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Contains and inside relationships within combinatorial pyramids
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Abstract

Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the
segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework
encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid
framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps
which allows to determine if one region contains the other using only local calculus.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Graphs play an important role in computer vision and pat-
tern recognition since the birth of these fields. Graphs are
used along the overall process from the stimuli to the inter-
pretation task: hierarchical and non-hierarchical data struc-
tures for image segmentation, graph matching for pattern
recognition, graph clustering for structural classification, and
computation of a median graph [1] for learning the struc-
tural properties of models.

Graphs are thus used both for low level image process-
ing and high level tasks. Different type of graphs being used
for different types of applications. However, in many com-
puter vision tasks, the low image segmentation stage can-
not be readily separated from higher level processing. On
the contrary, the segmentation algorithms should often ex-
tract fine information about the partition in order to guide
the segmentation process according to the high level goal.
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This information may be used to compare isolated regions
or some local configuration of regions to a model. There is
thus a need to design graph models for image segmentation
which can be both efficiently updated and allow to extract
fine information about the partition.

1.1. Relating regions

Different formalisms such as the RCC-8 defined by
Randel [2] or the relationships defined by Shearer et al. [3]
in the context of graph matching may be used to relate the
regions of a partition. Within the particular context of image
segmentation, the following relationships may be defined
from these two models: meets, contains, inside:

(1) The meets relationship means that two regions share at
least one common boundary. The different models used
to encode partitions either encode the existence of this
common boundary or create one relationship for each
boundary between two regions. We denote these two
types of encodings meets_exists and meets_each. The
ability of the models to retrieve efficiently a given com-
mon boundary between two regions is also an important
feature of these models.
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Fig. 1. The ideal segmentation of the two roadsigns (a) and (b) are
encoded by the same RAG (c).

(2) The relationship A contains B expresses the fact that re-
gion B is inside region A. For example, the background
of the road sign in Fig. 1(a) contains the upside arrow.

(3) The inside relationship is the inverse of the contains
relation: A region B inside A is contained in A.

One additional relationship not directly handled by the
models of Shearer and Randel may be defined within the
hierarchical segmentation scheme. Indeed within such a
framework a region defined at a given level of a hierarchy
is composed of regions defined at levels below.

The following relationships may thus be deduced from
the relationships defined by Shearer and Randel: The
meets_exists, meets_each, contains, inside and composed
of. Note that unlike meets relationships, the contains and
inside relations are asymmetric. A contains or inside rela-
tion between two regions allows thus to characterize each
of the regions sharing this relation.

1.2. Region adjacency graph

One of the most common graph data structure, within
the segmentation framework is the region adjacency graph
(RAG). A RAG is defined from a partition by associating one
vertex to each region and by creating an edge between two
vertices if the associated regions share a common bound-
ary. A RAG corresponds thus to a simple graph without any
double edge between vertices nor self-loop. Within a non-
hierarchical segmentation scheme the RAG model is usually
applied as a merging step to overcome the over-segmentation
produced by the previous splitting algorithm [4]. Indeed, the
existence of an edge between two vertices denotes the ex-
istence of at least one common boundary segment between
the two associated regions which may thus be merged by re-
moving this segment. Within this framework, the edge infor-
mation may thus be interpreted as a possibility to merge the
two regions identified by the vertices incident to the edge.
Such a merge operation implies to collapse the two vertices
incident to the edge into one vertex and to remove this edge
together with any double edge between the newly created
vertex and the remaining vertices.

The RAG model encodes thus only the existence of a com-
mon edge between two regions (the meets_exists relation-
ship). Moreover, the existence of a common edge between
two vertices does not provide enough information to differ-
entiate a meets relationship from a contains or inside one.
This drawback is illustrated on an ideal segmentation of two

roadsigns (Fig. 1) which are encoded by a same RAG. The
road sign (a) defines two nested contains relationships. In-
deed, the white border contains the background which con-
tains itself the symbol. On the other hand the road sign (b)
corresponds to two meets relationships between the central
region and its two white neighbors.

1.3. Combinatorial maps

A 2D combinatorial map may be understood as a planar
graph encoding explicitly the orientation in the plane. Each
connected component of a partition (a connected set of re-
gions) may be encoded by a 2D combinatorial map up to an
homeomorphism [5]. One of the main insight of such mod-
els compared to a RAG data structure is their ability to be
efficiently updated after both split and merge operations.

The combinatorial map formalism allows to encode each
connected boundary between two regions by one edge.
The models based on combinatorial maps encode thus the
meets_each relationship. However, within the combinatorial
map framework two connected components of a partition
will be encoded by two combinatorial maps without any
information about the respective positioning of the two
components. The models based on combinatorial maps have
thus designed additional data structure like the inclusion
tree [6] or the parent–child relationships [5,7] to encode
the contains and inside relationships. Using these models
any modification of the partition implies to update both the
combinatorial maps and the additional data structures.

1.4. Segmentation hierarchies

Data structures used within the hierarchical segmentation
framework encode a stack of partitions successively sim-
plified by region merging. Irregular pyramids models intro-
duced by Meer and Montanvert [8] encode each partition by
a graph where each vertex is associated to one region. At
each level of the pyramid a region is obtained by the merge
of a connected set of regions at the level below. The result-
ing region is called the parent of the merged regions. These
last regions correspond to the child of the region at the level
above. The models based on the irregular pyramid frame-
work encode thus naturally the composed of relationship. In
order to preserve the efficiency of a hierarchical data struc-
ture, the size of models encoding each partition of the hier-
archy must be strictly decreasing according to the level. This
last constraint forbids the use of an additional data struc-
ture similar to the structures used for combinatorial maps
models in order to store contains and inside relationships.
Indeed, contains and inside relationships between regions
may both be removed and created along the different levels
of the pyramid. The use of such an additional data structure
may thus violate the strictly decreasing size of the models
according to the levels.
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1.5. Overview

The aim of this paper is twofold: we firstly provide an
introduction to the main data structures used within the hi-
erarchical segmentation framework according to the set of
relationships previously defined (Section 1.1). Secondly, we
present an efficient computation of the contains and inside
relationships within the irregular pyramid framework. The
remaining of this paper is thus organized as follows: Section
2 presents two models belonging to the irregular pyramid
framework together with their properties relative to the
relationships previously defined. Section 3 describes
the combinatorial map model and its main properties.
Section 4 describes the construction scheme and the main
properties of a pyramid of combinatorial maps: a combi-
natorial pyramid. Finally, Section 5 presents one algorithm
computing the contains and inside information using only
local calculus.

2. Simple and dual graph pyramids

The irregular pyramids are defined as a stack of suc-
cessively reduced graphs, each graph being built from the
graph below by selecting a set of vertices named surviv-
ing vertices and mapping each non-surviving vertex to a
surviving vertex [9,8]. Using such a framework, the graph
Gl+1 = (Vl+1, El+1) defined at level l + 1 is deduced from
the graph defined at level l by the following steps:

(1) Select the vertices of Gl+1 among Vl . These vertices
are the surviving vertices of the decimation process,
Vl+1 ⊂ Vl .

(2) Each non-surviving vertex connects to a surviving ver-
tex by one edge of Gl . The set of vertices attached to
each surviving vertex defines a partition of Vl .

(3) Define the adjacency relationships between the vertices
of Gl+1 in order to define El+1.

2.1. Simple graph pyramids

In order to obtain a decimation ratio greater than 1 be-
tween two successive levels, Meer [9] imposes the following
constraints on the set of surviving vertices:

∀v ∈ Vl − Vl+1 ∃v′ ∈ Vl+1 : (v, v′) ∈ El , (1)

∀(v, v′) ∈ V 2
l+1 : (v, v′) /∈ El . (2)

Constraint (1) insures that each non-surviving vertex is ad-
jacent to at least a surviving vertex. Constraint (2) insures
that two adjacent vertices cannot both survive. These con-
straints define a maximal independent set (MIS) [9,8].

Given the set of surviving vertices, different methods
[8,10] may be used to link each non-surviving vertex to
one of its surviving neighbor. For example, Montanvert [8]

attaches each non-surviving vertex to its closest surviving
neighbor according to a difference between the outcome of
a random variable attached to each vertex. The set of non-
surviving vertices connected to a surviving vertex defines
its reduction window and thus the parent–child relationship
between two consecutive levels.

The final set of surviving vertices defined on Vl corre-
sponds to the set of vertices Vl+1 of the reduced graph
Gl+1 = (Vl+1, El+1). The set of edges El+1 of Gl+1 is de-
fined by connecting by an edge in Gl+1 any couple of sur-
viving vertices having adjacent children.

Two surviving vertices are thus connected in Gl+1 if they
are connected in Gl by a path of length lower or equal
than 3. Two reduction windows adjacent by more than one
path of length lower or equal than 3 will thus be con-
nected by a single edge in the reduced graph. The stack of
graphs produced by the above decimation process is thus a
stack of simple graphs each simple graph encoding only the
existence of one common boundary between two regions
(the meeets_exists relationship). Moreover, as mentioned in
Section 1.2 the RAG model which corresponds to a sim-
ple graph does not allow to encode contains and inside
relationships.

2.2. Construction of dual graph pyramids

The dual graph pyramids introduced by Willersinn and
Kropatsch [11] use an alternative construction scheme.
Within the dual graph pyramid framework the reduction
process is performed by a set of edge contractions. The
edge contraction collapses two adjacent vertices into one
vertex and removes the edge. Many edges except self-loops
can be contracted independently of each other and also
in parallel. In order to avoid contracting a self-loop these
edges should not form cycles, e.g. form a forest. This set of
edges is called a contraction kernel.

The contraction of a graph reduces the number of vertices
while maintaining the connections to other vertices. As a
consequence some redundant edges may occur. These edges
belong to one of the following categories:

• Redundant double edge: These edges encode multiple ad-
jacency relationships between two vertices and define de-
gree two faces. They can thus be characterized in the dual
graph as degree two dual vertices. In terms of partition’s
encoding these edges correspond to an artificial split of
one boundary between two regions.

• Empty self-loop: These edges correspond to a self-loop
with an empty inside. These edges define thus degree one
faces and are characterized in the dual graph as degree one
vertices. Such edges encode artificial inner boundaries of
regions.

Both double edges and empty self-loops do not encode rel-
evant topological relations and can be removed without any
harm to the involved topology [11]. The removal of such
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Fig. 2. The Graph (b) defines the top of a dual graph pyramid encoding an
ideal segmentation of (a). The self-loop incident to vertex A may surround
either vertex B or C without changing the incidence relations between
vertices and faces. The dual vertices associated to faces are represented
by filled boxes (�). Dual edges are represented by dashed lines.

edges is called a dual decimation step and the set of removed
edges is called a removal kernel. Such a kernel defines a
forest of the dual graph.

2.3. Dual graph pyramids and multiple boundaries

Given one tree of a contraction kernel, the contraction of
its edges collapses all the vertices of the tree into a single
vertex and keeps all the connections between the vertices of
the tree and the remaining vertices of the graph. The multi-
ple boundaries between the newly created vertex and the re-
maining vertices of the graph are thus preserved. Each graph
of a dual graph pyramid encodes thus the meets_each rela-
tionships. This property is not modified by the application
of a removal kernel which only removes redundant edges.

2.4. Dual graph pyramids and the inside relationship

Due to the forest requirement, the encoding of the adja-
cency between two regions one inside the other will be en-
coded by two edges (Fig. 2): one edge encoding the common
border between the two regions and one self-loop incident to
the vertex encoding the surrounding region. One may think
to characterize the inside relationship by the fact that the
vertex associated to the inside region should be surrounded
by the self-loop. However, as shown by Fig. 2(c) one may
exchange the surrounded vertex without modifying the in-
cidence relationships between both vertices and faces. Two
dual graphs being defined by these incidence relationships
one can exchange the surrounded vertex without modifying
the encoding of the graphs. This last remark shows that the
inside/contains relationships cannot be characterized locally
within the dual graph framework.

3. Combinatorial maps

Combinatorial maps and generalized combinatorial maps
define a general framework which allows to encode any
subdivision of nD topological spaces orientable or non-
orientable with or without boundaries. Recent trends in com-
binatorial maps apply this framework to the segmentation of

Fig. 3. A 3 × 3 grid encoded by a combinatorial map.

3D images [12,13] and the encoding of 2D [14,15] and nD
[16] hierarchies.

The remaining of this paper will be based on 2D combi-
natorial maps which will be just called combinatorial maps.
A combinatorial map may be deduced from a planar graph
by splitting each edge into two half edges called darts. An
edge connecting two vertices is thus composed of two darts,
each dart belonging to only one vertex. The relation between
two darts d1 and d2 associated to the same edge is encoded
by the permutation � which maps d1 to d2 and d2 to d1. The
permutation � is thus an involution and its cycles2 are de-
noted by �∗(d) for a given dart d. These cycles encode the
edges of the graph. The sequence of darts encountered when
turning around a vertex is encoded by the permutation �. Us-
ing a counter-clockwise orientation, the cycle �∗(d) encodes
the set of darts encountered when turning counter-clockwise
around the vertex encoded by the dart d. A combinatorial
map can thus be formally defined by G = (D, �, �), where
D is the set of darts and �, � are two permutations defined
on D such that � is an involution.3

Given a combinatorial map G = (D, �, �), its dual is de-
fined by G = (D, �, �) with � = � ◦ �. The cycles of the
permutation � encode the set of darts encountered when
turning around a face of G.

We can state one of the major difference between a com-
binatorial map and an usual graph encoding of a partition.
Indeed, a combinatorial map may be seen as a planar graph
with a set of vertices (the cycles of �) connected by edges
(the cycles of �). However, compared to an usual graph en-
coding a combinatorial map encodes additionally the local
orientation of edges around each vertex thanks to the order
defined within each cycle of �.

Fig. 3 illustrates the encoding of a 3 × 3 four-connected
discrete grid by a combinatorial map G. The involution � is
implicitly encoded by the sign in Fig. 3(a) and (b). We have
thus �(d) = −d for all darts on these figures.

2 The cycle of a dart d associated to a permutation � on the set of
darts is the sequence (d, �(d), �2(d), . . . , �n(d)) with �n(d) = d. Since
the set of darts is finite n is defined for any dart and any permutation �.
The � orbit of a dart d corresponds to the same set of darts as its cycle
but without any ordering between darts.

3 � is an involution on D if � ◦ �(d) = d for any dart d in D.



L. Brun, W. Kropatsch / Pattern Recognition 39 (2006) 515–526 519

Since G encodes a planar sampling grid, each vertex of G

(Fig. 3(b)) is associated to a corner of a pixel. For example,
the top left pixel of the 3 × 3 grid is encoded by the � cycle
�∗(1)= (1, 13, 24, 7) (top left vertex and square in Fig. 3(a)
and (b)). The top left corner of this pixel is encoded by the �
cycle: �∗(24)= (24, −13) (top left dual vertex of Fig. 3(b)).
Moreover, each dart may be understood in this combinatorial
map as an oriented crack, i.e. as a side of a pixel with an
orientation. For example, the dart 1 in Fig. 3(b) encodes the
right side of the upper-left pixel oriented from bottom to top.
The �, � and � cycles of a dart may thus be, respectively,
understood as elements of dimensions 0, 1 and 2.

Each dart of a combinatorial map G, encoding a pla-
nar sampling grid may thus be interpreted as an oriented
crack and associated to a point encoding the coordinates of
a pixel’s corner and one move encoding the orientation on
the crack associated to the dart.

4. Embedding and orientation

As in the dual graph pyramid scheme [17] (Section 2) a
combinatorial pyramid is defined by an initial combinatorial
map successively reduced by a sequence of contraction or
removal operations. The initial combinatorial map encodes
a planar sampling grid (Section 3) or a first segmentation
and the remaining combinatorial maps of a combinatorial
pyramid encode a stack of image partitions successively
reduced. Such combinatorial maps are thus embedded
(Section 4.3). As mentioned in Section 3 a combinatorial
map may be understood as a dual graph with an explicit
encoding of the orientation of the edges incident to each
vertex. This explicit encoding of the orientation is preserved
within the combinatorial pyramid using contraction and re-
moval operations equivalent to the operations used for dual
graphs but which preserve the orientations of edges around
the vertices of the reduced combinatorial maps [14,15].

Contraction operations are controlled by contraction
kernels (CK). The removal of redundant edges is performed
as in the dual graph reduction scheme by a removal kernel.
This kernel is however decomposed in two sub-kernels: A
removal kernel of empty self-loops (RKESL) which contains
all darts incident to a degree 1 dual vertex and a removal
kernel of empty double edges (RKEDE) which contains all
darts incident to a degree 2 dual vertex. These two removal
kernels are defined as follows: The removal kernel of empty
self-loops RKESL is initialized by all self-loops surround-
ing a dual vertex of degree 1. RKESL is further expanded
by all self-loops that contain only other self-loops already
in RKESL until no further expansion is possible. For the re-
moval of empty double edges RKEDE we ignore all empty
self-loops in RKESL in computing the degree of the dual
vertex. Note that the successive application of a RKESL
and a RKEDE is equivalent to the application of a removal
kernel defined within the dual graph framework. Both
contraction and removal operations defined within the

combinatorial pyramid framework are thus defined as is the
dual graph framework but additionally preserve the orien-
tation of edges around each vertex. Further details about
the construction scheme of a combinatorial pyramid may be
found in Ref. [14].

4.1. What is inside?

Combinatorial pyramids are thus built using the same
framework as dual graphs pyramids. The use of a contrac-
tion kernel within the construction scheme of a combinato-
rial pyramid allows to encode multiple adjacency between
regions thanks to multiple edges between their associated
vertices. Therefore, as in the dual graph framework, com-
binatorial pyramids preserve the meets_each relationship
(Section 2.3). Note that the explicit encoding of the orienta-
tion within the combinatorial pyramid framework does not
interfere with this last property.

Moreover, as in the dual graph framework (Section 2.4),
an inside relationship between two regions is encoded by
two edges: one edge encodes the common border between
the two regions while the other encodes a self-loop inci-
dent to the vertex associated to the surrounding region. Let
us consider the example already used for dual graph pyra-
mids (Section 2.4, Fig. 2). Fig. 4 shows the encoding of
the ideal segmentation of the road sign using combinatorial
maps. As shown by Fig. 4(b) and (c), one can exchange the
surrounded vertex without changing the order of the darts
around the vertex �∗(1). Therefore, the two drawings shown
in Fig. 4(b) and (c) are encoded by the same combinato-
rial map. One cannot determine from the formally specified
combinatorial map which part is inside and which is con-
tained. This ambiguity may also be characterized using the
cycle �∗(1) of the vertex incident to the self-loop. Indeed,
this cycle is equal to �∗(1) = (1, 2, −1, 3). Since (1, −1) is
a self-loop the neighbors of �∗(1) have in their � cycles the
� successors of the two darts 2 and 3. The ambiguity about
the drawing of the self-loop is characterized on the cycle
�∗(1) by the fact that we cannot deduce from this cycle if
the dart 2 is between 1 and −1 or if on the contrary 3 is
between −1 and 1. This ambiguity arises thus because the
two darts 1 and −1 play a symmetric role in �∗(1). We
can thus state the two following points from the above
discussion:

(1) Combinatorial pyramids preserve the meets_each rela-
tionship.

(2) An inside relationship ‘A inside B’ is always associ-
ated with a self-loop incident to B. However, a non-
redundant self-loop at B does not always identify the
inside region.

4.2. Implicit encoding of a combinatorial pyramid

Let us consider an initial combinatorial map G0=(D, �, �)

and a sequence of kernels K1, . . . , Kn successively
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Fig. 4. The encoding of an ideal segmentation of a road sign (a) by the top level combinatorial map of a pyramid may be drawn using either (b) or (c).

applied on G0 to build the pyramid. Each combinatorial
map Gi = (SDi , �i , �i ) is defined from Gi−1 = (SDi−1,

�i−1, �i−1) by the application of the kernel Ki on Gi−1
and the set of darts SDi is equal to SDi−1\Ki . We
have thus

SDn+1 ⊂ SDn ⊂ · · · ⊂ SD1 ⊂ D. (3)

The set of darts of each reduced combinatorial map of a
pyramid is thus included in the base level combinatorial
map. This last property allows us to define the two following
functions:

(1) one function state from {1, . . . , n} to the states
{CK, RKESL, RKEDE} which specifies the type of each
kernel.

(2) One function level defined for all darts in D such that
level(d) is equal to the maximal level where d survives:

∀d ∈ D

level(d) = Max{i ∈ {1, . . . , n + 1} | d ∈ SDi−1}
a dart d surviving up to the top level has thus a level
equal to n+1. Note that if d ∈ Ki, i ∈ {1, . . . , n} then
level(d) = i.

We have shown [10,14] that the sequence of reduced com-
binatorial maps G0, . . . , Gn+1 may be encoded without any
loss of information using only the base level combinatorial
map G0 and the two functions level and state. Such an en-
coding is called an implicit encoding of the pyramid.

The receptive field of a dart d ∈ SDi corresponds to
the set of darts reduced to d at level i [14,10]. Using the
implicit encoding of a combinatorial pyramid, the receptive
field RFi (d) of d ∈ SDi is defined as a sequence d1 . . . dq of
darts in D by d1=d, d2=�0(d) and for each j in {3, . . . , q}:

dj=
{

�0(dj−1) if state(level(dj−1))=CK,

�0(dj−1) if state(level(dj−1))∈{RKEDE, RKESL}.
(4)

The dart dq is defined as the last dart of the sequence which
have been contracted or removed below the level i. There-
fore, the successor of dq according to Eq. (4), dq+1 satisfies
level(dq+1) > i. Moreover, we have shown [14,10] that d, dq

and dq+1 are additionally connected by the two following
relationships:

�i (d) = dq+1 and �i (d) = �0(dq). (5)

Note that these two last relationships allow to retrieve any
reduced combinatorial map of the pyramid from its base.

The implicit encoding of combinatorial pyramids is thus
based on the fact that the set of darts of any reduced com-
binatorial map is included in the initial combinatorial map
(Eq. (3)). The two functions state and level which are based
on this property allow to encode the whole sequence of
reduced combinatorial map without loss of information
[14,10].

4.3. Dart’s embedding and segments

In the RAG a region corresponds to a vertex and two re-
gions are connected by an edge if the two regions share a
boundary. In the combinatorial map, vertices and edges cor-
respond to � and � cycles, respectively. Therefore, each dart
d ∈ SDi encodes a boundary between the regions asso-
ciated to �∗

i (d) and �∗
i (�i (d)). Moreover, in the lower lev-

els of the pyramid the two vertices of an edge may belong
to a same region. We call the corresponding boundary seg-
ment an internal boundary in contrast to an external bound-
ary which separates two different regions of a RAG. The
receptive field of d at level i (RFi (d)) contains both darts
corresponding to this boundary and additional darts corre-
sponding to internal boundaries. The sequence of external
boundary darts contained in RFi (d) is denoted by �RFi (d)

and is called a segment. The order on �RFi (d)is deduced
from the receptive field RFi (d). Given a dart d ∈ SDi , the
sequence �RFi (d) = d1, . . . , dq is retrieved by [10]:

d1 = d and ∀j ∈ {1, . . . , q − 1}dj+1 = �
nj

0

(
�0(dj )

)
.

(6)

The dart dq is the last dart of �RFi (d) which belongs to a
double edge kernel. This dart is thus characterized using Eq.
(5) by dq = �0(�i (d)). Note that each dart of the base level
corresponds to an oriented crack (Section 3). A segment
corresponds thus to a sequence of oriented cracks encoding
a connected boundary between two regions [10].

The value nj is defined for each j ∈ {1, . . . , q − 1} by

nj = Min{k ∈ N∗ | state
(

level
(
�k

0(�0(dj ))
))

= RKEDE}.
(7)

A segment may thus be interpreted as a maximal sequence,
according to Eq. (6), of darts removed as double edges.
Such a sequence connects two darts (d and �0(dq) = �i (d))
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surviving up to level i. The retrieval of the boundaries using
Eqs. (6) and (7) is one of the major reason which lead us
to distinguish empty self-loop removal kernels and double
edges.

Let us additionally note that if G0 encodes the four-
connected planar sampling grid, each �0 cycle is composed
of at most four darts (Fig. 3(b)). Therefore, the computation
of dj+1 from dj (Eq. (6)) requires at most four iterations
and the determination of the whole sequence of cracks com-
posing a boundary between two regions is performed in a
time proportional to the length of this boundary.

4.4. Computing segment’s orientation

As mentioned in Section 3, each oriented crack associated
to an initial dart may be encoded by the position of its
starting point and one move. The move of an initial dart
d is denoted by move(d). If the initial combinatorial map
G0 encodes a square grid, the move associated to each dart
belongs to the set {right, up, left, down}. These initial moves
are encoded using Freeman’s codes: right, up, left and down
are numbered from 0 to 3. The angle between two moves
m1 and m2 denoted by (m1, m2)

∧ is then defined as: (m1 −
m2) mod 4 where mod corresponds to the operator modulo.
This angle is thus equal to: +1 if the two oriented cracks
define a clockwise 90◦ turns, −1 if the two oriented crack
define a counter-clockwise 90◦ turns, 0 if the two oriented
crack correspond to a same move and 2 if the two oriented
cracks correspond to opposite moves. Note that these angles
may be associated to the RULI code (Right turn, U turn, Left
turn and Identical) defined by Fermüller and Kropatsch [18].
Indeed, the angles associated to the R, U, L and I codes are
respectively equal to +1, 2, −1 and 0. Since the sequences of
moves considered in this work do define U turn, we consider
an angle of 2 between two moves as undefined.

Given a dart d of Gi , let us denote respectively by Fm(d)

and Lm(d) the moves of the first and last oriented cracks of
the segment associated to d . If �RFi (d) = d1 . . . dq we have
d1 = d and dq = �0(�i (d)) (Eq. (5)) and Fm(d)= move(d1),
Lm(d) = move(dq). The two darts d1 and dq may thus be
retrieved in constant time from d . Moreover the moves of
d1 and dq are retrieved using a correspondence between the
oriented cracks and the initial darts. This correspondence
may be defined using any implicit numbering of the initial
darts (see e.g. Fig. 3(a)). The values of Fm(d) and Lm(d)

may thus be retrieved without additional memory require-
ment and in constant time using an appropriate numbering
of the initial darts.

Given a dart d in Gi , and the sequence of darts d1 . . . dq

in G0 encoding its segment, the properties of the segments
together with the properties of the combinatorial pyramids
[10] induce the two following properties:

∀j ∈ {1, . . . , p − 1} move(dj )
−1 	= move(dj+1), (8)

Lm(d) 	= Fm(�i (d))−1, (9)

where move(dj ) denotes the move of the oriented crack as-
sociated to dj and move(dj )

−1 is the opposite of the move
of dj (e.g. right−1 = left).

Eq. (8) states that two successive moves within a segment
cannot be opposite. This property is induced by the fact
that one segment cannot contain twice a same crack with
two orientations. Eq. (9) states that the first move of the �i

successor of a dart d cannot be the opposite of the last move
of d. Otherwise, the dart d would be an empty self-loop of
Gi which is refused by hypothesis.

Given the angle between two successive oriented cracks
we define the orientation of a dart as the sum of the angles
between the oriented cracks along its associated segment.
Given a dart d in Gi the orientation of d is defined by

or(d) =
q−1∑
j=1

(
move(dj ), move(dj+1)

)∧, (10)

where d1 . . . dq is the sequence of initial darts encoding
the segment associated to d. Note that (move(dj ),

move(dj+1)
∧ cannot be undefined for any j ∈ {1, . . . , q−1}

(Eq. (8)).
The orientation of a dart may be computed on demand

using Eq. (10) or may be attached to each dart and updated
during the construction of the pyramid. Indeed, let us con-
sider two successive double darts d1 and d2 at one level of
the pyramid. If d1 survives at the above level its orientation
may be updated by [5,7]:

or(d1) = or(d1) + or(d2) + (Lm(d1), Fm(d2))
∧. (11)

Note that this last formula may be extended to the removal
of a sequence of successive double edges.

The dart’s orientation may thus be computed by fixing the
orientation of all initial darts to 0 and updating the dart’s
orientation using Eq. (11) during the removal of each double
edge kernel.

Let us consider a sequence d1 . . . dp in Gi such that dj+1=
�i (dj ) for all j in {1, . . . , p − 1} and dp 	= �i (d1). We say
that such a sequence defines a closed boundary if �i (dp) and
d1 are incident to a same dual vertex e.g. d1 ∈ �∗

i (�i (dp)).
The orientation of such a sequence is defined by

or(d1 . . . dp) =
p−1∑
j=1

(or(dj ) + (
Lm(dj ), Fm(dj+1)

)∧
)

+ or(dp). (12)

The quantity (Lm(dp), Fm(d1))
∧ has to be added to

or(d1 . . . dp) if the sequence defines a closed boundary.
Note that (Lm(dj ), Fm(dj+1))

∧ cannot be undefined for
any j ∈ {1, . . . , p − 1} (Eq. (9)). Moreover, one can
show that if the sequence defines a closed boundary and
if Lm(dp) = Fm(d1)

−1, then we should have �i (dp) = d1,
which is refused by hypothesis.

Using the same notations and hypothesis as Eq. (12), one
important result shown by Braquelaire and Domenger [5,7]
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states that the orientation of a sequence d1, . . . , dp defining
a closed boundary is equal to 4 if it is traversed clockwise
and −4 otherwise. Moreover, this sequence corresponds to

• a finite face of Gi and thus a region if its orientation is
equal to −4,

• a set of faces of Gi connected by bridges and contained
in one face if the orientation is equal to 4. Such a set of
faces is called an infinite face [5,7]. It encodes a connected
component of the partition (Section 1).

By construction each combinatorial map Gi of a combina-
torial pyramid is connected and all but one faces of Gi de-
fine a finite face. The infinite face of a combinatorial map
encodes the background of the image (Section 3).

5. Computing contains/inside relationships

As demonstrated in Fig. 4, the determination of the con-
tains and inside relationships requires to determine which
vertices are surrounded by a self-loop incident to a given
vertex. This ambiguity in the location of the self-loop is re-
lated to the fact that the two darts of a self-loop play a sym-
metric role in the � cycle to which they belong (Section 4.1).
The determination of the contains and inside relationships
requires thus to define a criterion in order to differentiate
the two darts of a self-loop. This criterion is provided by the
following proposition (Fig. 5(a)):

Proposition 1. Consider a combinatorial map Gi defined
at level i of a combinatorial pyramid such that Gi does not
contain any redundant edge. Let us additionally consider the
darts around a vertex �∗

i (d1)=(d1, . . . , dj , . . . , dk, . . . , dp)

of Gi and a self-loop �∗
i (dj ) = (dj , dk) such that dart dj is

encountered before dk when traversing �∗
i (d1) from d1, e.g.

j < k. The two sequences of darts C1=(dj+1, . . . , dk−1) and
C2 = (dk+1, . . . , dp, d1, . . . , dj−1) define closed boundaries
and have an opposite orientation (or(C1)=−or(C2)). More-
over, the two couple of darts (dk−1, dj+1) and (dk+1, dj−1)

do not define self-loops e.g. dj+1 	= �i (dk−1) and dj−1 	=
�i (dk+1).

Proof. First note that since Gi does not contain empty self-
loops both C1 and C2 should be non-empty.

Let us show that C1 defines a closed boundary. The defini-
tions of �∗

i (d1) and �∗
i (dj ) induce the two following equali-

ties: �i (�i (dk−1))=�i (dk−1)=dk and �i (dk)=�i (dj )=dj+1.
We have thus dj+1 = �2

i (�i (dk−1)) which induces dj+1 ∈
�∗

i (�i (dk−1)). The same arguments are used to show that C2
defines a closed boundary.

Let us now show that dj+1 	= �i (dk−1). Since dj+1 =
�2

i (�i (dk−1)), the relation dj+1 = �i (dk−1) implies that
dj+1 = �2

i (dj+1). The dart dj+1 would thus be incident to
a degree two face which is refused by hypothesis since Gi

does not contain empty double edges. The same argument
is used to show that dj−1 	= �i (dk+1).

All the conditions to apply Eq. (12) are thus satisfied and
we derive:

or
(
�∗

i (d)
)= or(C1) + or(C2) − 4, (13)

where or(�∗
i (d)) denotes the orientation of the whole se-

quence of darts (d1, . . . , dp). Since this sequence defines
a counter-clockwise traversal of the face its orientation is
equal to −4 (Section 4.4). We have thus or(C1)=−or(C2).

�

Proposition 1 may be interpreted as follows: The loop
�∗
i (dj ) corresponds to a bridge in Gi the removal of which

splits the combinatorial map into two connected compo-
nents. The component encoding the surrounding face is tra-
versed counter-clockwise and has thus an orientation of
−4. The remaining component corresponds to the connected
component of inside regions and has an opposed orienta-
tion of 4 (Section 4.4). We say that dj is the starting dart of
the loop if the sequence of darts encoding the inside con-
nected component is enclosed between dj and dk = �i (dj ).
This property is thus characterized by or(C1) = 4. The dart
dj is called the ending dart of the loop otherwise. Note that
if dj is a starting dart �i (dj ) should be an ending dart and
conversely.

The above discussion and Proposition 1 provide thus a
criterion which differentiates the two darts of a loop in or-
der to characterize the inside relationship. However, com-
puting the orientation of all sequences of darts between the
two darts of all self-loops incident to a vertex would require
extra calculus. Indeed, nested self-loops may induce several
traversals of a same sequence of darts. The following theo-
rem incrementally computes the orientation of any sequence
of darts surrounded by the two darts of a loop:

Proposition 2. Using the same hypothesis and notations
as Proposition 1, the orientation of the sequence of darts
C1 = dj+1 . . . dk−1 between dj and dk is defined by:

or(C1)=or ′(d1. . .dk−1)−or ′(d1 . . . dj )

−(Lm(dj ), Fm(dj+1))
∧+(Lm(dk−1), Fm(dj+1))

∧,

where or ′(d1 . . . dk−1) and or ′(d1 . . . dj ) are the orienta-
tions of the sequences d1 . . . dk−1 and d1 . . . dj (Eq. (12))
considered as non-closed sequences of darts.

Proof. We want to use Eq. (12) to calculate the orientation
of the sequences C1 = (dj+1, . . . , dk−1), (d1, . . . , dj ) and
(d1, . . . , dk−1).

(1) C1: The precondition dk−1 	= �i (dj+1) is equivalent to
dj+1 	= �i (dk−1) which is excluded in Proposition 1.
Moreover, C1 is a closed sequence.
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Fig. 5. The local configuration in (a) Gi and (b) Gi of the darts used by Propositions 1 and 2. Note that we implicitly suppose here that dj is the
starting dart since C2 surrounds C1. (c) A contradiction obtained in the proof of Proposition 2.

(2) (d1, . . . , dj ): If d1 =�i (dj ) then d1 =dk (since �i (dj )=
dk) and thus k = 1 and p = k − 1. This last result
contradicts our hypothesis j < k.

(3) (d1, . . . , dk−1): If we assume that dk−1 = �i (d1) and
combine it with the relationship �i (dk−1)=dk =�i (dj )

we can express �∗
i (d1) as

�∗
i (d1) = (d1, . . . , dj , . . . , dk−1, dk, . . . , dp)

= (d1, . . . , dj , . . . , �i (d1), �i (dj ), . . . , dp).

(14)

This last equation contradicts the planarity of Gi since
the edges �∗

i (d1) and �∗
i (dj ) must cross in order to

satisfy Eq. (14) (Fig. 5(b)).

We now can expand the orientations of the three
sequences involved in Proposition 2 to show that
or(C1) − or ′(d1, . . . , dk) + or ′(d1, . . . , dj ) = (Lm(dk−1),

Fm(dj+1))
∧ − (Lm(dj ), Fm(dj+1))

∧. Indeed or(C1)−

1 list starting_dart(combi_map Gi, dart d1) {

2 list L= ∅
3 stack P

4 for each dart dk in �∗
i (d) = (d1, . . . , dp){

5 if(dk is a loop) {

6 if(P is empty or �i (dk) is not on the top of the stack P)

7 push dk and or(d1, . . . , dk) in P

8 else {// �i (dk) on top of the stack P

9 let C1 be the sequence of darts between �i (dk) and dk

10 computes or(C1) using Proposition 2

11 if(or(C1) = =4) L = L ∪ {�i (dk)} else L = L ∪ {dk}
12 }

13 }
14 return L
15 }

Algorithm 1. Determination of the starting darts of the loops.

or ′(d1, . . . , dk) + or ′(d1, . . . , dj ) may be expanded as
follows:⎛
⎝ k−2∑

r=j+1

(or(dr) + (Lm(dr), Fm(dr+1))
∧)

+or(dk−1) + (Lm(dk−1), Fm(dj+1))
∧
⎞
⎠

−
(

k−2∑
r=1

(or(dr) + (Lm(dr), Fm(dr+1))
∧) + or(dk−1)

)

+
⎛
⎝ j∑

r=1

or(dr) + (Lm(dr), Fm(dr+1))
∧

− (Lm(dj ), Fm(dj+1))
∧
⎞
⎠

= (Lm(dk−1), Fm(dj+1))
∧

− (Lm(dj ), Fm(dj+1))
∧. �
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Fig. 6. Extraction of symbols within roadsigns using contains/inside information.

Propositions 1 and 2 are the basis of the algorithm
staring_darts (Algorithm 1) which traverses the �i

cycle of a given vertex �∗
i (d1)= (d1, . . . , dp) and computes

at each step the orientation of the sequence d1, . . . , dk .
Using the same notations as Proposition 1, let us consider
a loop �∗

i (dj ) = (dj , dk) such that dj has been previ-
ously encountered by the algorithm (j < k). The algorithm
starting_dart determines the starting dart between
dj and dk on lines 10 and 11 from the orientation of
C1 = (dj+1, . . . , dk−1) by using Propositions 1 and 2. This
starting dart is added to a list returned by the algorithm.

Since the loops are nested dj and or ′(d1 . . . dj ) should
be on the top of stack P used by the algorithm. The darts
dj , dj+1 and dk−1 are retrieved from the current dart dk by:
dj = �i (dk); dj+1 =�i (dj ) and dk−1 =�−1

i (dk). Moreover,
the orientation of C1 (Proposition 2) is evaluated in con-
stant time since or ′(d1, . . . , dk−1) is the last orientation and
or ′(d1, . . . , dj ) is retrieved from the stack.

Given the list of starting darts determined by the algorithm
stating_darts, the set of vertices contained in �∗

i (d1) is
retrieved by traversing, the sequence �∗

i (d1) from each start-
ing dart to the corresponding end. By construction all darts
encountered between the starting and ending darts of the
loop encode adjacency relationships to contained vertices.
Note that in case of nested loops some loops may be tra-
versed several times. Given a starting dart d , this last draw-
back may be avoided by replacing any encountered starting
dart by its �i successor during the traversal from d to �i (d).

Our algorithm, is thus local to each vertex and the method
may be applied in parallel to all the vertices of the combina-
torial map Gi . Given a vertex �∗

i (d1), the determination of
its starting darts (algorithm starting_darts) requires
to traverse once �∗

i (d1). Moreover, the determination of the
inside relationships from the list of starting darts requires to
traverse each dart of �∗

i (d1) at most once. The worse com-
plexity of our algorithm is thus bounded by the maximum
degree of a vertex, e.g. O(2|�∗

i (d1)|).
5.1. Application to road sign’s recognition

Fig. 6 illustrates one application of the contains/inside
information to image analysis. The road sign shown in

Fig. 6(a) is composed of only two colors with one symbol
inside a uniform background, the background itself being
surrounded by one border with a same color as the symbol.
In our example, the two roadsigns have a uniform back-
ground which includes one symbol representing a white ar-
row. The background is surrounded by a white border. In
this application we wish to extract the sign using only topo-
logical and color information (and thus independently of the
shapes of the symbol and the road sign). Using only adja-
cency and color information, the symbol cannot be distin-
guished from the border of the road sign since the border
and the symbol have a same color and are both adjacent to
the background of the road sign (Fig. 6(d)). However, using
contains/inside information, the symbol and the border may
be distinguished since the border contains the background
of the road sign which contains the symbol. Our algorithm
first builds a combinatorial pyramid using a hierarchical wa-
tershed algorithm [15]. Fig. 6(b) shows the top level of the
hierarchies obtained from the two roadsigns. Using the top
level combinatorial map of each pyramid our algorithm se-
lects the k regions of the partition whose color is closest
from the background’s color (k is fixed to five in our exper-
iment). This last step defines a set of candidate regions for
the background of the road sign. This background is then
determined as the region whose contained regions have the
closest mean color from the color’s symbol (equal to white
in this experiment). Note that this step removes from the k

selected candidates any regions which do not contain another
region. We thus make explicit the a priori knowledge that
the background of the road sign should contain at least one
region. The symbol is then determined as the set of regions
inside the selected region (Fig. 6(c)). Finally, let us note that
the contains information needs to be computed only on the
k selected candidates for the road sign’s background. Within
this experiment a global algorithm computing the contains
information for all vertices would require useless calculus.

6. Conclusion

We have introduced in this paper 5 relationships between
regions (Section 1.1). These relationships are devoted to
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Table 1
The different relationships available using the different models mentioned in this paper

meets_exists meets_each Contains/inside Composed of

RAG Yes No No No
Combinatorial maps Yes Yes Yes No
Simple graph pyramids Yes No No Yes
Dual graph pyramids Yes Yes Global calculus? Yes
Combinatorial pyramids Yes Yes Local calculus Yes

the graph based segmentation framework and encode either
rough or fine relationships between the regions of a parti-
tion: The meets_exists relationship corresponds to the ability
of a model to encode the existence of at least one common
boundary between two regions. The meets_each relationship
corresponds to an encoding of each connected boundary be-
tween two adjacent regions. The inside and contains rela-
tionships are asymmetric and encode the fact that one region
contains the other. Finally, the composed of relationships is
only provided by hierarchical data structures and encodes
the fact that one region is composed of several regions de-
fined at levels below.

Table 1 shows the ability of the region adjacency graph,
the combinatorial map, the simple graph pyramid, the dual
graph pyramid and the combinatorial pyramid to encode
the meets_exist, meets_each, contains/inside and composed
of relationships. The region adjacency graph (Section 1.2)
only encodes the meets_each relationship. The combinato-
rial map model (Section 1.3) encodes all but the composed
of relationships. The simple graph pyramids (Section 2) en-
codes the meets_exist and the composed of relationships.
This last relationship is also encoded by the two other irregu-
lar pyramid models described in this paper (Section 1.4). The
dual graph pyramids (Section 2.2) encodes the meets_exists,
meets_each (Section 2.3) and composed of relationships.
The inside/contains relationships cannot be deduced from
the model using local calculus (Section 2.4). However, the
authors conjecture that these relationships may be computed
using the fact that the vertex encoding the background of
the image is not surrounded by any self-loop. Such an al-
gorithm would require a propagation step from the back-
ground vertex and would thus require global calculus. This
property is indicated by an interrogation mark in Table 1.
The combinatorial map pyramid model (Section 4) encodes
the meets_exists, meets_each (Section 4.1) and composed of
relationships.

The main contribution of this paper consists in the design
of the algorithm starting_dart (Section 5) which uses
the orientation explicitly encoded by combinatorial maps to
differentiate the two darts of a self-loop. Given a vertex in-
cident to a self-loop, this last characterization allows to de-
termine the regions inside the region encoded by this ver-
tex in a time proportional to twice its number of incident
edges. This method implies only local calculus and its par-
allel complexity is bounded by twice the maximal degree of
the vertices of the graph.

The efficient computation of those relations relating re-
gions of a segmentation is a prerequisite to the description
and the recognition of relevant groupings: an important step
on the way to more generic recognition, categorization and
higher visual abstraction within the homogeneous frame-
work of combinatorial pyramids.
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