor. Let P 2
i,1≤i≤C2

m1

be all the possible smallest common multiples

of two regional covers, and L2 be the greatest common divisor of the covers P 2
i .

Then we have L1|L2.

The idea of the proof is that any intersection or difference between regions taken
from different regional covers can be obtained by the union of regions from L1.
Thus regions of L2 are equal to nonempty unions of regions of L1 and L1|L2.

The following theorem is fundamental as it shows that the structure of the
redundancy pyramid is a pyramid.

Theorem 1. Let F be a set of regional covers P 1
i,1≤i≤m1

, and let

– L1 be the greatest common divisor of P 1
i,1≤i≤m1

,
– Li with 1 < i is the greatest common divisor of all the least common multiples

of i regional covers of P 1
i,1≤i≤m1

.

Then the set P = {L1, ..., Ln} is a pyramid. It is called the redundancy pyramid
of P 1

i,1≤i≤m1
.

Let us note P ij all the smallest common multiples of i regional covers taken from

the original set, and Li their greatest common divisor. Let P ′i+1
j be all possible

least common multiples of two regional covers taken from P ij . We remark that

Li+1 is equal to the greatest common divisor of the P ′i+1
j . Then we can apply

the lemma 1 in order to prove the inference Lj |Lj+1. As it is true for L1 and L2,
we have L1|L2|...|Lm. Note that by definition Ln the least common multiple of
P 1
i,1≤i≤m1

.

3.2 Construction with morphological operators

The algorithm presented in this section is based on a boundary representation
of each regional cover of digital images. The idea is that the set of boundary
points of the level Li of the redundancy pyramid is composed of points which
are boundary points of i regional covers. Accumulating directly boundary points
will not lead directly to the construction of the pyramid, as some combinations
of boundary points can lead to pendant edges or isolated points. A first filter-
ing is therefore done to remove them. On certain configurations, applying only
this algorithm is not enough to filter out all undesired edges, but it produces
satisfying results in most real world situations. A simple example is depicted
in Figure 4. This figure shows the initial regional covers (”partitions”) of three
different projected cubes, similar to the example studied by Keselman et al. [4].
The redundancy pyramid can be seen on the fourth figure, where edges have been



colored according to their redundancy. The dark edges are of higher redundancy
(i.e. 3), and are the common boundaries of the regions of the last level of the
redundancy pyramid. The other edges have redundancies of 1, as they appear in
a single image.

a) Cube 1 b) Cube 2 b) Cube 3 c) Redundancy Pyramid

Fig. 4. Redundancy pyramid of images.

Although the redundancy pyramid can be built using any kind of partitions,
the implementation of the preceding algorithm is straightforward when dealing
with digital 2D images. The initial partitions Pi,1≤i≤n are described by binary
images (referred to as contour map in the following text) indicating the presence
of contours at each point, i.e. Pi(x, y) = 1 if the point of integer coordinates (x, y)
is a contour point for partition i and Pi(x, y) = 0 otherwise. Examples of contour
maps are drawn in Figure 5. Typically, such images can be obtained by watershed
transforms [6] or by marking contour points of labeled image partitions.

The construction of the boundary redundancy pyramid is based on an accu-
mulation process of the contour maps. The main steps of the pyramid construc-
tion are:

– Each contour point of each contour map is accumulated in an image R of
natural numbers.

– A hierarchical watershed of R is computed. We use the leveling transform
of [6]. The advantage of this watershed algorithm is that ones obtain a well
nested crest network and thus the pyramid in a digital form without using
extra operations.

The result of this algorithm is an integer image describing the hierarchical
watershed. By applying a threshold i to this image, we obtain the contours
describing the ith level of the redundancy pyramid. This algorithm is not only
simple but also very efficient.

4 Application To Motion analysis and Background
Segmentation on an Image Sequence

The initial data of this application is an image sequence obtained by a static
camera. The captured scene can be subject to drastic illumination changes, and
moving objects can occlude some parts of the static scene. A good background



segmentation cannot be obtained from a single image. The main idea here is to
construct initial segmentations of a certain number of images in the sequence,
and to compute the redundancy pyramid of these segmentations. The low level
of the pyramid will give information on the moving object, while the higher level
of the pyramid will tend to segment the static scene using information merged
from the sequence.

The experiment was done on a sequence where illumination varied in a way
that certain images are saturated, while others are dark. On the sequence, a
person is moving in front of a static background. The initial regional covers were
obtained by computing the watershed of [6] on the modulus of the Deriche’s
gradient of the initial images, and by keeping the points not corresponding to
basins. As predicted, certain regions corresponding to the sought background
segmentation couldn’t be retrieved correctly on all the images. They were either
split or merged. Some images from the sequence and their initial segmentations
are presented in Figure 5.

Fig. 5. Images from the sequence and their partitions (Image sequence provided by
Advanced Computer Vision (ACV), Vienna).

The redundancy pyramid of the computed regional covers was computed. It is
shown in Figure 6. Each image was treated in less than 2s on a laptop computer
with an AMD Athlon processor at 1.8GHz. The program used was not subject
to any optimization and can easily be implemented on dedicated hardware in
real time.

The best segmentation was obtained at an intermediate level of the pyramid.
This can be explained by the fact that the contours of the background are not
detected correctly on all the images. The lower levels are very noisy, which is
due to the over-segmentation of the initial images. However, the trajectory of
the movement can clearly be seen. The quality of the segmentations obtained
at intermediate levels is outstanding, considering the initial over-segmentations
used. Remark that no parameter was employed for producing the segmentations
and the pyramid. The only parameter of this method is the Deriche’s α which



a) Redundancy pyramid b) Level 12 c) Level 25 d) Level 40

Fig. 6. Redundancy pyramid of the image sequence

was equal to 1.5. In conditions not so extreme, the direct application of the
previous method should result in stable higher levels of the pyramid. A single
calibration step expressed in a number of frames would then be required in order
to obtain a segmentation of a static scene of the quality as image c of Figure 6.

5 Conclusion

We have proposed new structure, the redundancy pyramid, expressed in a topo-
logical framework. We proposed an efficient algorithm in order to compute this
structure on 2D digital images of partitions. It can be used in a wide number
of applications ranging from segmentation fusion to generic object recognition,
motion analysis and background subtraction over a sequence of images under
drastically varying illumination. Some results of the last application were pro-
posed. This validated the approach in a very complicated case. Future work
include a statistical evaluation of the approach, the generalization of the algo-
rithm to higher dimensions, to continuous images, and to images that cannot be
directmy superimposed on one another.
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