
Data Graph Formulation as the
Minimum-Weight Maximum-Entropy Problem

Samuel de Sousa and Walter G. Kropatsch

Vienna University of Technology
Pattern Recognition and Image Processing Group

Vienna, Austria
sam,krw@prip.tuwien.ac.at

Abstract. Consider a point-set coming from an object which was sam-
pled using a digital sensor (depth range, camera, etc). We are interested
in finding a graph that would represent that point-set according to some
properties. Such a representation would allow us to match two objects
(graphs) by exploiting topological properties instead of solely relying on
geometrical properties. The Delaunay triangulation is a common out
off-the-shelf strategy to triangulate a point-set and it is used by many
researchers as the standard way to create the so called data-graph and
despite its positive properties, there are also some drawbacks. We are in-
terested in generating a graph with the following properties: the graph is
(i) as unique as possible, (ii) and as discriminative as possible regarding
the degree distribution. We pose a combinatorial optimization problem
(Min-Weight Max-Entropy Problem) to build such a graph by minimizing
the total weight cost of the edges and at the same time maximizing the
entropy of the degree distribution. Our optimization approach is based
on Dynamic Programming (DP) and yields a polynomial time algorithm.

Keywords: data-graph, graph realization, combinatorial optimization

1 Introduction

In many applications it is necessary to create a graph out of an unstructured
point-set. Such a point-set could represent the projection of an object onto an
image or locations of key features. A common problem in Computer Vision
consists of the registration of two or more point-sets. As a result, one would (i)
obtain the transformation that maps one set towards the other and (ii) find the
pairwise correspondence between points in all sets.

A graph created out of a point-set will be referred here as the data-graph.
A common procedure consists of (i) creating the data-graph using the Delaunay
triangulation and (ii) performing the registration using an optimization proce-
dure [1, 2, 11]. The Delaunay triangulation [3] is based on the condition that
no other point should lie inside the circumcircle of any triangle. It is not clear,
though, if the Delaunay triangulation is always the best solution for all possi-
ble tasks in Computer Vision when a data-graph is required. There are several

alternative methods such as Reeb graphs [13], Gabriel Graph [6], and also the
Euclidean Minimum Spanning Tree (EMST). Many researchers propose methods
of data-graph construction focusing either on aesthetic aspects [12] or designing
their own criteria, such as the fan-shaped triangulation of Lian and Zhang [10].

Developing a more unique representation of a graph is not a new concept and
an relevant paper in the topic was produced by Dickinson et al. [4] where they
focus on a class of graphs which have unique representation of the node labels, a
representation ρ of graph g = (V,E, α, β) is created where α and β are functions
assignings labels to the vertices and edges respectively. They can find if two
graphs g′ and g′′ are isomorphics by comparing their representations ρ(g′) and
ρ(g′′) in O(N2). Our work differs in nature with the previous work since we are
not only interested in an isomorphism between two graphs, since many isomor-
phisms can still be possible and the points couldn’t be uniquely identified due to
the many possibles solutions. We aim at creating a graph in which the number of
possible isomorphims would be as small as possible. We pose this problem as an
optimization problem where we call it the Minimum-Weight Maximum-Entropy
Problem which captures the desired behaviour a graph should be designed and
we provide an efficient polynomial time algorithm based on Dynamic Program-
ming (DP) to solve it. To the best of our knowledge, we are the first ones to
tackle the matching problem in this fashion.

The remainder of this paper is organized as follows: Section 2 formulates the
problem being addressed in this paper and the difficulties associated with the
minimization of its cost function. Section 3 introduces the Near Homogeneous
Degree Distribution (NHDD) property which is used for building up the solution.
As our solution possesses a recurrence relation, we design a Dynamic Program-
ming algorithm on Section 4. Finally, we draw our conclusions and future work
on Section 5.

2 The Minimum-Weight Maximum-Entropy Problem

As the goal of our paper is to design data-graphs which would ease the registra-
tion process, the first question to be asked is how we can define such metric, or
which property an ideal data graph would have in order to make the registra-
tion process as trivial as possible. If we examine a regular graph, i.e. a graph in
which all nodes have the same degree, we would notice that all nodes could be
matched against all the other nodes, and the registration task would generate
many ambiguous solutions. Therefore, if one succeeds to build a graph which is
exactly opposite of a regular graph, i.e. a graph whose degree distribution is as
diverse as possible, the registration process would be, then, alleviated.

In order to measure the diversity found in the degree distribution, we can
calculate the Shannon entropy (H) for a graph G(V,E) as follows:

H(G) = −
∑
v∈V̸=

p(v) log2(p(v)). (1)

where p(v) is the probability of finding a node with a degree of v among all
distinct degree values (V ̸= is the set of distinct degree values of V). The entropy
measures the uncertainty associated with a random variable. As defined in Eq. 1,
a high entropy H(G) of a graph G(V,E) would indicate a high “variability” in
the distribution of nodes V . The converse is also true, a low entropy means low
variability, as in a k-regular graph whose probability p(k) = 1 and log(1) = 0.

We aim at obtaining a graph with the highest entropy that would let us
match the nodes more easily. Nevertheless, even if we are able to obtain a graph
whose entropy is as high as possible, there is still the problem of ambiguity.
There are multiple solutions with the same entropy value. Therefore, the second
question we pose is how to generate a graph as unique as possible. Such question
is important due to the fact that it would allow us to match two graphs based
only on their degree values. We would like to uniquely identify the nodes unless
all points in the graph are equidistant, in this case many possible solutions still
exist. To achieve that, we decided to minimize the total weighted edge cost of our
graph. We call this problem the Minimum-Weight Maximum-Entropy (MWME):

Definition 1. The Minimum-Weight Maximum-Entropy (MWME) is the prob-
lem of estimating an edge-induced subgraph of a graph whose entropy of the node
degrees is maximum and the total edge weight is minimum.

Given a point set P , we create a complete graphK|P | using a metric1 function
as the edge weights. LetW denote the weighted edges ofK|P |. We define a binary
vector U that induces an edge-subgraph G[U] composed of all nodes of K|P | and
edges {Wi|Ui = 1}. We search for the vector U which minimizes the cost:

minimize
U

|W |∑
i=1

WiUi,

subject to H(F) ≤ H(G[U]), ∀F
U ∈ {0, 1}|W |.

(2)

under the constraint that the entropy H(G[U]) of the induced subgraph G[U] is
maximum, i.e. for any graph F , the entropy H(F) will be lower or equal to our
edge induced subgraph G[U] The second constraint states that the optimization
variable is discrete, we either add the edge Wi to our graph G[U] when Ui = 1
or we do not add such an edge (Ui = 0).

We propose a dynamic programming algorithm that minimizes Eq. 2 by look-
ing deeper into some properties of the desired induced graphG[U]. It is important
to mention that we cannot guarantee unique solutions. The reason for that can
be visualized in Fig. 1(a). By constructing a graph out of a regular polygon, we
could rotate all nodes and the total edge cost would remain the same as well as
the entropy. Therefore, there would be many possible solutions.

1 e.g. the Euclidean distance

3 The Near Homogeneous Degree Distribution (NHDD)

In order to minimize the cost function provided in Eq. 2, we will decompose the
problem first in the entropy maximization and then in the edge cost minimization.
In this section we explain how we guarantee the maximum possible entropy in
a graph and later how to incorporate our graph with the minimum edge cost.

We need to know, theoretically, how many nodes a simple graph2 can have
with distinct degree values in order to create a graph with the highest variability.
This problem is closely related to the graph realization problem [5] which consists
of determining if such a sequence of degrees can be feasible for a simple graph
(called graphic sequence). This problem has been addressed by Erdős-Gallai [5]
and Havel-Hakimi [7, 8]. We would like to obtain the maximal variability in a
graph, our problem could be considered as generating the graphic sequence with
highest variability. Theorem 1 states the maximum variability in a graph.

Theorem 1. For every simple graph G(V,E) with |V | > 2, there are two nodes
with the same degree.

Proof (Kocay and Kreher [9]). A simple graph does not allow parallel edges and
self-loops, therefore, the highest degree is |V |− 1. If we create a degree sequence
in which all nodes have different degree values (the highest possible variability),
this would mean that the nodes would have to be V = (0, 1, . . . , |V | − 1). If one
node has a degree of |V | − 1, it means it is connected to all the other nodes,
but the degree zero means that one node is not connected to any other. Thus,
degree values of 0 and |V | − 1 are mutually exclusive and cannot coexist in the
same graph, since this leaves only |V | − 1 values for |V | nodes, by the pidgeon
hole principle, at least two nodes must have the same degree.

Since it is not feasible to create a graph whose nodes have all distinctive
degree values, the highest possible variability is |V | − 1 (Def. 2).

Definition 2. A graph G(V,E) fulfills the Near Homogeneous Degree Distri-
bution (NHDD) property when it contains |V | − 1 nodes with different degrees.

An induced subgraph for our optimization function (Eq. 2) is only feasible if
it fulfills the NHDD. In Theorem 4, we prove that such a graph has maximum
entropy. For now, we show that there are two of feasible graphs (Def. 3).

Definition 3. GN is a connected graph which fulfills the NHDD property and
G◦

N is a graph which fulfills the NHDD but it contains one isolated node.

Lemma 1 shows how we can generate the two possible graphs (GN and G◦
N)

fulfilling the NHDD definition.

Lemma 1. For any integer N ≥ 3, it is possible to generate both GN and G◦
N .

2 A simple graph is a graph which does not contain parallel edges and self-loops.

.. a.

b

.

c

.d .

e

.

f

.. a.

b

.

c

.d .

e

.

f

.. a.

b

.

c

.d .

e

.

f

.. a.

b

.

c

.d .

e

.

f

H(K6) = 0 H(L6) = 0.91 H(G6) = 2.25 H(G◦
6) = 2.25

(a) Complete K6 (b) Delaunay L6 (c) NHDD G6 (d) NHDD G◦
6

Fig. 1: Some realizations of a six vertices graph along with their entropy. Graph
(a) is a complete graph, Graph (b) is a triangulation and Graphs (c) and (d)
fulfill the NHDD property with the highest entropy values.

Proof. We start with a base case of a graph G◦
N with N = 3, whose degree

distribution (the degree values of all nodes in the graph) is D◦
3 = (0, 1, 1). The

NHDD is already fulfilled. Our inductive step states that this holds for any
number N ≥ 3. In order to build a solution for GN+1, there are two possibilities:

a) G◦
N has an isolated node. Then, by adding a node and connecting it to all

the others, we will obtain a GN+1 since the degree of all the other nodes will be
increased by one and the graph will be connected. G◦

N+1 = KN+1 −GN+1.
b) GN does not have an isolated node. Therefore, we add a new isolated node

and we obtain G◦
N+1 in which the NHDD is fulfilled. GN+1 = KN+1−G◦

N+1 ⊓⊔

In the proof, we used the complement of a graph. In Lemma 2, we show that
the complement of a graph fulfilling NHDD also fulfills the same property. Fig. 1
shows four different induced graphs with 6 nodes and their respective entropy
values (Eq. 1). Graph (a) is a complete graph K6, whose entropy is equal to
zero. Graph (b) is created using a Delaunay triangulation (L6) and its entropy
is equal to 0.91. Graphs (c) and (d) are a G6 and a G◦

6 respectively. It is clear
that both G◦

N and GN are more distinctive than L6 and K6 and their entropy is
significantly higher. The existence of an isolated node did not affect the entropy
as the variability in the number of existing nodes is the same, however, as the
nodes have the same distance, those solutions are not unique.

Lemma 2. The complement graph of GN also fulfills the NHDD property.

Proof. The complement graph GN is obtained by taking the difference of KN −
GN . A GN has distribution equal to DN = (1, . . . , |V | − 1). A complete graph
KN has all nodes with degree equal to |V |−1. Therefore, the degree distribution
of KN −GN will be D◦

N = (|V | − 2, . . . , 0) with one isolated node and maximum
degree of |V | − 2.

Theorem 2. For any integer number N , it is always possible to obtain a con-
nected graph that fulfills the NHDD property.

Proof. This proof comes out naturally as a consequence of Lemmas 1 and 2. For
any integer N , we will obtain either GN or G◦

N . In case we obtain G◦
N , we take

the complement and we can always obtain a connected graph which is NHDD.
⊓⊔

Since we have been speaking about the distinctive node degrees which would
allow a one-to-one match between graphs, we can also determine which node
would be the duplicated one (Lemma 3).

Lemma 3. The repeated node for a GN has degree equal to
⌊
N
2

⌋
.

Proof. The proof will be by induction. We start with a base case of even parity
with N = 4. Hence, the node degree distribution is D4 = (1, 2, 2, 3) and v‡4 = 2.
Our induction step is then:

DN =

(
1, . . . ,

⌊
N

2

⌋
,

⌊
N

2

⌋
, . . . , N − 1

)
. (3)

By adding one isolated node as described in Lemma 1, we obtain:

D◦
N+1 =

(
0, 1, . . . ,

⌊
N

2

⌋
,

⌊
N

2

⌋
, . . . , N − 1

)
(4)

The connected graph can be achieved by taking the complement of D◦
N+1:

DN+1 =

(
N, . . . , N −

⌊
N

2

⌋
, N −

⌊
N

2

⌋
, . . . , 1

)
(5)

We know that N =
⌊
N
2

⌋
+
⌊
N+1
2

⌋
, therefore, by plugging it back at Eq. 5, we

obtain:

DN+1 =

(
1, . . . ,

⌊
N + 1

2

⌋
,

⌊
N + 1

2

⌋
, . . . , N

)
(6)

⊓⊔

The number of edges of GN and G◦
N can be directly calculated (Theorem 3).

Theorem 3. The number of edges of graphs GN and G◦
N is equal to |EN | =

1
2

(
N(N−1)

2 +
⌊
N
2

⌋)
and |E◦

N | = 1
2

(
(N−2)(N−1)

2 +
⌊
N−1
2

⌋)
.

Proof. We will first prove for graph GN . As proved in Lemma 3, the sum of
degrees in a GN is equal to:∑

v∈GN

deg(v) = 1 + . . .+

⌊
N

2

⌋
+

⌊
N

2

⌋
+ . . .+N − 1 (7)

which is equivalent to:

∑
v∈GN

deg(v) =

N−1∑
i=1

i+

⌊
N

2

⌋
=

N(N − 1)

2
+

⌊
N

2

⌋
(8)

The handshake lemma states that |EN | =
∑

deg(v)/2, we arrive that the number
of edges is:

|EN | =
1

2

(
N(N − 1)

2
+

⌊
N

2

⌋)
(9)

By rewriting Equation 4, we conclude that:

|E◦
N | =

∑
v∈G◦

N

deg(v) =
N−2∑
i=0

i+

⌊
N − 1

2

⌋
=

1

2

(
(N − 2)(N − 1)

2
+

⌊
N − 1

2

⌋)
(10)
⊓⊔

4 Optimization

The discussion about the NHDD property was pursued during the attempt to
minimize our objective function (Eq. 2). If we would like to solve our optimiza-
tion using that property, we need to prove that the graph we generate has the
maximum possible entropy (Theorem 4):

Theorem 4. The GN has the maximum entropy for any graph with N nodes.

Proof. The proof can be performed using the method of Lagrangian multipliers.
The objective function to be maximized is defined in Eq. 1. There is one equality
constraint as all probabilities should add up to one:

∑
p(v) = 1. The Lagrangian

takes the form of:

L(H,λ) = −
∑

v∈GN

p(v)log(p(v)) + λ

(∑
v∈GN

p(v)− 1

)
. (11)

In order to find the critical points, one needs to take the partial derivatives and
set them equal to zero:

∂L
∂p(v)

= −log(p(v))− 1 + λ = 0, (12)

∂L
∂λ

=
∑

p(v)− 1 = 0. (13)

Finally, considering that all p(v) are the same and only dependent on λ:

p(v) = eλ−1 =
1

N
(14)

The uniform distribution is the solution for the maximum entropy. Therefore,
there should be N distinctive values in the set of node degrees to have the
maximal possible entropy. As proved in the Theorem 1, it is not possible for a
simple graph to have an uniform distribution. Our NHDD has N − 1 distinctive
node degrees and it has the maximal entropy a graph could have. ⊓⊔

Theorem 5 calculates the entropy of graphs GN or G◦
N analytically.

Theorem 5. The entropy of H(GN) = H(G◦
N) = log2 N − 2

N .

Proof. In a probabilistic interpretation of the entropy, the p(x) is the probability
of a event x to happen. Our event is the occurrence of a degree x in GN (or G◦

N).
There are N − 2 events with probability p(x) = 1/N and one whose probability
is p(x) = 2/N. Therefore, the entropy of H(GN) and H(G◦

N) is:

H(GN) =
N logN

N
+

2 logN

N
− 2 logN

N
− 2

N
= logN − 2

N
(15)

⊓⊔

Data: Complete graph KN (P,W), N ≥ 3;
1 begin
2 dp←Matrix(N,N,N, value =∞);
3 // We create N solutions starting with point i (layer).

4 for i← 1 to N do
5 dp(i, 1, i : N) = 0; join = 0;
6 // k is the capacity of the graph GN (row).

7 for k ← 2 to N do
8 // j is the node to be added into GN (column).

9 for j ← 1 to N do
10 if join then

11 cnew ← dp(i, k − 1, N) +
∑|G|

g∈G W (j, g);

12 else
13 cnew ← dp(i, k − 1, N) +W (j, vk−1);

14 dp(i, k, j)← min(dp(i, k, j − 1), cnew);

15 join = ¬join;
16 // The new solution i is at least as good as i− 1.

17 dp(i, n, n)← min(dp(i, n, n), dp(i− 1, n, n));

18 return TraceBack(dp).

Algorithm 1: The n1graph algorithm which generates a GN graph.

Our n1graph algorithm (Alg. 1) starts by defining a Matrix dp (line 2) of
dimensions N3 whose elements are ∞. This matrix will hold the cost to be
minimized. We produce N solutions iteratively (line 4), in which the cost of
solution i will be most as low as i − 1 (line 17). Every iteration of i could be
visualized as one layer of dp and the initialization occurs by setting the costs from
i to N equal to zero (line 5). Since the weights lie in the edges, the initialization
indicates which node is chosen at the moment (i) and it is zero since there are
no edges in GN at capacity 1, the cost is not increased. We have, now, one node
(i) in GN , we start to increase the capacity (k) of our graph GN (line 7) until all
nodes belong to the graph. Whenever the capacity is increased, we are allowed
to add one more node (j) and the choose the one with minimum cost.

We alternate between two steps, adding an edge node to all the nodes cur-
rently in GN (line 11) and adding an edge to the last node (vk−1) added to GN

(line 13). The algorithm can be visualized as “pushing” the minimum weight
towards the right bottom side of the matrix, then the optimum for each capacity

k is set at (k,N) and the optimum for each layer i is found at dp(i,N,N). Hence,
the term dp(i, k− 1, N) can be understood as the best cost for the optimization
when the capacity was k − 1, that’s the total weight we will propagate towards
the end. Finally, on line 14, we take the minimum between the cost of adding
the current node j and the previous cost of at the capacity k without node j.

Fig. 2 shows a complete K4 with weighted edges and it highlights the op-
timum solution for the MWME problem. The highlighted node ..d consists of
the layer which yielded the optimum solution (i = 4). This layer is available on

Table 1. On k = 1, dp is initialized with node ..d = 0 (since at this capacity
there are no edges in the graph). When capacity is increased to 2, the node ..a is
added yielding a cost of 4, but within the same capacity there is a lower cost (3)
if node ..c is added instead. The final cost is displayed at cell j = d, k = 4. We
trace back on the same row until there is a change in cost (i.e. meaning that a
node has been added). Whenever a node is added, we proceed the trace from on
the row with a lower capacity (k−1, N) and continue tracing back until all nodes
are added, the reversed node sequence obtained by tracing back is (b, a, c, d).

Theorem 6. The time complexity of the n1graph algorithm is Θ(N3|E|).

Proof. The three nested loops of i, j, k yield clearly a Θ(N3) time. Inside the
j loop, two operations will alternate: (i) adding one edge to the last node of
GN and (ii) adding an edge to each node of GN , the total operations will be:
(1, 2, 1, 4, 1, . . .), which can be split into

⌊
N−1
2

⌋
operations of type (ii) and

⌊
N
2

⌋
operations of type (i). The complexity for those two operations is equivalent to
Eq. 9, which is the number of edges in the graph, yielding in total Θ(N3|E|). ⊓⊔

..

a

.

c

.b. d.

2

.

1

.

5

.

3

.
6

.

4

. d.

a

.b.

c

Fig. 2: A K4 and the induced graph
G4 where ..d is the reference node i.

k⧹j a b c d

1 ∞ ∞ ∞ 0
2 4 4 3 ↱ ← 3
3 9 ↱ ← 9 ← 9 ← 9
4 9 10 ↱ ← 10 ← 10

Table 1: The trace back starts at (d,4)
and moves on the same row until a value
changes: a node is added to the graph.

The TraceBack starts at the right bottom corner (row N), where the mini-
mum is, and goes back on the same line until the cost is changed. This change in
cost means that a node was added (cell highlighted in orange). Remember the
row means the capacity, when a node of capacity k was added, we only need to
go to row N − 1 and search for a change of node until we reach the first row.
The algorithm produce a sequence in which the nodes were added, e.g. (b,a,c,d)
for the Table 1. This sequence is used (as in Lemma 1) to produce G4.

The matching is performed by bringing each point-set towards this canonical
representation. Given point-sets X1,X2, . . . ,XP , we build the NHDD graph for
each one of them. The matching associates a node with degree v ∈ Xk to a
node with the same degree v ∈ Xl. Therefore, the matching is performed via this

canonical representation. As each point-set is optimized individually, the scale
of one does not affect the scale of the other. The optimization tries to minimize
the distances within each point-set individually, therefore, it is able to handle
the following two scenarios:

– Rigid: The sets are related by a translation and rotation: Xk = RXl + t. In
a rigid transformation, only the length and area are preserved.

– Similarity: Xl and Xk are not only related by t and R, but also by an
isotropic scaling s: Xk = sRXl + t. This scale preserves the ratio of lengths.

We took images from the Caltech-256 dataset which contained a single object
in the scene. We sampled N = 50 points from the sillhouete of the object. A
random similarity transformation was applied to the point-sets. Figure 3 shows
an example of the matching. Not all edges were displayed to avoid cluttering the
scene, but the sets are correctly matched.

Fig. 3: Registration of point-sets under Similarity Transformation: translation +
rotation + isotropic scaling.

5 Conclusions and Future Work

In this paper we proposed a novel way to match point-sets via a canonical rep-
resentation in which we minimize the Min-Weight Max Entropy problem. Our
approach is based on a Dynamic Programming algorithm yielding a cubic com-
plexity solution. Such a graph turns a registration procedure into a trivial task
under, for instance, rigid and similarity transformation since there is a direct
mapping between nodes.

As future work, we will extend the algorithm to a more local optimization
not to be dependent on all nodes. We will match regions of maximal entropy (i.e.
subset of nodes). It would allow us to perform the registration of non-linearly
related point-sets by performing piece-wise matchings of a subset of nodes. It
will also to be able cope with noise and partially overlapping regions since it is
will no longer optimize over the whole graph.

Acknowledgements

The authors would like to thank Rafael Coelho and Emir Demirovic for the
discussions on the topic and Giselle Reis for the revision of the manuscript. He
also acknowledges research funding from the Vienna PhD School of Informatics.

Bibliography

[1] A.D.J. Cross and E.R. Hancock. Graph matching with a dual-step em
algorithm. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 20(11):1236–1253, Nov 1998. ISSN 0162-8828. 1

[2] Samuel de Sousa and Walter G. Kropatsch. Graph-based point drift: Graph
centrality on the registration of point-sets. Pattern Recognition, 48(2):368
– 379, 2015. ISSN 0031-3203. 1

[3] B. N. Delaunay. Sur la sphère vide. Bulletin of Academy of Sciences of the
USSR, pages 793–800, 1934. 1

[4] PeterJ. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. Matching
graphs with unique node labels. Pattern Analysis and Applications, 7(3):
243–254, 2004. ISSN 1433-7541. 2

[5] T. Erdős, P.; Gallai. Gráfok elő́ırt fokszámú pontokkal. Matematikai Lapok,
11:264–274, 1960. 4

[6] K. Ruben Gabriel and Robert R. Sokal. A new statistical approach to
geographic variation analysis. Systematic Biology, 18(3):259–278, 1969. 2

[7] S. Hakimi. On realizability of a set of integers as degrees of the vertices of
a linear graph. i. Journal of the Society for Industrial and Applied Mathe-
matics, 10(3):496–506, 1962. 4

[8] Václav Havel. Poznámka o existenci konečných graf̊u. Časopis pro pěstováńı
matematiky, 080(4):477–480, 1955. 4

[9] W. Kocay and D.L. Kreher. Graphs, Algorithms, and Optimization. Dis-
crete Mathematics and Its Applications. Taylor & Francis, 2004. ISBN
9780203489055. 4

[10] Wei Lian and Lei Zhang. Rotation invariant non-rigid shape matching in
cluttered scenes. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,
editors, Computer Vision ECCV 2010, volume 6315 of Lecture Notes in
Computer Science, pages 506–518. Springer Berlin Heidelberg, 2010. ISBN
978-3-642-15554-3. 2

[11] B. Luo and E.R. Hancock. Iterative procrustes alignment with the {EM}
algorithm. Image and Vision Computing, 20(56):377 – 396, 2002. ISSN
0262-8856. 1

[12] S. Ohrhallinger and S. Mudur. An efficient algorithm for determining an aes-
thetic shape connecting unorganized 2d points. Computer Graphics Forum,
32(8):72–88, 2013. ISSN 1467-8659. 2

[13] G. Reeb. Sur les points singuliers d’une forme de pfaff complétement
intégrable ou d’une fonction numérique. C. R. Acad. Sci. Paris, 222:847–
849, 1946. 2

