Homological tree-based strategies for image analysis

Pedro Real¹, Helena Molina-Abril^{1,2}, Walter G. Kropatsch²

¹Dpto. Matemática Aplicada I, Universidad de Sevilla, real@us.es,habril@us.es ²PRIP, Vienna University of Technology, Austria

habril@prip.tuwien.ac.at

Abstract

- V → digital volume
- $K(V) \rightarrow cell complex$ homologically equivalent to V
- ϕ \rightarrow algebraic map over K(V) \rightarrow Obtain homological characteristics of V (Betti numbers, homology generators, relations between them, etc.)

Homological information on cell complexes (ground ring $F_2 = \{0, 1\}$)

- •(K, ∂) \longrightarrow 3-d cell complex.
- q-chain $\Longrightarrow \sum \alpha_i \sigma_i$, $\sigma_i \in K(q)$, $\alpha_i \in F_2$. $\ldots \to C_{k+1} \xrightarrow{\partial_{k+1}} C_k \xrightarrow{\partial_k} C_{k-1} \to \ldots$
- q th chain complex $(C_a(K)) \rightarrow$ Abelian group
- The boundary map $\partial_{\alpha}(a) \rightarrow$ the collection of (q-1)-faces of a.

$$\bullet \quad \partial_{q} \partial_{q-1} = 0.$$

- q-cycle \rightarrow A chain a $\in C_{\alpha}(K) \setminus \partial(a)_{\alpha} = 0$
- q-boundary \rightarrow A chain $a \in C_q(K) \setminus a = \partial_{q+1}(b)$, $b \in C_{q+1}(K)$.
- q th homology group quotient group of q-cycles and q-boundaries.

Homology gradient vector field (HGVF)

- Solve the Homology Problem (∂ =0 up to boundary) finding a map Φ : C*(K) \rightarrow C *+1(K)
- ϕ defines an algebraic deformation process (chain homotopy). $\rightarrow \phi \phi = 0$, $\phi \partial \phi = \phi$, $\partial \phi \partial \phi = \partial$.
- Homology groups can be deduced in a straightforward manner from φ.
- The image of HGVF can be seen as a mixed hierarchical forest

Algorithm

Algorithm for computing homological information of K(V)

Homological strategies

•Different strategies for computing ϕ (by changing only 2 parameters in the proposed algorithm) give rise to different maps.

- Topological skeletons:
 - Filter Taking first border cells.
 - $e_{s_k} \rightarrow$ is a free face of c_i (non-shared with other cells).

- •Segmentation:
 - Filter Taking first inner cells.
 - $e_{s_k} \rightarrow$ is a shared face of the inner cell c_i

Topological Image Pyramids:

•Operations used to construct an irregular graph pyramid (contraction and removal) are HGVF > an irregular graph pyramid can be directly built using the proposed Algorithm

- Given two cells c_i and c_j sharing a face u_s and defining $\dot{\phi}(u_s) = c_i$
 - \rightarrow the cell u_i will be removed and c_i and c_i will be merged
- •The advantage of using this algorithm for building a pyramid is the complete topological control during the whole process, and the possibility of directly compute topological invariants at each level of the pyramid.

