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Abstract

Fingerprints are one of the most important biometrics in use today, and various algorithms
and methods exist for automatic fingerprint identification and verification. However, this
paper characterizes situations in which the most important class of automatic fingerprint
matching algorithms can easily fail, because they do not take the ridge topology as a whole
into consideration. We then present a graph-based fingerprint representation that encodes
the line topology. and might prove useful in differentiating between such topologically
different fingerprints that only have similar minutiae. An algorithm based on dual graph
contraction will be given to derive this graph representation automatically from a prepro-
cessed, skeletonized fingerprint image.

1 Introduction
Fingerprints are one of the most important biometrics in use today. They are used in various
areas (e.g. access control systems, criminal investigations) for identification and identity ver-
ification purposes. These prints consist of ridges on the finger tips that form flow-like line
patterns which are, according to our present knowledge, characteristic of an individual person
and can therefore be used to identify a person uniquely.

There are various methods for fingerprint matching, but the most widely used method for
automatic fingerprint matching systems is minutiae matching [4]. Minutiae are special points
in a fingerprint where ridges end or bifurcate (see Fig. 1a). Basically, these methods consist of
extracting the minutiae along with certain minutiae features in the fingerprints and comparing
the resulting minutiae sets. Two fingerprints are reported as identical, iff a certain number of
minutiae are identical in the two prints with respect to the minutiae features extracted (e.g.,
their location or direction with respect to a reference point). The various minutiae matching
algorithms differ mainly in the minutiae features used and the metric for measuring minutia
similarity. See [2] for one representative minutiae matching algorithm.
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Figure 1: Two fingerprints with almost identical minutiae, but different topology: (a) Original
fingerprint. (b) Connections between left and right part in the original (white arrows) and the
modified (black arrows) fingerprint. (c) Modified fingerprint.

However, minutiae and minutiae features are not sufficient to distinguish between different
fingerprints under certain circumstances. In section 2, situations will be characterized in which
fingerprints with different line topologies and similar minutiae cannot be distinguished, if only
the minutiae are taken into consideration for the comparison. We then present in section 3 a
novel fingerprint representation that encodes the line topology of a fingerprint as a graph and
is able to capture the difference between the fingerprints we characterized in section 2. Section
4 gives some results, and section 5 contains a conclusion and an outlook.

2 Motivation
Minutiae features are local properties of a certain point (i.e. the minutia itself) or region
(around a minutia) in a fingerprint. In comparing two minutiae sets, information in between
them is not used in the matching process in general. To see, why this can lead to false positive
results, take a look at Fig. 1: Fig. 1a shows a scanned fingerprint in which the minutiae in the
upper part are marked. Fig. 1b shows the same fingerprint, but this time cut into two parts that
are connected by a series of black and white arrows. These arrows indicate two different ways
in which the ridges in the two parts of the fingerprint can be connected. The white arrows
indicate the original connections in between them, as shown in Fig. 1a, whereas the black
arrows show an alternative way of connecting them. In Fig. 1c, these alternative connections
were realized by inserting them into the original fingerprint (Fig. 1a) and shifting the left upper
part downwards in order to “straighten out” the resulting connections between the two parts.

This cut runs through a part of the fingerprint that does not contain any minutiae, so any
modifications made in this part of the fingerprint should not severely influence the result of
a minutiae matching algorithm. However, the line topology of the resulting fingerprint is



Figure 2: Preprocessed, skeletonized fingerprint

severely changed. The minutiae in the two parts are now connected differently, and a human
fingerprint examiner would recognize them as different.

We ran these two fingerprints through a minutiae matching algorithm [2]. The resulting
match score amounted to 80% of the maximum possible match score, indicating that the two
fingerprints match. We also ran them through a commercial fingerprint matching system which
gave a 90,5% match score, indicating a match as well. These results suggest that current
minutiae matching algorithms cannot distinguish between different fingerprints with similar
minutiae under certain conditions. Namely, when there is a larger region without minutiae that
connects minutiae on both sides, minutiae matching algorithms have trouble distinguishing be-
tween fingerprints in which these minutiae are interconnected differently. The local geometry
at each minutia point and their distribution over the fingerprint are similar, yet the global ridge
topology is different.

Therefore, we propose in the next section a graph representation for fingerprints that cap-
tures the ridge topology. This representation should then allow us to differentiate between
different fingerprints in cases like the fingerprints in Figs. 1a and 1c.

3 Graph representation
In [1], graphs were used to represent technical line drawings and their topology. Here, we use
the same basic idea, but with a different representation of lines, line endings and junctions in
the graph. Contrary to [1], we start directly at a pixel based grid graph and perform a series of
simplification steps to achieve a condensed graph representation of the fingerprint topology.

This graph representation is derived from a preprocessed and skeletonized fingerprint.
Since this work is not concerned with fingerprint enhancement or minutiae detection, it is
assumed throughout this paper that the fingerprint to be represented went through an enhance-
ment stage and is already skeletonized (see Fig. 2 for an example).

The successive simplification steps of the pixel based grid graph are performed via dual
graph contraction [3]. Dual graph contraction is a process by which the dual image graph of
one level is contracted into the smaller dual image graph of the next level, thus building an



Table 1: Node and edge labels

**−node a bifurcation point

0−edge adjacent nodes not on same line

shortest 0−edge 0−edge on shortest path to a line segment

1 11−edge adjacent nodes on same line

11−node a single line element

0−node contains no line element

ExplanationSymbolLabel

irregular graph pyramid. By taking into account the dual graph, unnecessary double edges
and self loops which do not contribute to the topology of the graph can be identified and thus
eliminated. A formal outline of dual graph contraction can be found in [3].

The surviving nodes are chosen according to rules that are formulated in terms of node and
edge labels. The labels and rules are based on [1], but differ mainly in that we don’t differ-
entiate between line endings and other line elements (1-nodes and 2-nodes in terms of [1]).
As a result, a single straight line is not encoded by two connected nodes representing the two
line endings, but by a single node representing the whole line segment. As we will see later,
information about line endings that are minutiae is not lost this way.

3.1 Node and edge labels
The labels we used are listed in Table 1. Before assigning the node and edge labels, a distance
transform is performed that calculates for each white (i.e. background) pixel the minimum
distance to a black pixel (i.e. line segment). The labels are then assigned as follows:

• Each node that corresponds to a white pixel becomes a 0-node.

• Each node that corresponds to a black pixel with three or more adjacent black pixels
becomes a *-node (indicating a bifurcation point in the fingerprint).

• All remaining nodes become 1-nodes (indicating a single line segment).

• All edges adjacent to at least one 0-node become a 0-edge.

• All remaining edges become 1-edges.
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Figure 3: (a) Example line segments used in Fig. b. (b) Labeled grid graph corresponding to
Fig. a

• For each 0-node, the incident edge lying on the shortest path to the closest line segment
(as indicated by the distance transform performed beforehand) is marked as the shortest
0-edge.

Since the shortest path is not always uniquely determined, collision rules are applied in
order to make sure that only one path is chosen. Notice also that if the shortest path leads to a *-
node, the next best path to a 1-node must be chosen, as *-nodes cannot merge with 0-nodes (see
below). Fig. 3 shows a short example for a graph that results from these label assignments. The
arrows mark shortest 0-edges and point in the direction of decreasing distance for illustration
purposes only; the resulting graph is not directed. Notice that no collision rules for multiple
shortest paths have been applied in Fig. 3b yet.

3.2 Contraction rules
The contraction rules are as follows:

• *-nodes cannot merge with any other node, they always survive.

• 1-nodes can merge with adjacent 1-nodes, if they are connected by a 1-edge, i.e. if they
are part of the same line segment.

• 1-nodes can merge with 0-nodes, if they are connected by a shortest 0-edge.

• 0-nodes can merge with adjacent 0- and 1-nodes, if they are connected by a shortest
0-edge.
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Figure 4: (a) Segmentation induced by the labeling and contraction rules. (b) Final graph.

Since the shortest 0-edges were determined using a distance transform, the segmentation
of the fingerprint implied by the contraction rules (see Fig. 4a) looks regular in the sense that
each line segment only covers those parts of the background that are closest to it. Note that
these segmented regions correspond to the receptive fields of the nodes in the final graph.

Iteratively, surviving nodes are chosen randomly. Only 0-nodes are disfavored as surviving
nodes, because they should (and will) disappear sooner or later. For each surviving node,
the contraction rules determine, which other node(s) can merge with it. These iterations are
performed, until no further edges can be contracted.

3.3 Properties of the resulting graph
The resulting graph does not contain any 0-nodes or shortest 0-edges. There are exactly as
many *-nodes in the final graph as there were at the beginning. For every straight line segment
in the fingerprint, there is exactly one 1-node in the final graph (see Fig. 4. 0-edges in the final
graph indicate that the receptive fields of the two connected nodes are adjacent. 1-edges only
occur next to *-nodes; they connect a bifurcation point with the line segments that meet in that
point.

The minutiae are represented in two different ways in the graph:

• Bifurcations are encoded by a single *-node that is connected to the incident line seg-
ments by a 1-edge.

• Line endings do not appear as nodes in the graph, but as faces. At a line ending, a line
segment is cut off by two surrounding line segments, thus forming a face in the graph.
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Figure 5: (a) and (b) Skeletonized fingerprints from Fig. 1. (c) and (d) Corresponding graph
representations

4 Results
Fig. 5 shows the graph representation of the two fingerprints in Fig. 1. Notice that only the
upper part is shown where we modified the original fingerprint. Two important differences can
be noticed in these graphs:

• The bifurcation points in the lower part are interconnected differently. The edges that
changed are dashed in Fig. 5.

• The minutiae in the upper part (encoded as faces) are related differently, as well.

Since this graph representation is capable of capturing the modifications introduced in
section 2, we believe that fingerprint matching schemes based on such a graph representations
can be used to differentiate between fingerprints with similar minutiae, but different ridge
topology.

5 Conclusions and outlook
We have presented a graph representation for fingerprints that captures the topology of its
ridge structure. This representation is capable of capturing differences between fingerprints



that minutia-based matching methods cannot always detect. Since we can characterize cases
where these methods tend to report false positive matches, while our representation shows clear
differences, matching these graphs may prove to be a useful supplement to minutia matching
algorithms. It might be used, for example, to verify matches reported by minutia matching
algorithms in fingerprint identification applications.

What needs to be done now, is to develop algorithms that take advantage of this graph
representation to compare fingerprints. Until now, we can only visually compare the resulting
graphs for equality or similarity (using the matching software in our heads). The next step will
be to develop a graph matching algorithm that matches two fingerprint graphs automatically.
An essential aspect in doing so will be identifying different node configurations that are com-
patible, i.e. that may originate from the same fingerprint and differ only because one of the
fingerprint scans is of bad quality (e.g. a line ending “merging” with a straight line in a bad
quality scan, thus forming a bifurcation point).

Finally, in order to use these graphs alone for fingerprint matching, the distinctiveness of
the ridge topology in general must be investigated. We have argued in this paper that in certain
cases, it can distinguish between different fingerprints that minutiae matching algorithms don’t
recognize as different. But its overall distinciveness remains to be further investigated.

6 Acknowledgements
We would like to thank Anil Jain and Arun Ross for supporting our experiments.

References
[1] Burge M. and Kropatsch W., A Minimal Line Property Preserving Representation of Line

Images, Computing, Vol. 62, pp. 355-368, 1999.

[2] Jain A., Hong L. and Bolle R., On-Line Fingerprint Verification, IEEE Trans on Pattern
Analysis and Machine Intelligence, Vol. 19, No. 4, pp.302-313, 1997.

[3] Kropatsch W., Building irregular pyramids by dual-graph contraction, IEE Proc. Vision
Image Signal Process., Vol. 142, No. 6, pp. 366-374, 1995.

[4] Maltoni M., Maio D., Jain A. and Prabhaker S., Handbook of Fingerprint Recognition,
Springer-Verlag, 2003.


