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Abstract—In this paper, we present a novel distance metric
called Segmentation Edit Distance (SED) and its use as a
segmentation evaluation metric. In segmentation evaluation, the
difference or distance of a test segmentation and the associated
ground truth segmentation are measured in order to compare
different algorithms. Our proposed edit distance extends the
idea of other edit distances such as the string edit distance or
the graph edit distance to the domain of image segmentations.
The distance is based on the cost of edit operations that are
needed to transform one segmentation into another. Only one edit
operation, the deletion of an error region, is considered. Different
to other edit distances, the costs assigned to this operation are
based on properties of the error regions and the image processing
method used to delete a region. As a segmentation evaluation
metric, it combines the assessment of accuracy and efficiency
into a single metric. Evaluations on synthetic and real world
data show promising results compared to other state of the art
segmentation evaluation metrics.

I. INTRODUCTION

Image segmentation is the process of partitioning a digital
image into sets of pixels or segments which share certain
meaningful characteristics. It is an important process in image
analysis which has resulted in extensive research and various
proposed methods. Since this aggravates the selection of an
appropriate algorithm for a given task, the importance of
methods for evaluating the quality of image segmentation
algorithms has increased. In segmentation evaluation, the task
is to compare a given test segmentation to a ground truth
segmentation by measuring the distance or similarity between
them. Heckel et al. [1] categorize segmentation algorithms by
the degree of automation in the following way:

1) Fully automatic methods, requiring no user interaction.
2) Semiautomatic methods, where the algorithm is initial-

ized or parameterized by the user.
3) Interactive methods, where the user steers and corrects

computer-generated segmentation results.
4) Manuel tools, where the segmentation is painted by

hand, for example.
Fully automatic methods are the ultimate goal in image

segmentation, since they minimize the user effort and provide
reproducable results [1] and can be objectively evaluated
through benchmarks1. If an automatic segmentation algorithm
is not available or has failed, interactive methods can be used
instead. Especially if accurate semantic objects are required.
In order to assess the quality of interactive segmentation
algorithms they are typically evaluated in terms of user ex-
periments which are effective but time-consuming and labor

1http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm#segmentation

intensive [2]. Consequently, methods to automate the evalua-
tion have been researched and successfully applied in the past.

Heckel et al. [1] evaluated segmentation editing tools in
the context of tumor segmentation in computer tomography.
McGuinness and O’Connor [3] proposed a method to automate
the evaluation of interactive segmentation algorithms with the
focus on natural images. In order to achieve this, they drive the
segmentation by automatically generating the user interactions
from the error between the current segmentation and the
ground truth. Moschidis et al. [4] presented an evaluation
framework to assess the quality of interactive segmentation
algorithms in the field of medical image analysis.

When using interactive segmentation algorithms, the user
is required to provide input to the algorithm in the form
of edit operations such as seed pixels [1], [3], [4]. In order
to recieve a comprehensive evaluation, accuracy, efficiency
and repeatability are criteria that are commonly used in the
context of interactive segmenatation algorithms [1]. Accuracy
is the degree of resemblance between a segmentation and the
ground truth. It is measured using evaluation metrics such
as the Jaccard index [3]. Efficiency is the amount of effort
required in order to perform the segmentation and is related
to the edit operations. Heckel et al. [1] state that the goal
of an interactive segmentation algorithm is to finish a given
segmentation with as few steps as possible, where one step can
be seen as a user interaction or edit operation. It is measured in
terms of run time or number of edit operations. Consequently,
statements about the efficiency can only be made after the
whole evaluation has been performed. Repeatablity expresses
how well the same result for a specific segmentation task can
be repeated over different sessions.

We want to focus on the first two criteria and propose
a novel distance metric that combines the assessment of
accuracy and efficiency into a single metric, the Segmentation
Edit Distance (SED).

The remainder of this paper is organized as follows. Section
II presents a short literature review of current state of the art
segmentation evaluation metrics. Section III presents our pro-
posed distance metric. Section IV discusses the segmentation
datasets used to evaluate the new combined descriptor and
studies the results of the evalution. Conclusions are given in
Section V.

II. STATE OF THE ART

Taha and Hanbury [5] give an overview of 20 different
evaluation metrics for volume segmentation. All these metrics
can be expressed in one of two terms: The four basic overlap
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cardinalities, namely True Positives (TP), False Positives (FP),
True Negatives (TN) and False Negatives (FN) that reflect the
overlap between two segmentations. Or the spatial position of
voxels. Since the overlap cardinalities only take the number
of pixels in different overlap regions into account they do
not consider any spatial information like shapes of FP or
FN regions. For the test segmentations in Figure 3 metrics
based on these cardinalities give the same score to every
shape, as the number of false positives is the same for every
shape. Spatial distance based metrics take into account the
spatial postion of false negatives and false positives. Taha and
Hanbury present three distance metrics, namely the Hausdorff
distance, the Average distance and the Mahalanobis distance
[5]. The Hausdorff distance is sensitive to outliers. The Aver-
age distance, which is the Hausdorff distance averaged over all
points, is stable and less sensitive to outliers but still effected
by them. The Mahalanobis distance measures the distance
between two segmentations by comparing estimates of them,
thereby considering only the general shape and alignment and
ignoring the boundary details.

Peng et al. [6] and Dung and Binh [7] used metrics to
evaluate the quality of image segmentation that were not
reviewed by Taha and Hanbury [5], but they have the same
properties.

Deng et al. [8] proposed a new segmentation evaluation
method for tumor segmentation in CT images, where they
simulate the subjective evaluation of radiologists. Compared to
subjective assessments, objective metrics are easy to compute
but may not provide a good evaluation results. This is due
to the fact that each metric only captures certain aspects of
the difference between a segmentation and the ground truth.
Therefore, their method uses a set of objective metrics which
are combined in a linear fashion to form a new composite
metric. With this new metric they achieve better results for
evaluating segmentations than with the individual objective
metrics. In order to construct the composite metric, the follow-
ing three objective metrics were chosen based on the highest
correlation with the subjective rating of radilogists: Volume
overlap, absolute value of normalized volume difference and
RMS surface distance (see [8] for definitions). The first two
of these metrics are based on the basic overlap cardinalities
and the last metric is based on the contour resulting in the
same properties as the evaluation metrics reviewd by Taha
and Hanbury [5].

Funke et al. [9] proposed an error measure for segmentation
evaluation where small errors around the boundary are con-
sidered as tolerable and larger errors have to be corrected
manually. The manual correction is reflected as a minimal
weighted sum of split and merge operations that are needed to
transform one segmentation into another. Since only splits and
merges between regions are counted and no spatial information
is considered, this error measure assigns the same value for
all test segmentations in Figure 3.

III. PROPOSED EDIT DISTANCE

The SED measures the distance between a test segmentation
and the corresponding ground truth segmentation based on the
cost of edit operations. Edit operations correspond to actions
that have to be performed in order to fix error regions in the
test segmentation to transform it into the corresponding ground
truth segmentation.

The concept of edit distances is not new and has originally
been proposed for string sequences [10]–[12]. The string edit
distance defines a dissimilarity measure based on the number
of edit operations needed to transform a source string into a
target string. Common edit operations are insertion, deletion,
substitution and transposition of characters. Sanfeliu et al. [13]
extended the edit distance from strings to graphs. Common edit
operations are insertion, deletion and substitution of nodes and
edges. An edit path defines a sequence of edit operations that
transform one graph into another. Cost functions measure the
strength of an edit operation. The graph edit distance is then
the minimum cost edit path needed to transform a source graph
into a target graph.

For our proposed SED, the only edit operation is the deletion
of an error region. Costs are assinged to this edit operation
based on the method used to perform the deletion. In this
paper we focus on interactive segmentation methods where
the user has to select seed pixels in order to label different
regions of the segmentation [3]. Therefore the deletion of an
error region corresponds to the interactive action of selecting
seed pixels inside an error region.

However, segmentation of error regions close to the bound-
ary of the ground truth is harder than the segmentation of
regions that are further away from the boundary. Therefore
we split the error regions into two sets, one with big regions
and the other with thin regions that tightly fit the boundary.
Additionally, pixel accurate ground truths are generally im-
possible to create for natural images, since the true border
position along edges of an object cannot be obtained with
absolute certainty [3]. Therefore, the costs for the thin error
regions are calculated independently of the costs for the big
error regions.

For the first set of big error regions we compute the number
of different error regions, based on the assumption that at least
one user interaction, e.g. placing seed pixels, is needed for
every distinct region. Since the number of user interactions
depends on properties of the error regions, we define the
following cost functions:

1) Connections between error regions and the ground truth:
Since segmentation close to the boundary of the ground
truth is more demanding, higher costs are assigned for
longer connections (see Figure 1 for an example)

2) Area of error regions:
The area of an error region is related to the amount of
user interactions that are needed. Larger error regions are
linked to bigger or longer brush strokes [3] and therefore
higher costs.
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(a) (b)

Fig. 1: Example for connections (red) between error regions
(grey) and the ground truth (white).

For the second set of thin error regions that tightly fit the
boundary, costs are assigned based on the distance between the
error region boundary and the boundary of the ground truth.

We now define the computation of the SED for binary seg-
mentations, where an image is only partitioned in foreground
and background segments. After that we extend the approach
to non-binary segmentations.

A. Computation for Binary Segmentations

In order to measure the similarity between a test foreground
segment ST and the corresponding ground truth foreground
segment SG of a binary segmentation, the following sets are
computed:

1) The sets of inner boundary pixels BT and BG of
the segmentations ST and SG based on the discrete
algorithm by Suzuki et al. [14].

2) The set of connected components

C = ccl(ST \ SG) ∪ ccl(SG \ ST ) (1)

from FP and FN error regions, where ccl is the con-
nected component labeling [15]. Each connected com-
ponent is a set of pixels connected by 8-neighbourhood.

3) The set of thin connected components close to BG

CT = {X ∈ C|h(X,BG) ≤ θ} (2)

where

h(A,B) = max
a∈A

min
b∈B
||a− b|| (3)

and ||·|| is the Euclidean norm. The thinness parameter θ
defines the maximum distance of points in the connected
components from the boundary BG. We define θ =

√
2

to restrict the connected components in this set to thin
8-connected lines tightly fitting the boundary.

4) The set of big connected components

CB = C \ CT (4)

5) The partial boundary

BP =
⋃

X∈CB

BT \X (5)

This boundary is used in the distance based objective
metric. By removing parts of the original boundary BT

that intersect the large connected components CB , the
maximum Hausdorffdistance between this boundary and
the boundary BG is defined by θ =

√
2, removing any

outliers.
The binary SED2 is defined as

SED2(ST , SG, θ) = k · (c1 + c2) + c3 (6)

where θ is the thinness parameter, k is the number of big
error regions

k = |CB | (7)

and ci are the following costs, where | · | gives the number
of elements:

1) Length of the boundary between big error regions and
the ground truth (c1)

c1 =

∣∣ ⋃
X∈CB

BG ∩X
∣∣

|BG|
(8)

It is normalized to the length of the ground truth
boundary BG.

2) Area of big error regions (c2)

c2 =

∑
X∈CB

|X|
|SG|

(9)

It is normalized to the area of the ground truth
segmentation SG. That makes it comparable to the
metric c1 which is also normalized to the ground truth.

3) Distance between test and ground truth boundaries (c3)

c3 =
max(hm(BG, BP ), hm(BP , BG))

θ
(10)

where BP is used instead of the full test boundary
in order to exclude big regions. θ is the thinness
parameter corresponding to the maximum Hausdorff
distance between the two boundaries ensured by (2). hm
corresponds to the modified median Hausdorff distance
introduced by Chetverikov et. al. [16].

hm(M,R) =
1

NM

∑
a∈M

min
b∈R
‖a− b‖ (11)

The costs c1 and c2 are calculated for the number of big
error regions and are therefore multiplied by k. The cost c3 is
independent of the big error regions and is therefore added at
the end.

B. Extention to non-binary Segmentations

In order to extend the previously presented approach to
segmentations where an image is partitioned into more than
two segments, the SED2 is computed for every pair of
test and ground truth segment seperately. In the end all
individual scores are summed up to give the score for the
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(a) Ground Truth (b) Test (c) Overlap

Fig. 2: Example segmentation with three segments. The error
region between segment 1 and segment 2 (striped) is a FN
region for segment 1 and a FP region for segment 2.

whole segmentation. When computing the SED2 for individ-
ual segment pairs, one problem arises: Error regions may be
shared between different segments, and therefore influence the
edit distance score of more than one segment pair. Figure 2
shows an example of a segmentation with three segments and
overlapping error regions.

In order to fix this, overlapping error regions from all
segments in the test segmentation are removed accourding to
Algorithm 1.

The general SED is then defined as

SED(T,G, θ) =

N∑
i=1

SED2(Ti, Gi, θ) (12)

where T and G are the sets of segments from the test and
ground truth segmentations respectively and N is the number
of segments in G.

Algorithm 1 Remove overlapping error regions

Input: set of test segments T ,
set of ground truth segments G

Output: updated set of test segments T
1: N ← |G|
2: for i = 1 to N do
3: TPi ← Gi ∩ Ti
4: FPi ← Ti \Gi

5: FNi ← Gi \ Ti
6: end for
7: for j = 1 to N do
8: for k = j + 1 to N do
9: FPk ← FPk \ FPj

10: FNk ← FNk \ FNj

11: end for
12: Tj ← TPj ∪ FPj ∪ FNj

13: end for
14: return T

IV. RESULTS

We tested our proposed edit distance on two datasets, one
with synthetic segmentations, referred to as synthetic dataset
and the other with segmentations from natural images of
horses, referred to as horse dataset. For comparison, we chose
two metrics from Taha and Hanbury [5]. The first metric is

(a) Seg01 (b) Seg02 (c) Seg03 (d) Seg04

(e) Seg05 (f) Seg06 (g) Seg07 (h) Seg08

Fig. 3: Synthetic dataset with ground truth (white) and error
regions (red).

the Dice Coefficient (DICE), a spatial overlap based metric
defined by

DICE =
2TP

2TP + FP + FN
(13)

It is based on the four basic overlap cardinalities. For our
evaluation, this metric also covers other state of the art metrics
such as the Rand Index or the Variation of Information, since
they can be expressed by the same basic overlap cardinalities
[5] and feature the same drawbacks as discussed in Section
II. The second metric is a spatial distance based metric, the
Average Distance (AVD), defined by

AVD(A,B) = max(hm(A,B), hm(B,A)) (14)

where hm is the modified median Hausdorff distance (11).

A. Synthetic Dataset

The synthetic dataset is composed of eight different syn-
thetic segmentations that are compared to the same ground
truth (Figure 3). The area of the error regions is the same for
every segmentation in this dataset, except Seg08, but they are
distinguishable by different properties such as the number of
components or the size of the connections to the ground truth
boundary.

Table I shows the results of the synthetic dataset for the
DICE, AVD and our proposed SED2. As expected, the DICE
index is not able to distinguish the different segmentations,
except Seg08, since the error regions are the same size in
every other example of the dataset. The AVD is sensitive to
outliers, assigning the largest score to Seg02 and the lowest
to Seg06. Our proposed metric assigns the lowest score to
Seg07 since only one error region is present and there is no

1178



TABLE I: Distance scores for the synthetic dataset (best scores
are bold per column).

Segm. DICE AVD SED2 k c1 c2 c3

Seg01 0.730 3.455 0.903 1 0.068 0.667 0.168
Seg02 0.730 9.331 0.906 1 0.068 0.667 0.171
Seg03 0.730 2 1.473 1 0.500 0.667 0.307
Seg04 0.730 2 2.908 2 0.591 0.667 0.393
Seg05 0.730 1.937 3.726 3 0.477 0.667 0.295
Seg06 0.730 1.917 7.321 6 0.500 0.667 0.321
Seg07 0.730 3.134 0.827 1 0.000 0.667 0.161
Seg08 0.587 5.160 1.494 1 0.000 1.333 0.161

connection to the boundary of the ground truth. The table also
shows k, c1, c2 and c3 for the proposed edit distance. Seg07
and Seg08 show big error regions that are not connected to
the ground truth segmentatio, which is regared as the best
case for error regions. However, the SED2 score for Seg08
is still larger than SED2 scores for other segmentations in the
dataset. This is due to the fact that the area (c2) is much larger,
negating the effect that the error region is not connected to the
ground truth.

B. Horse Dataset

The horse dataset consists of eight natural images of differ-
ent horses taken from video sequences with three test segmen-
tations per image that are compared to the same ground truth
(Figure 4 shows an example image of the dataset). The images
are from a project were image processing methods are used to
increase the accuracy, objectivity and throughput of phenotypic
estimation of Lipizzan horses [17]. Traits of the horses are
interpreted based on the contour of the segmented horse shape.
Therefore, the quality of the segmentation is important. Three
algorithms were used to create an initial segmentation of the
horse from the background. The first algorithm is a simple
background subtraction between the current frame of the video
and a background frame without horse, taken with a stationary
camera. The second algorithm is a two-stage Otsu [18] that
selects an optimal threshold. The last method is GrabCut
[19], an interactive iterative segmentation algorithm based on
graph cuts where seed points are used to mark foreground
and background regions. The first automatic segmentation of
GrabCut is improved by results from the two-stage Otsu.

Table II shows the results of the horse dataset for DICE,
AVD and SED comparing the three segmentation algorithms
background subtraction (BG-Sub.), two-stage Otsu (Otsu) and
Grabcut. The segmentation by the Grabcut algorithm should
have the lowest score for every image of the dataset, since it
gives the best approximation of the ground truth border. Figure
5 shows examples of the horse c allora from the horse dataset.
Only the SED2 assigns the lowest score to all segmentation
by the Grabcut algorithm, although the DICE and AVD metrics
assign a lower value to the two-stage Otsu algorithm only for
one image of the dataset. Looking at the individual metrics
for this dataset, the scores for DICE and AVD lie much closer

Fig. 4: One example image from the horse dataset.

(a) Background subtraction

(b) Two-stage Otsu

(c) Grabcut

Fig. 5: Ground truth (white) and error regions (red) for a part
of the segmentation of c allora.

together than the scores of the SED2 which gives clearer
results between the three segmentation algorithms.

Table III shows SED results for the horse c allora with all
objectiv metrics of the proposed edit distance. The number of
big error regions and therefore the number of minimal user
interactions.

V. CONCLUSION

This paper proposes a novel distance metric called
Segmentation Edit Distance (SED). The basic concept of
edit distances such as the string edit distance or graph edit
distance is extended to the domain of image segmentations.
It measures the distance between a test segmentation and the
associated ground truth segmentation based on the cost of edit
operations that are needed to fix error regions between the two
segmentations. The only edit operation is the deletion of error
regions and costs are assigned to it based on properties of
the error regions and the image processing method used for
the deletion. This work focuses on interactive segmentation
methods, where users have to input seed pixels and the deletion
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TABLE II: Results of the DICE, AVD and SED2 scores on the horse dataset (best scores are bold per score for every line).

DICE AVD SED2

Horse BG-Sub. Otsu Grabcut BG-Sub. Otsu Grabcut BG-Sub. Otsu Grabcut

c allora 0.894 0.960 0.953 12.611 2.890 4.532 40.346 47.067 11.305
c bradamanta 0.920 0.943 0.987 10.420 3.443 0.891 23.569 32.362 5.307
c samira 0.936 0.946 0.976 7.923 4.595 2.247 28.076 48.716 13.564
c wanda 0.930 0.950 0.978 15.086 3.829 3.006 26.884 35.337 12.524
m fantasca b 0.909 0.956 0.978 8.755 2.511 1.872 24.195 43.232 10.092
m malina 0.937 0.940 0.979 9.807 4.028 2.247 21.687 41.753 7.287
m rustica 0.926 0.942 0.977 13.590 3.815 2.824 31.297 29.613 11.136
n aga 0.816 0.935 0.978 17.962 4.648 2.060 25.710 51.153 9.1

TABLE III: Results of the SED score for the horse c allora
(best scores are bold for every column).

Method SED2 k c1 c2 c3

BG-Sub. 40.346 57 0.516 0.187 0.305
Otsu 47.067 58 0.732 0.073 0.384
Grabcut 11.305 23 0.391 0.092 0.199

of an error region corresponds to the interactive action of
placing such seed pixels inside an error region.

The costs associated with these interactive actions are
related to properties of the error regions such as length of
the boundary between the error region and the ground truth
or the area of the region. Furthermore, costs for imprecisions
close to the boundary of the ground truth are assigned based
on the distance between these thin regions and the boundary.
By including additional metrics, such as shape descriptors like
the rectangularity or circularity, the analysis of error regions
could be extended.

Moreover, currently only the binary shapes of error regions
are considered for the cost calculation. As a future research
direction, the results could be improved by incorporating infor-
mation from the feature space, for example texture information
of the error regions from local binary patterns [20]. This would
allow more precise statements about the costs associated to the
edit operation and could relax the assumption that at least one
edit operation is needed for every distinct error region.

In order to use the proposed edit distance for other methods
than interactive segmentation with seed pixels, the costs have
to be adapted based on properties of the new method.
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