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Abstract. We introduce a method for computing homology groups and
their generators of a 2D image, using a hierarchical structure i.e. irreg-
ular graph pyramid. Starting from an image, a hierarchy of the image
is built, by two operations that preserve homology of each region. In-
stead of computing homology generators in the base where the number
of entities (cells) is large, we first reduce the number of cells by a graph
pyramid. Then homology generators are computed efficiently on the top
level of the pyramid, since the number of cells is small, and a top down
process is then used to deduce homology generators in any level of the
pyramid, including the base level i.e. the initial image. We show that
the new method produces valid homology generators and present some
experimental results.

1 Introduction

Handling ‘structured geometric objects’ is important for many applications re-
lated to geometric modeling, computational geometry, image analysis, etc. One
has often to distinguish between different parts of an object, according to prop-
erties which are relevant for the application. For image analysis, a region is a
(structured) set of pixels or voxels, or more generally a (structured) set of lower-
level regions. At the lowest level of abstraction, such an object is a subdivision1,
i.e. a partition of the object into cells of dimension 0, 1, 2, 3 ... (i.e. vertices, edges,
faces, volumes ...) [1,2]. In general, combinatorial structures (graphs, combina-
torial maps, n-G-maps etc.) are used to describe objects subdivided into cells of
different dimensions. The structure of the object is related to the decomposition
of the object into sub-objects, and to the relations between these sub-objects:
basically, topological information is related to the cells and their adjacency or
incidence relations. Further information (embedding information) is associated
to these sub-objects, and describes for instance their shapes (e.g. a point, respec-
tively a curve, a part of a surface, is associated with each vertex, respectively
� Supported by the Austrian Science Fund under grants P18716-N13 and S9103-N04.
1 For instance, a Voronoi diagram in the plane defines a subdivision of the plane.
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Fig. 1. (a): a triangulation of the torus. (b): a simplicial complex made of 1 connected
component and containing one 1−dimensional hole.

each edge, each face), their textures or colors, or other information depending
on the application. A common problem is to characterize structural (topolog-
ical) properties of handled objects. Different topological invariants have been
proposed, like Euler characteristics, orientability, homology,... (see [3]).

Homology is a powerful topological invariant, which characterizes an object
by its ”p−dimensional holes”. Intuitively the 0−dimensional holes can be seen
as connected components, 1−dimensional holes can be seen as tunnels and
2−dimensional holes as cavities. For example, the torus in Fig.1(a) contains
one 0−dimensional hole, two 1−dimensional holes (each of them are an edge cy-
cle) and one 2−dimensional hole (the cavity enclosed by the entire surface of the
torus). This notion of p−dimensional hole is defined in any dimension. Another
important property of homology is that local calculations induce global proper-
ties. In other words, homology is a tool to study spaces, and has been applied in
image processing for 2D and 3D image analysis [4]. Although in this paper we
use 2D binary images to show the proof of concept, we do not encourage usage
of homology groups and generators to find connected components in 2D images,
since efficient approaches already exist [5]. However, these ’classical’ approaches
cannot be easily extended for many problems that exist in higher dimensions,
since our visual intuition is inappropriate and topological reasoning becomes
important. Computational topology has been used in metallurgy [6] to analyze
3D spatial structure of metals in an alloy and in medical image processing [7]
in analyzing blood vessels. In higher dimensional problems (e.g. beating heart
represented in 4D) the importance of homology groups and generators becomes
clear in analyzing objects in these spaces (number of connected components,
tunnels, holes, etc), because of the nice and clean formulation which holds in
any dimension. One can think of other applications, as a preprocessing step, to
speed up recognition of complex shapes in large image databases, e.g. images
are first filtered based on their topological invariants and afterward are matched
using shapes, appearances, etc.

The usage of homology groups and generators in image processing is a new
topic and is not widely spread. In this paper we introduce a new method for
computing homology groups and their generators using a hierarchical structure
which is build by using two operations: contraction and removal. These two
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operations are used also in [8] to incrementally compute homology groups and
their generators of 2D closed surfaces, but a hierarchy is not build.

The paper is structured as follows. Basic notions on homology and irregular
graph pyramids are recalled in Section 2 and Section 3. The proposed method to
compute homology groups and their generators is presented in detail in Section 4.
Experimental results on 2D images that show the correctness of the new method
are found in Section 5.

2 Homology

In this part, the basic homology notions of chain, cycle, boundary, and homology
generator are recalled. Interested readers can find more details in [9].

The homology of a subdivided object X can be defined in an algebraic way
by studying incidence relations of its subdivision. Within this context, a cell of
dimension p is called a p−cell and the notion of p−chain is defined as a sum∑nb p−cells

i=1 αici, where ci are p−cells of X and αi are coefficients assigned to
each cell in the chain. Homology can be computed using any group A for the
coefficients αi. But, the theorem of universal coefficients [9] ensures that all
homological information can be obtained by choosing A = Z. It is also known [9]
that for nD objects embedded in R

D, homology information can be computed
by simply considering chains with moduli 2 coefficients (A = Z/2Z). Note that
in this case, a cell that appears twice on a chain vanishes, because c + c = 0 for
any cell c when using moduli 2 coefficients ( i.e. if a cell appears even times we
discard it otherwise we keep it). In the following, only chains with coefficients
over Z/2Z will be considered. Note that the notion of chain is purely formal
and the cells that compose a chain do not have to satisfy any property. For
example, on the simplicial complex illustrated on Fig.1(b) the sums: a1 + a4, a3
and a2 + a7 + a4 are 1−chains.

For each dimension p = 0, . . . , n, where n = dim(X), the set of p−chains forms
an abelian group denoted Cp. The p−chain groups can be put into a sequence,
related by applications ∂p describing the boundary of p−chains as (p−1)−chains:

Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0,

which satisfy ∂p∂p−1(c) = 0 for any p−chain c. This sequence of groups is called
a free chain complex.

The boundary of a p−chain reduced to a single cell is defined as the sum of
its incident (p − 1)−cells. The boundary of a general p−chain is then defined
by linearity as the sum of the boundaries of each cell that appears in the chain
e.g. in Fig.1(b), ∂(f1 + f2) = ∂(f1) + ∂(f2) = (a1 + a2 + a7) + (a7 + a3 + a6) =
a1 + a2 + a3 + a6. Note that as mentioned before, chains are considered over
Z/2Z coefficients i.e. any cell that appears twice vanishes.

For each dimension p, the set of p-chains which have a null boundary are
called p-cycles and are a subgroup of Cp, denoted Zp e.g. a1 + a2 + a7 and
a7 +a5 +a4 +a3 are 1−cycles. The set of p-chains which bound a p+1-chain are
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Table 1. Translation of homology notions to graph theory

Homology theory Graph theory
0-cell, 1-cell, 2-cell vertex, edge, face
0-chain, 1-chain, 2-chain set of vertices, set of edges, set of faces
0-cycle, 1-cycle, 2-cycle set of vertices, closed path of edges, closed path of faces

called p-boundaries and they are a subgroup of Cp, denoted Bp e.g. a1+a2+a7 =
∂(f1) and a1 + a6 + a3 + a2 = ∂(f1 + f2) are 1−boundaries.

According to the definition of a free chain complex, the boundary of a bound-
ary is the null chain. Hence, this implies that any boundary is a cycle. Note
that according to the definition of a free chain complex, any 0−chain has a null
boundary, hence every 0−chain is a cycle.

The pth homology group, denoted Hp, is defined as the quotient group Zp/Bp.
Thus, elements of the homology groups Hp are equivalence classes and two cycles
z1 and z2 belong to the same equivalence class if their difference is a boundary
( i.e. z1 = z2 + b, where b is a boundary). Such two cycles are called homologous
e.g. let z1 = a5 +a4 +a3 +a7, z2 = a5 +a4 +a6 and z3 = a1 +a2 +a3 ; z1 and z2
are homologous (z1 = z2+∂(f2)) but z1 and z2 are not homologous to z3. Let Hp

be a homology group generated by q independent equivalence classes C1, · · · , Cq,
any set {h1, · · · , hq | h1 ∈ C1, · · · , hq ∈ Cq} is called a set of generators for Hp.
For example, either {z1} or {z2} can be chosen as a generator of H1 for the
object represented in Fig.1(b).

Note that some of the notions mentioned before could be confused with similar
notions from graph theory. Tab.1 associates these homology notions with notions
classically used in graph theory.

3 Irregular Graph Pyramids

In this part, basic notions of pyramids like receptive field, contraction kernel,
and equivalent contraction kernel, are introduced. For more details see [10].

A pyramid (Fig. 2a) describes the contents of an image at multiple levels of
resolution. A high resolution input image is at the base level. Successive levels
reduce the size of the data by a reduction factor λ > 1.0. The reduction window
relates one cell at the reduced level with a set of cells in the level directly below.
The contents of a lower resolution cell is computed by means of a reduction
function the input of which are the descriptions of the cells in the reduction
window. Higher level descriptions should be related to the original input data
in the base of the pyramid. This is done by the receptive field (RF) of a given
pyramidal cell ci. The RF(ci) aggregates all cells (pixels) in the base level of
which ci is the ancestor.

Each level represents a partition of the pixel set into cells, i.e. connected sub-
sets of pixels. The construction of an irregular pyramid is iteratively local [11].
On the base level (level 0) of an irregular pyramid the cells represent single
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pixels and the neighborhood of the cells is defined by the 4(8)-connectivity of
the pixels. A cell on level k + 1 (parent) is a union of neighboring cells on level
k (children). This union is controlled by so called contraction kernels (CK) [12],
a spanning forest which relates two successive levels of a pyramid. Every parent
computes its values independently of other cells on the same level. Thus local
independent (and parallel) processes propagate information up and down and
laterally in the pyramid. Neighborhoods on level k + 1 are derived from neigh-
borhoods on level k. Higher level descriptions are related to the original input by
the equivalent contraction kernels (ECK). A level of the graph pyramid consists
of a pair (Gk, Gk) of plane graphs Gk and its geometric dual Gk (Fig. 2b). The
vertices of Gk represent the cells on level k and the edges of Gk represent the
neighborhood relations of the cells, depicted with square vertices and dashed
edges in Fig. 2b. The edges of Gk represent the borders of the cells on level
k, solid lines in Fig. 2b, including so called pseudo edges needed to represent
neighborhood relations to a cell completely enclosed by another cell. Finally, the
vertices of Gk (circles in Fig. 2b), represent junctions of border segments of Gk.
The sequence (Gk, Gk), 0 ≤ k ≤ h is called irregular (dual) graph pyramid. For
simplicity of the presentation the dual G is omitted afterward.

4 Computing Homology Generators in a Graph Pyramid

There exists a general method for computing homology groups. This method
is based on the transformation of incidence matrices [9] (which describe the
boundary homomorphisms) into their reduced form called Smith normal form.
Agoston proposes a general algorithm, based on the use of a slightly modified
Smith normal form, for computing a set of generators of these groups [3]. Even
if Agoston’s algorithm is defined in any dimension, the main drawback of this
method is directly linked to the complexity of the reduction of an incidence ma-
trix into its Smith normal form, which is known to consume a huge amount of
time and space. Another well known problem is the possible appearance of huge
integers during the reduction of the matrix. A more complete discussion about
Smith normal algorithm complexity can be found in [13]. Indeed, Agoston’s algo-
rithm cannot directly be used for computing homology generators and different
kinds of optimisations have been proposed.

[2pt]
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a) Discrete levels b) Image to dual graphs

Fig. 2. a) Pyramid concept, and b) representation of the cells and their neighborhood
relations by a pair of dual plane graphs at the level 0 and k of the pyramid
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Based on the work of [14,15], an optimisation for the computation of homology
generators, based on the use of sparse matrices and moduli operations has been
proposed [16]. This method avoids the possible appearance of huge integers. The
authors also observed an improvement of time complexity dropping from O(n2)
to O(n5/3), where n is the number of cells of the subdivision.

An algorithm for computing the rank of homology groups i.e. the Betti num-
bers has been proposed in [17]. The main idea of this algorithm is to reduce the
number of cells of the initial object in order to obtain a homologically equiv-
alent object, made out of less cells. In some special cases (orientable objects),
Betti numbers can directly be deduced from the resulting object. However, this
method cannot directly provide a set of generators. Based on the previously
mentioned work, an algorithm for computing a minimal representation of the
boundary of a 3D voxel region, from which homology generators can directly be
deduced has been defined in [8].

4.1 Description of the New Method

The method we propose in this paper has the same philosophy as the methods
of Kaczynski and Damiand [18,19]: reducing the number of cells of an object for
computing homology. Moreover, we keep all simplifications that are computed
during the reduction process by using a pyramid. In this way, homology genera-
tors can be computed in the top level of the pyramid, and can be used to deduce
generators of any level of the pyramid. In particular, we show how generators
of the higher level can be directly down-projected on the desired level (using
equivalent contraction kernels).

Starting from an initial image, we build an irregular graph pyramid. The
method we provide here is valid as long as the algorithm used for the construc-
tion of the pyramid preserves homology. In particular, we show here that the
decimation by contraction kernels, described in Section 3 [12], preserves homol-
ogy of a subdivided object. Indeed, homology of the initial image can thus be
computed in any level of the pyramid, and in particular in the top level where
the object is described with the smallest number of cells.

Moreover, we use the notion of receptive field and equivalent contraction ker-
nel, and show that the generators of homology groups of any level of the pyramid
can be deduced from those computed on the higher level. Note that in special
cases, the higher level of the pyramid may be reduced to exactly a set of gener-
ators of the initial image, as shown in [8].

Our method can be summarized in the following steps:

1 Starting from a labeled image, a graph pyramid {G0, G1, . . . , Gk} is built
using contraction kernels of cells with the same label.

2 Homology groups generators are computed for Gk, using Agoston’s method.
3 Homology generators of any level i can be deduced from those of level i + 1

using the contraction kernels. In particular, we obtain the homology gener-
ators of the initial image.
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Fig. 3. Computing generators of homology groups using an image pyramid

Note that homology generators of the lowest level can directly be deduced
from the highest level using the notion of equivalent contraction kernel (arrow
3′ in Fig.3). Fig.3 illustrates the general method that we propose for computing
homology generators of an image.

4.2 Preserving Homology on Irregular Graph Pyramids

The algorithm described in [17] is based on operations of interior face reduction
that reduce the number of cells of the subdivision. The main idea is to find a
p−cell a and a (p + 1)−cell b, such that a is incident to b. Then a and b are
removed and the boundary of the other p−cells that were adjacent to a are
modified such that the new boundary ∂(b′) is defined as its initial boundary
added with the boundary of b. Indeed, if a is incident to exactly two p−cells b
and b′, the result of the corresponding interior face reduction can be seen as the
removal of a and the merging of b and b′. It is proved in [17] that interior face
reduction preserves homology.

Observing the dual graph, the operations of contraction and removal that are
used to build each level of the pyramid are interior face reduction: two faces that
are merged share a common edge that is removed, and an edge is contracted if
one of its endpoints is incident to exactly two different edges. Thus, homology
is preserved in every level of the pyramid.

4.3 Delineating Generators

A 1D generator in Gk = (V k, Ek) is a closed path connecting vertices of Gk and
surrounding at least one hole. Each vertex v ∈ Gk is the result of contracting a
tree (contraction kernel CK) of Gk−1. Each edge (v1, v2) ∈ Gk corresponds to
a surviving edge (w1, w2) ∈ Gk−1 with w1 ∈ CKk−1(v1) and w2 ∈ CKk−1(v2)
i.e. an edge that has neither been contracted nor removed2.

Given a generator in Gk, mapping it to the level below is done by identifying
the surviving edges in Gk−1 corresponding to the generator edges in Gk and,

2 Not part of any simplification.



290 S. Peltier et al.

G2

G1

G0

surviving vertices

non surviving vertices

thick edges: generator

arrows: contracted edge

v

v

v

CK1(v)

ECK0(v)

Fig. 4. Top-down delineation of a generator computed in G2

where the generator is disconnected, adding paths to fill in the gaps and recon-
nect. For every two consecutive edges not having a common vertex in Gk−1 but
having one in Gk, the unique path connecting their disconnected endpoints in
the contraction kernel CK ⊂ Gk−1 of their shared vertex in Gk is added.

Because each path added in Gk−1 is entirely part of a contraction kernel, with
contraction being used in the dual only for boundary simplification purposes,
never connecting two different boundaries, and because the building process
preserves homology (see Sec. 4.2) the obtained generators will be homologous to
the ones in Gk.

Reiterating this process of mapping the generator cycles of Gk from k to
k−1, . . . to 0, cycles in G0 corresponding to the generators of the top level can be
identified. By replacing the contraction kernels, with the equivalent contraction
kernels, using the same methodology, the generator cycles of Gk can be directly
mapped to G0. For an example, see Fig. 4.

5 Experiments on 2D Images

We present and discuss initial experiments that have been performed on 2D
binary shapes. For each shape, we have computed homology generators directly
on the initial image, and on the top level of the pyramid.

Tab.2 shows the number of 0D, 1D and 2D−cells on the initial image, and on
the top level of the pyramid for the shape presented on Fig.5 and Fig.6. One can
observe that for each shape the total number of cells is considerably reduced on
the higher level of the pyramid. Thus, the computation of homology generators
can be done on much smaller matrices on the top level instead of the initial image.

Table 2. The number of cells on the initial image and on the top of the pyramid

Initial image Top of the pyramid
0D-cells 1D-cells 2D-cells 0D-cells 1D-cells 2D-cells

Fig.5. 8153 15785 7630 7 10 1
Fig.6 10352 20148 9793 9 13 1



Computing Homology Group Generators of Images 291

(a) (b)

Fig. 5. (a): the homology generators computed on the initial image. (b): the down-
projected generator.

(a) (b)

Fig. 6. (a): the homology generators computed on the initial image. (b): the down-
projected generator.

In Fig.5 and Fig.6, it can be seen that our new method provides a valid set
of generators in each case.

Moreover, using the classical method, we cannot have any control of the ge-
ometry of the generators computed. More precisely, the aspect of the obtained
generators is directly linked to the construction of incidence matrices, which is
determined by the scanning of each cell of the initial image. The shape shown
on Fig.7 has been obtained from rotating Fig.5. In Fig.7(a), one can observe
that the aspect of the generators computed on the initial image ”follows” the
scanning of the cells (from top to bottom, and left to right). The generators
obtained in Fig.7(b) always fit on the boundaries of the image. It is proved in
[20] that any generator computed with our new method will always fit on some
boundaries of the initial image.

One can note that the sets of cycles obtained in Fig.5(a) and Fig.5(b) do not
surround the same (set of) 1D−holes of the shape S. Indeed, these two sets are
two different basis of the same group H1(S): let a, b and c denote the equiva-
lence class of cycles that surround respectively the left eye, the right eye, and the
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(a) (b)

Fig. 7. Influence of the scanning (compare with Fig.5)

(a) (b) (c)

Fig. 8. (a): original image. (b): segmentation. (c): down-projected generators (in black).

mouth. The set of generators in Fig.5(a) describe H1(S) in the basis {a+ b, c, a}
whereas in Fig.5(b), H1(S) is described in the basis {a, a + b + c, b}.

In Fig.8 a real world image is shown. We have first segmented the image (e.g.
one can choose the minimum spanning tree based pyramid segmentation [21], and
build generators on these segmented images, but for clarity of the presentation
we used a binary segmentation). Fig.8(a) shows the original image, Fig.8(b) the
used binary segmentation, and Fig.8(c) the brightened image with the obtained
generators in black.

6 Conclusion

We have presented a new method for computing homology groups of images
and their generators, using irregular graph pyramids. The homology generators
are computed efficiently on the top level of the pyramid, since the number of
cells is small, and a top down process (down-projection) delineates the homology
generators of the initial image. Some preliminary results have been shown for 2D
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binary images. We have also observed that the generators computed with this
new method seem to stay on boundaries.

In a future work, we plan to extend this method to 3D and nD images, using
the (already existing) structures of 3D and nD irregular pyramids. We also plan
to use the property that down-projected generators always fit on boundaries in
order to use homology generators for object matching and object tracking.
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