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Abstract:

We present a hierarchical partitioning of images using a pairwise similarity function on a com-

binatorial map based representation. We used the idea of minimal spanning tree to find region

borders quickly in a bottom-up way, based on local differences. The result is a hierarchy of im-

age partitions with multiple resolutions suitable for further goal driven analysis. The algorithm

can handle large variation and gradient intensity in images. Dual graph representations lack

an explicit encoding of the orientation of planes, existing in combinatorial maps.

1 Introduction

The authors in [10] suggested to bridge and not to eliminate the representational gap, and to

focus efforts on region segmentation, perceptual grouping, and image abstraction. They employ

region-adjacency-graph based technique in order to produce meta-regions2) of a particular view

of a generic model. They start from a single vertex, representing a single region (silhouette),

which is derived from the input region adjacency graph (produced by graph-based segmentation

method in [5]), by merging in a pairwise manner the regions of an image example. After

having the apexes (of two or more images) they proceed in a top-down manner to find the

decomposition of each apex region into two subregions by comparing corresponding shapes

and relations among the corresponding regions.

The union of regions forming the group is again a region with both internal and external proper-

ties and relations. Low-level cue image segmentation cannot and should not produce a complete

final good segmentation, because there is an intrinsic ambiguity in the exact location of region

boundaries in digital images. Problems emerge because homogeneity of low-level cues will not

map to the semantics [10], and the degree of homogeneity of a region is in general quantified

by threshold(s) for a given measure [6]. A grouping method should have the following proper-

1)This paper has been supported by the Austrian Science Fund under grant FSP-S9103-N04.
2)An output region adjacency graph as abstraction of the particular view.



ties [5]: capture perceptually important groupings or regions which reflect global aspects of the

image, be highly efficient, running in time linear in the number of image pixels (e.g minimal

spanning tree), and creating hierarchical partitions [17].

In a regular image pyramid the number of pixels at any level l, is r times higher than the

number of pixels at the next reduced level l + 1. The so called reduction factor r is greater

than one and it is the same for all levels l. If s denotes the number of pixels in an image I , the

number of new levels on top of I amounts to logr(s). Thus, the regular image pyramid may be

an efficient structure for fast grouping and access to image objects in top-down and bottom-up

processes. However, the authors in [1] conclude that regular image pyramids have to be rejected

as general-purpose segmentation algorithms, because they lack shift invariance. In [15, 9, 14]

it was shown how these drawbacks can be avoided by irregular image pyramids, the so called

adaptive pyramids, in image segmentation and feature detection.

Region adjacency graphs (RAG), dual graphs [8] and combinatorial maps have been used be-

fore [3] to represent the partitioning of 2D space. From these three structures, we use the com-

binatorial maps because, RAGs cannot correctly encode multiple boundaries and inclusions,

and dual graphs lack the explicit encoding of edge orientation around vertices (see Section 2.1

for a problem in 2D), present in a combinatorial map [3]. Moreover with combinatorial maps,

its dual must not be explicitly represented because one combinatorial map is enough to fully

characterize the partition, and its dual can be easily deduced anytime.

In this paper we present a hierarchical method, introduced in [8], which in a bottom-up method

produce a stack of region adjacency combinatorial maps (called irregular combinatorial pyra-

mid 3)), and at the same time preserves the proper topology among regions during the merging

processes, suitable for the top-down decomposition (e.g. as in [10]). Combinatorial maps and

combinatorial pyramids are shortly presented in Section 2. Borůvka’s algorithm [2] was used

to build a minimal spanning tree (MST ), since it was easily integrated in our combinatorial

pyramid concept. Combinatorial map contraction is presented in Section 3. In Section 4 we

present some experimental results.

2 Combinatorial Maps

We refer to following definitions and properties of combinatorial maps G = (D, σ, α), see [4]:

set of darts D, permutations σ and α(d)4) (see Figure 1a), self-loops, bridges, dart partition,

3)called lattice in [10].
4)Orbits of σ encode the vertices and that of α edges, if the darts are encoded by positive and negative integers,

α can be implicitly encoded by α(d) = −d.



a) D = (1,−1, 2,−2, 3,−3, 4,−4, 5,−5, b) D = (1,−1, 2,−2, 3,−3, 4,−4) c) dual graphs

6,−6, 7,−7, 8,−8, 9,−9)
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Figure 1: a), b) Combinatorial maps. b), c) Topological case handled correctly only by combinatorial map.

contraction of a dart G/α∗(d) = G \ α∗(d), and contraction kernel K = {D1, ..., Dn}. A

combinatorial map may be seen as a planar graph encoding explicitly the orientation of edges

around a given vertex. Thus all graph definitions used in irregular pyramids [11] are analogously

defined. A combinatorial pyramid is a stack of successively reduced combinatorial maps by the

set of contraction and removal operations, i.e. (G0, ..., Gk), where k represent the levels of the

pyramid. Each map k + 1 is build from the one below, k, by selecting a set of contraction

kernels Kk,k+1 and applying it to a given combinatorial map Gk to get the reduced Gk+1 =

C[Gk, Kk,k+1] = Gk \ Kk,k+1. More on removal of the redundant edges can be found in [3].

2.1 Combinatorial Maps versus Dual Graphs

Advantages of combinatorial maps over dual graphs come form the embedding, that is inher-

ently present at the former ones. Let us analyze the ’flower’ example given in Figure 1b,c w.r.t

uniqueness of topological representation. The combinatorial map of this ’flower’ is shown and

defined in Figure 1b) by G = (D, σ, α)5). If the leafs of the ’flower’ exchange position for

e.g. leafs 1 and 3, a different σ = (3,−3, 2,−2, 1,−1, 4,−4) will be defined, hence uniquely

encoding the topology. The dual graphs are encoded by a pair of graphs, the (planar) primal

graph vertices) and its dual. For each edge in the primal graph there is a corresponding one in

the dual, that crosses it (Figure 1c). Since there is no ordering of the edges around the vertices,

the dual graph representation does not uniquely encode the topology of the ’flower’, as can be

5)σ is encoded clockwise, shown with the arrow in Figure 1b).



easily seen if we exchange the position, for e.g. of leafs 1 and 3, the dual graph describing this

configuration is isomorph with the previous one (the one without exchanging the position of

leafs 1 and 3).

3 Image Partitioning

The goal is to find partitions such that these elements satisfy certain properties. The authors

in [5] defines a function, which measures the difference along the boundary of two components

relative to a measure of the differences of components’ internal differences. This definition

tries to encapsulate the intuitive notion of contrast: a contrasted zone is a region containing

two connected components whose inner differences (internal contrast) are less than differences

within it’s context (external contrast). We define an external contrast measure between two

components and an internal contrast measure of each component, analogously to [5, 7].

Let Pk = {CCk
i , CCk

j , ..., CCk
n} be the partitions on the level k of the pyramid i.e Pk is the

attributed combinatorial map Gk(Dk, σk, αk, ak), its vertex set σ∗
k(Dk) by Vk, where a : D →

R
+ and edge set E = α∗(D). One way to attribute the darts is given in Section 4. Every vertex

u ∈ Vk is a representative of a component CCi = RF (ui)6) of the partition Pk. The equivalent

contraction kernel of a vertex u ∈ Vk, K0,k(u) is a set of darts (a subtree) of the base level

d ∈ D0 that are contracted; i.e. applying equivalent contraction kernel on the base level, one

contracts the sub combinatorial map G′ ⊆ G onto the vertex u.

The internal contrast of the CCi ∈ Pk is the largest dissimilarity of the component CCi i.e.

the largest dart of the K0,k(u) of a vertex u ∈ Vk:

Int(CCi) = max{a(d), d ∈ α∗(K0,k(u))}. (1)

Let ui, uj ∈ Vk be the end vertices of a dart d ∈ Dk. The external contrast between two

components CCi, CCj ∈ Pk is the smallest dissimilarity between component CCi and CCj i.e.

the smallest dart weight connecting K0,k(ui) and K0,k(uj) of vertices ui ∈ CCi and uj ∈ CCj:

Ext(CCi, CCj) = min{a(d), d ∈ K0,k(ui) ∧−d ∈ K0,k(uj)}. (2)

The pairwise comparison function Comp(·, ·) between two connected components is defined:

Comp(CCi, CCj) =

{
True if Ext(CCi, CCj) > PInt(CCi, CCj),

False otherwise,
(3)

where PInt(CCi, CCj) is the minimum internal contrast difference between two components:

6)connected components CC, and receptive field (RF )



PInt(CCi, CCj) = min(I(CCi) + τ(CCi), I(CCj) + τ(CCj)). (4)

For the function Comp(CCi, CCj) to be true i.e. for the border to exist, the external contrast

difference must be greater than the internal contrast differences. The reason for using a thresh-

old function τ(CC) in Equation (4) is that for small components CC, Int(CC) is not a good

estimate of the local characteristics of the data, in extreme case when |CC| = 1, Int(CC) = 0.

Any non-negative function of a single component CC, can be used for τ(CC) [5]. One can

define τ to be function of the size of CC: τ(CC) = α/|CC|, where |CC| denotes the size of

the component CC and α is a constant. More complex definition of τ(CC), which is large for

certain shapes and small otherwise would produce a partitioning which prefers certain shapes.

Algorithm 1 shows how to build the hierarchy of partitions.

Algorithm 1 – Construct Hierarchy of Partitions
Input: Attributed combinatorial map G0.

1: k = 0

2: repeat

3: ∀u ∈ Vk = σ∗
k(Dk)

4: Dmin(u) = {d ∈ D|a(d) = min{a(d′)|d ∈ σ∗(d)}}
5: ∀d ∈ Dmin, uk

i = σ∗
k(d), uk

j = σ∗
k(−d) with Ext(CCk

i , CCk
j ) ≤ PInt(CCk

i , CCk
j )

6: include d and −d in contraction kernel Kk,k+1

7: contract combinatorial map Gk with contraction kernel, Kk,k+1: Gk+1 = C[Gk, Kk,k+1].

8: set a(dk+1) = min{a(dk) | dk+1 = C[dk, Kk,k+1]}
9: k = k + 1

10: until Gk = Gk−1

Output: An attributed combinatorial map at each level of the pyramid (G0, G1, ..., Gk).

4 Experiments on Image Maps

All the details here (as in the whole paper) are given for the combinatorial map in which vertices

represent regions. We could use also the dual combinatorial map, where faces are used to

represent regions as well. One can always obtain the dual of the combinatorial map, therefor

there is no need of storing both. Anyhow the same framework could be used to store and manage

both representations. Because the base entity in a combinatorial map is the dart, we cannot

have a map containing only one vertex and no edges. So one notable difference would be that if

vertices are chosen to represent the regions, a one region map, without self loops is not possible

until the background (the infinite region) is represented explicitly (darts have to be specially



(a) 0 (160 000) (b) 21 (2387) (c) 27 (321) (d) 37 (41) (e) 42 (9)
Figure 2: Some levels of the partitioning of ‘Tulips’: level (number of components).

added for that). On the dual, where regions are represented by faces, the background/infinite

region also exists, but no special darts have to be added to accommodate it, so a one region map

would be made out of two darts that are ‘sewed’ together by α and by σ.

We start with the trivial partition, where each pixel is a homogeneous region. The attributes of

edges can be defined as the difference between end point features of end vertices, attre(ui, uj) =

|F (ui)−F (uj)|, where F is some feature. F could be defined as F (ui) = I(ui), for gray value

intensity images, or F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV color

distance [17]. However the choice of the definition of the weights and the features to be used is

in general a hard problem, since the grouping cues could conflict each other [13].

For our experiments we used as attributes of edges the euclidean distance between pixel RGB

values, a(ui, uj) = |rgb(ui) − rgb(uj)|. We choose this simple color distance to study the

properties of the algorithm. To compute the hierarchy of partitions we also need to define

τ(CC) = α/|CC|, where α = const and |CC| is the number of elements in CC, i.e. the

size of the region. The algorithm has one running parameter α, which is used to compute the

function τ . A larger constant α sets the preference for larger components. Note that as size of

|CC| gets larger, which happens as the algorithms proceeds toward the top of the pyramid, the

function τ → 0, which means that the influence of the parameter α decreases.

We found that α = 300 produces the best hierarchy of partitions of the images shown in Tulips

Figure 2, Obj18 355 Figure 3, and Obj59 0 7)Figure 4. Figures 2, 3 and 4 show some of the

partitions on different levels of the pyramid and the number of components. In general the top of

the pyramid will consist of one vertex, an apex, which represents the whole image. Note that in

all images there are regions of large intensity variability and gradient. This algorithm copes with

this kind of gradient and variability. In contrast to [5]8) the result is a hierarchy of partitions with

multiple resolutions, suitable for further goal driven, domain specific analysis 9). On the lower

7)Waterloo image database and Coil 100 image database
8)In [16] results of different segmentation methods, including the ones in [5] and [13], are shown and compared.
9)Please note that a whole class of partitions is created, where a partition is not limited to a certain level of



(a) 0 (16 384) (b) 23 (512) (c) 32 (65) (d) 39 (10) (e) 42 (4)
Figure 3: Some levels of the partitioning of ‘Obj18 355’: level (number of components).

(a) 0 (16 384) (b) 24 (291) (c) 34 (23) (d) 37 (6) (e) 39 (2)
Figure 4: Some levels of the partitioning of ‘Obj59 0’: level (number of components).

level of the pyramid the image is over segmented (partitioned) whereas in upper it is under

segmented (partitioned), the help of mid and high level knowledge would select the proper

partitioning. An approach based on some statistical measures to decide which level is the most

appropriate could be used as well [12]. Since the algorithm preserves details in low-variability

regions, a noisy pixel would survive through the hierarchy. Of course, image smoothing in low

variability regions would overcome this problem. We, however do not smooth the images, as

this would introduce another parameter into the method. The hierarchy of partitions can also be

built from an over segmented image to overcome the problem of noisy pixels. The constant α

is used to produce a kind of the over segmented image. For an over segmented image, where

the size of regions is large, there is no need to define the function τ , thus the algorithm becomes

parameterless.

5 Conclusion

In this paper we presented a method for building hierarchical image partitions using Borůvka’s

minimal spanning tree algorithm. The hierarchy is presented as a combinatorial pyramid, where

each level is a 2D combinatorial map. Combinatorial maps are defined in any dimension, thus

the current work should lead the way to segmentation of digital video streams using contraction

in 3D combinatorial maps/pyramids. It was shown that the algorithm can handle large variation

the pyramid, but can be constructed of components from different levels (the receptive fields of the vertices of a

multilevel partition occupy the whole image, and do not overlap)



and gradient intensity in images. Even though the algorithm makes greedy decisions locally, it

produces perceptually important partitions in a bottom-up way based only on local differences.

A drawback is that maximum and minimum criterion is very sensitive to noise, although in

practice it has a small impact. To overcome the problem of noise, one could start with an over

segmented image produced by a robust method e.g. robust watershed method. A comparison

between the classes of partitions produced by the presented method, and some of the well known

methods (e.g. [5, 17]) is planned.
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